跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡惠榕
研究生(外文):Hui-Jung Tsai
論文名稱:以Langmuir-Blodgett及自組裝技術製備奈米粒子單分子層薄膜及其在超疏水表面之應用
論文名稱(外文):Fabrication of Nanoparticulate Monolayers by using Langmuir-Blodgett and Self-Assembly Techniques for Superhydrophobic Surface
指導教授:李玉郎
指導教授(外文):Yuh-Lang Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:252
中文關鍵詞:二氧化矽粒子超疏水表面靜電作用力單分子層模板金奈米粒子氣/液界面自組裝技術乙醇Langmuir-Blodgett技術特定親和力階層式結構
外文關鍵詞:dual-size structured.surperhydrophobic surfacesilica particlesspecific affinityelectrostatic interactionmonolayer templategold nanoparticlesethanolair/liquid interfaceself-assembly techniquesLangmuir-Blodgett techniques
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用Langmuir-Blodgett (LB)法及自組裝技術來製備奈米粒子單分子層薄膜,並將其應用在超疏水表面的製作。在LB沉積法中,本研究使用十八烷胺(ODA)、十八烷硫醇(ODT)或混合ODA/ODT作為Langmuir單分子層模板,藉由單分子層與奈米粒子間及乙醇添加的不穩定效應將分散於水溶液中的金奈米粒子(AuNPs)吸附至氣/液界面,氣/液界面上的單分子層分子除了扮演吸附模板外,同時扮演被吸附AuNPs的疏水改質劑,使AuNPs能穩定的存在氣/液界面上。本研究藉由單分子層的表面壓-面積等溫曲線,鬆弛曲線,遲滯曲線的分析,以及穿透式電子顯微鏡(Transmission electron microscope, TEM)及布魯斯特角顯微鏡(Brewster angle microscope, BAM)的觀察,來了解奈米粒子混合單分子層在氣/液界面上的行為及薄膜表面型態的變化。
在ODA/AuNPs及ODT/AuNPs系統的探討中發現,ODA和金粒子間具有靜電作用力。因此,ODA單分子層對金粒子的吸附能力遠大於ODT分子。吸附於氣/液界面上的AuNPs,由於ODA或ODT分子的修飾,增進AuNPs間的凡得瓦作用力,有助於AuNPs自組裝成整齊結構。在適當ODA單分子層密度及乙醇濃度控制下,配合單分子層的壓縮,可以製備出緊密整齊排列的金奈米粒子薄膜。實驗結果亦顯示,過高的ODA單分子層密度,會增加自由ODA分子在界面上的比例,而阻礙粒子間的結合,影響緊密粒子薄膜的形成。乙醇的添加是製備排列緊密單分子層的關鍵條件,乙醇存在可以增加粒子在界面上的吸附量之外,亦可以改變ODA單分子層的特性,使其形成擴張型的單分子層,有助於氣/液界面上奈米粒子合併為緊密的粒子薄膜。
在ODA/ODT混合單分子層的使用,主要利用ODA對奈米粒子的靜電作用力來吸附AuNPs,再藉由ODT對金的特定親和力來改質AuNPs表面,提升金粒子疏水程度,以增加粒子凡得瓦作用力,此有助於AuNPs自組裝形成整齊結構。並由鬆弛曲線證實,ODA/ODT混合系統的使用,可有效改善金粒子在氣/液界面上的穩定性,較易得到排列緊密的粒子薄膜。
本研究將粒子薄膜應用至超疏水表面,使用Langmuir- Blodgett (LB)沉積及靜電逐層組裝技術(ELBL),在玻璃基板上組裝微米級結構的二氧化矽粒子薄膜,並再以靜電逐層組裝技術(ELBL)披覆上奈米級的二氧化矽粒子,製備出結構類似於Raspberry的階層式粒子薄膜,最後藉由長碳鏈矽烷作疏水化表面改質,得到超疏水性粒子薄膜。利用掃描式電子顯微鏡(Scanning electron microscope, SEM)及動態接觸角(Dynamic Contact Angle, DCA),來瞭解薄膜表面型態及潤濕性。結果顯示:利用靜電組裝技術所得到不規則的Raspberry-like的微/奈階層式粒子,可得到169o前進接觸角,而遲滯角度少於5o的超疏水性粒子薄膜。
Nanoparticulate monolayers were prepared by using Langmuir-Blodgett and self-assembly techniques and used for superhydrophobic surface application. Langmuir monolayers of octadecylamine (ODA), octadecylthiol (ODT), and mixed ODA/ODT at air/liquid interface were used as template layers to adsorb gold nanoparticles (AuNPs) dispersed in the subphase. Furthermore, the adsorption of AuNPs was also enhanced by the destabilization effect of ethanol introduced into the colloidal solution. The monolayer not only acts as a template layer to incorporate AuNPs but also as a capping agent to in-situ modify the adsorbed NPs, providing van der Waals interaction among NPs for self-organization into ordered domains. The behaviors of the monolayers were studied using the pressure-area (π-A) isotherms, hysteresis and relaxation curves, and the observations of transmission electron microscopy (TEM) and Brewster angle microscope (BAM).
For the ODA/AuNPs and ODT/AuNPs systems, the results indicated that ODA monolayer has a much higher ability, than the ODT monolayer, in incorporation AuNPs, attributed to the electrostatic interaction between ODA and AuNPs. By using ODA monolayer with appropriate molecular density, as well as the adjusting of the ethanol concentration, a close-packed particulate film of AuNPs can be prepared through the monolayer compression. The results also show that over loading of the ODA molecules increases the fractional ratio of free ODA molecules at the interface which obstructs the coalescence of particulate domains and, therefore, a close-packed particulate monolayer cannot be approached. The presence of ethanol in the subphase not only enhances the particle adsorption to the interface but also triggers a more expanded ODA monolayer, which plays a key role in preparing a close-packed particulate monolayer.
For the mixed ODA/ODT systems, the incorporation of AuNPs was mainly performed by ODA molecules through the electrostatic interaction, while the specific affinity of ODT molecules to the AuNPs plays a role to increase the density of capping agents on an AuNPs, leading to a higher van der Waal interaction among NPs for self-organization into ordered domains. The experimental results showed that the utilization of the mixed ODA/ODT monolayer can improve the stability of AuNPs incorporated at the air/liquid interface and is helpful to the formation of an AuNPs particulate film with close-packed and ordered structure.
For the application of particulate thin films on surperhydrophobic surface, a micro/nano dual-scale particulate film with raspberry-like morphology was prepared by using LB deposition and electrostatic layer-by-layer (ELBL) technique. Micro-size silica particles were used to prepare a surface with microscale roughness. Nano-size silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. The as-deposited particulate films were surface-modified with alkylsilane to render a surface with surperhydropboic property. The advancing and receding contact angles of water on the dual-size structured surface were 169o and 165o, respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.
摘要 I
Abstract III
致謝 VI
目錄 VII
表目錄 XIII
圖目錄 XIV
符號說明 XXVII
第一章 緒論 1
1-1 前言 1
1-2 研究動機及目的 2
第二章 文獻回顧 4
2-1 Langmuir-Blodgett簡介 4
2-1-1 Langmuir-Blodgett發展歷史回顧 4
2-1-2 Langmuir-Blodgett單分子層性質 4
2-1-3 Langmuir-Blodgett之形式 16
2-1-4 Langmuir-Blodgett混合膜之熱力學理論分析 19
2-2 奈米粒子簡介 20
2-2-1 金粒子合成方法 20
2-2-2 二氧化矽粒子合成方法 22
2-2-3 奈米粒子組裝方法 23
2-3 超疏水表面的簡介 35
2-3-1 超疏水自潔表面 35
2-3-2 超疏水理論 36
2-3-2-1 Wenzel 理論 38
2-3-2-2 Cassie and Baxter 理論 39
2-3-2-3 Johnson and Dettre 理論 40
2-3-2-4 接觸角遲滯 41
2-3-3 超疏水表面製備方法 49
2-3-3-1 先創造粗糙結構的表面然後再疏水改質 49
2-3-3-2 在疏水材料表面創造粗糙結構 52
2-3-3-3 創造具有低液/固接觸面積階層式規則結構表面 52
2-3-4 表面疏水改質 54
第三章 實驗方法及步驟 57
3-1 實驗藥品 57
3-2 實驗儀器及裝置 58
3-2-1 Langmuir-Boldgett沉積裝置 58
3-2-2 表面壓測量原理 58
3-2-3 布魯斯特角顯微鏡 59
3-2-3-1 介紹 59
3-2-3-2 原理 61
3-2-4 雷射光散射法粒徑測定儀 63
3-2-5 掃描式電子顯微鏡 63
3-2-6 穿透式電子顯微鏡 64
3-2-7 原子力顯微鏡 65
3-2-8 動態接觸角分析儀 66
3-3 金奈米粒子在氣/液界面上組裝步驟 72
3-3-1 組裝流程 72
3-3-2 金奈米粒子合成 73
3-3-3 金奈米粒子等溫線、鬆弛曲線及遲滯曲線量測 73
3-3-4 穿透式電子顯微鏡分析 74
3-3-5 布魯斯特角顯微鏡分析 75
3-4 Raspberry-like階層式結構粒子薄膜的組裝步驟 78
3-4-1 製備流程 78
3-4-2 微米二氧化矽粒子組裝 79
3-4-3 Raspberry-like微/奈階層式結構粒子薄膜組裝 80
3-4-4 Raspberry-like粒子薄膜疏水改質 80
第四章 ODA單分子層對金奈米粒子在氣/液界面組裝的應用 81
4-1 ODA單分子層在氣/液界面上行為的探討 81
4-1-1 表面壓-每分子佔據面積等溫線 81
4-1-2 BAM影像觀察 82
4-2 ODA/奈米金粒子混合單分子層在氣/液界面上行為探討 85
4-2-1 吸附時間之影響 85
4-2-1-1 表面壓-每分子佔據面積等溫線 85
4-2-1-2 TEM影像分析 87
4-2-1-3 BAM影像觀察 87
4-2-1-4 鬆弛行為的探討 88
4-2-2 奈米粒子濃度之影響 98
4-2-2-1 表面壓-每分子佔據面積等溫線 98
4-2-2-2 TEM影像觀察 99
4-2-3 單分子層界面濃度之影響 105
4-2-3-1 表面壓-每分子佔據面積等溫線 105
4-2-3-2 TEM影像分析 106
4-2-3-3 鬆弛行為 108
4-2-3-4 遲滯現象 108
4-3 乙醇對金奈米粒子的吸附及ODA/金奈米粒子單分子層特性的探討 121
4-3-1 乙醇濃度之影響 121
4-3-1-1 表面壓-每分子佔據面積等溫線 121
4-3-1-2 TEM影像分析 123
4-3-1-3 BAM影像觀察 124
4-3-1-4鬆弛行為 126
4-3-1-5遲滯現象 126
4-3-2 單分子層界面濃度之影響 141
4-3-2-1 表面壓-每分子佔據面積等溫線 141
4-3-2-2 TEM影像分析 142
4-3-2-3 理論模式 144
4-3-2-4 鬆弛行為 144
4-3-2-5 遲滯現象 145
第五章 ODT及ODA/ODT單分子層對金奈米粒子在氣/液界面組裝的應用 158
5-1 ODT單分子層在氣/液界面上行為的探討 158
5-1-1 表面壓-每分子佔據面積等溫線 158
5-1-2 BAM影像觀察 159
5-2 乙醇對金奈米粒子的吸附及ODT/金奈米粒子單分子層特性的探討 162
5-2-1 表面壓-每分子佔據面積等溫線 162
5-2-2 TEM 影像分析 162
5-2-3 BAM 影像觀察 163
5-3 ODA/ODT混合單分子層在氣/液界面上行為的探討 169
5-3-1表面壓-每分子佔據面積等溫線 169
5-3-2熱力學之分析 170
5-3-3 BAM影像觀察 171
5-3-4鬆弛行為 173
5-4 ODA/ODT/奈米金粒子混合單分子層在氣/液界面上行為探討 180
5-4-1 表面壓-每分子佔據面積等溫線 180
5-4-2 TEM影像觀察 181
5-4-3 BAM影像觀察 182
5-4-4 理論模式 184
5-4-5 鬆弛行為 185
5-5 乙醇對金奈米粒子的吸附及ODA/ODT/金奈米粒子單分子層特性的探討 198
5-5-1 表面壓-每分子佔據面積等溫線 198
5-5-2 TEM影像分析 199
5-5-3 BAM影像觀察 200
5-5-4 理論模式 201
5-5-5 鬆弛行為 202
第六章 以LB及ELBL沉積技術製備Raspberry-like階層式結構超疏水粒子薄膜 212
6-1 微米單層次結構二氧化矽粒子薄膜製備 212
6-1-1 二氧化矽粒子LB膜性質 212
6-1-1-1 二氧化矽粒子薄膜表面壓-佔據面積等溫線 212
6-1-1-2 鬆弛行為的探討 213
6-1-2 沉積層數對薄膜疏水特性之影響 213
6-1-2-1 SEM顯微鏡觀察 213
6-1-2-2 表面潤濕度之分析 214
6-2 微/奈米階層式結構二氧化矽粒子薄膜的製備 220
6-2-1 微米層數對階層式粒子薄膜疏水特性之影響 220
6-2-1-1 SEM顯微鏡觀察 220
6-2-1-2 表面潤濕度及粗糙度之分析 221
6-2-2 奈米粒子尺寸對階層式粒子薄膜膜疏水特性之影響 227
6-2-2-1 SEM顯微鏡觀察 227
6-2-2-2表面潤濕度之分析 228
第七章 結論與建議 233
參考文獻 237
自述 251
著作目錄 251
Adamson, A.W., “Physical Chemistry of Surface,” 5th Edition, John Wiley and Sons, New York, 1990.
Aliev, F.G., M.A. Correa-Duarte, A. Mamedov, J.W. Ostrander, M. Giersig, L.M. Liz-Marzan and N.A. Kotov, “Layer-by-layer assembly of core-shell magnetic nanoparticles: Effect of silica coating on interparticle interactions and magnetic properties,” Adv. Mat., 11, 1006-1010, 1999.
Angelova, A., F. Penacorada, B. Stiller, T. Zetzsche, R. Ionov, H. Kamusewitz and L. Brehmer, “Wettability, surface-morphology, and stability of long-chain ester multilayers obtained by different Langmuir-Blodgett deposition types,” J. Phys. Chem., 98, 6790-6796, 1994.
Aslan, K. and V.H. Perez-Luna, “Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant,” Langmuir, 18, 6059-6065, 2002.
Badley, R.D., W.T. Ford, F.J. McEnroe and R.A. Assink, “Surface modification of colloidal silica,” Langmuir, 6, 792-801, 1990.
Bandyopadhyay, K., V. Patil, K. Vijayamohanan and M. Sastry, “Adsorption of silver colloidal particles through covalent linkage to self-assembled monolayers,” Langmuir, 13, 5244-5248, 1997.
Barthlott, W. and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, 202, 1-8, 1997.
Biggs, S., P. Mulvaney, C.F. Zukoski and F. Grieser, “Study of anion adsorption at the gold-aqueous solution interface by atomic-force microscopy,” J. Am. Chem. Soc., 116, 9150-9157, 1994.
Bigioni, T.P., X.M. Lin, T.T. Nguyen, E.I. Corwin, T.A. Witten and H.M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater., 5, 265-270, 2006.
Bilewicz, R. and M. Majda, “Monomolecular langmuir-blodgett-films at electrodes - formation of passivating monolayers and incorporation of electroactive reagents,” Langmuir, 7, 2794-2802, 1991.
Bourgoin, J.P., C. Kergueris, E. Lefevre and S. Palacin, “Langmuir-Blodgett films of thiol-capped gold nanoclusters: fabrication and electrical properties,” Thin Solid Films, 327, 515-519, 1998.
Bravo, J., L. Zhai, Z.Z. Wu, R.E. Cohen and M.F. Rubner, “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, 23, 7293-7298, 2007.
Cao, L.L., H.H. Hu and D. Gao, “Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials,” Langmuir, 23, 4310-4314, 2007.
Cassie, A.B.D., Baxter, S., “Wettability on porous surfaces,” Trans. Faraday Soc., 40, 546-551, 1944.
Chattorij, D.K. and Birdi, K.S., “Adsorption and the Gibbs surface excess,” Plenum, New York, 1984.
Chen, A.C., X.S. Peng, K. Koczkur and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun., 17,1964-1965, 2004.
Chen, L.H., A. Dudek, Y.L. Lee and C.H. Chang, “Adsorption of carboxylate-modified gold nanoparticles on an octadecylamine monolayer at the air/liquid interface,” Langmuir, 23, 3123-3127, 2007.
Chen, L.J., Y.H. Tsai, C.S. Liu, D.R. Chiou and M.C. Yeh, “Effect of water content in solvent on the critical temperature in the formation of self-assembled hexadecyltrichlorosilane monolayers on mica,” Chem. Phys. Lett., 346, 241-245, 2001.
Chen, S.H., H. Yao and K. Kimura, “Reversible transference of Au nanoparticles across the water and toluene interface: A Langmuir type adsorption mechanism,” Langmuir, 17, 733-739, 2001.
Chen, W., A.Y. Fadeev, M.C. Hsieh, D. Oner, J. Youngblood and T.J. McCarthy, “Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples,” Langmuir, 15, 3395-3399, 1999.
Chen, X.Y., J.R. Li and L. Jiang, “Two-dimensional arrangement of octadecylamine-functionalized gold nanoparticles using the LB technique,” Nanotechnology, 11 108-111, 2000.
Choi, C.H. and C.J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology, 17, 5326-5333, 2006.
Chow, M.K. and C.F. Zukoski, “Gold sol formation mechanisms - role of colloidal stability,” J. Colloid Interface Sci., 165, 97-109, 1994.
Cumberland, S.L. and G.F. Strouse, “Analysis of the nature of oxyanion adsorption on gold nanomaterial surfaces,” Langmuir, 18, 269-276, 2002.
Daniel, M.C. and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev., 104, 293-346, 2004.
Duan, H.W., D.A. Wang, D.G. Kurth and H. Mohwald, “Directing self-assembly of nanoparticles at water/oil interfaces,” Angew. Chem.-Int. Edit., 43, 5639-5642, 2004.
Erbil, H.Y., A.L. Demirel, Y. Avci and O. Mert, “Transformation of a simple plastic into a superhydrophobic surface,” Science, 299, 1377-1380, 2003.
Fendler, J.H., “Self-assembled nanostructured materials,” Chem. Mat., 8, 1616-1624, 1996.
Feng, X.J. and L. Jiang, “Design and creation of superwetting/antiwetting surfaces,” Adv. Mat., 18, 3063-3078, 2006.
Frens, G., “Controlled nucleation for regulation of particle-size in monodisperse gold suspensions,” Nat., Phys. sci., 241, 20-22, 1973.
Gaines, G. L.Jr., “Insoluble Mnonlayers at Liquid-Gas Interface,” Wiley Press: New York, Chapter 6, 1966.
Gaines, G.L., “Thermodynamic relationships for mixed insoluble monolayers,” J. Colloid Interface Sci., 21, 315-&, 1966.
Gaines, G.L., “On the history of Langmuir-Blodgett films,” Thin Solid Films, 99, R9-R13, 1983.
Ganguly, P., D.V. Paranjape and F. Rondelez, “Role of tail-tail interactions versus head-group/subphase interactions in the pressure-area isotherms of fatty amines at the air-water interface .1. Influence of subphase acid counterions,” Langmuir, 13, 5433-5439, 1997.
Gao, X.F. and L. Jiang, “Water-repellent legs of water striders,” Nature, 432, 36-36, 2004.
Gershfel.Nl and R.E. Pagano, “Physical-chemistry of lipid films at air-water interface .3. condensing effect of cholesterol - critical examination of mixed-film studies,” J. Phys. Chem., 76, 1244-&, 1972.
Guo, Z.G. and W.M. Liu, “Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure,” Plant Sci., 172, 1103-1112, 2007.
Gupta, R.K., K.A. Suresh, R. Guo and S. Kumar, “Langmuir-Blodgett films of octadecanethiol - properties and potential applications,” Anal. Chim. Acta, 568, 109-118, 2006.
Han, J.T., Y. Jang, D.Y. Lee, J.H. Park, S.H. Song, D.Y. Ban and K. Cho, “Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development,” J. Mater. Chem., 15, 3089-3092, 2005.
Heriot, S.Y., J.M. Pedrosa, L. Camacho and T.H. Richardson, “Langmuir monolayer properties of 4-methylbenzenethiol capped gold nanoparticles,” Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 26, 154-162, 2006.
Hosono, E., S. Fujihara, I. Honma and H.S. Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc., 127, 13458-13459, 2005.
Itaya, A., M. Vanderauweraer and F.C. Deschryver, “Preparation of monolayers and stacked layers of 1-octadecanethiol,” Langmuir, 5, 1123-1126, 1989.
Jennissen, H.P. and T. Zumbrink, “A novel nanolayer biosensor principle,” Biosens. Bioelectron., 19, 987-997, 2004.
Jesionowski, T. and A. Krysztafkiewicz, “Influence of silane coupling agents on surface properties of precipitated silicas,” Appl. Surf. Sci., 172, 18-32, 2001.
Jin, M.H., X.J. Feng, J.M. Xi, J. Zhai, K.W. Cho, L. Feng and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun., 26, 1805-1809, 2005.
Jisr, R.M., H.H. Rmaile and J.B. Schlenoff, “Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes,” Angew. Chem.-Int. Edit., 44, 782-785, 2005.
Johnson, J.R.E., Dettre, R. H., “Contact angle, wettability and adhesion, advances in chemistry series,” Adv. Chem. Ser., 43, 112, 1963.
Katholy, S., J. Reiche and L. Brehmer, “Texture of fatty acid Langmuir films studied by means of Brewster angle reflectometry,” Colloid Surf. A-Physicochem. Eng. Asp., 171, 87-95, 2000.
Kawai, A. and H. Nagata, “Wetting behavior of liquid on geometrical rough-surface formed by photolithography,” Jpn. J. Appl. Phys. Part 2-Letters, 33, L1283-L1285, 1994.
Kim, B., S.L. Tripp and A. Wei, “Self-organization of large gold nanoparticle arrays,” J. Am. Chem. Soc., 123, 7955-7956, 2001.
Kimura, K., S. Takashima and H. Ohshima, “Molecular approach to the surface potential estimate of thiolate-modified gold nanoparticles,” J. Phys. Chem. B, 106, 7260-7266, 2002.
Kinge, S., M. Crego-Calama and D.N. Reinhoudt, “Self-assembling nanoparticles at surfaces and interfaces,” Chemphyschem, 9, 20-42, 2008.
Kolny, J., A. Kornowski and H. Weller, “Self-organization of cadmium sulfide and gold nanoparticles by electrostatic interaction,” Nano Lett., 2, 361-364, 2002.
Kumar, A., S. Mandal, P.R. Selvakannan, R. Pasricha, A.B. Mandale and M. Sastry, “Investigation into the interaction between surface-bound alkylamines and gold nanoparticles,” Langmuir, 19, 6277-6282, 2003.
Lafuma, A. and D. Quere, “Superhydrophobic states,” Nat. Mater., 2, 457-460, 2003.
Lee, W., M.K. Jin, W.C. Yoo and J.K. Lee, “Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability,” Langmuir, 20, 7665-7669, 2004.
Lee, Y.L., “Surface characterization of octadecylamine films prepared by Langmuir-Blodgett and vacuum deposition methods by dynamic contact angle measurements,” Langmuir, 15, 1796-1801, 1999.
Lee, Y.L., Z.C. Du, W.X. Lin and Y.M. Yang, “Monolayer behavior of silica particles at air/water interface: A comparison between chemical and physical modifications of surface,” J. Colloid Interface Sci., 296, 233-241, 2006.
Lee, Y.L., J.Y. Lin and S. Lee, “Adsorption behavior of glucose oxidase on a dipalmitoylphosphatic acid monolayer and the characteristics of the mixed monolayer at air/liquid interfaces,” Langmuir, 23, 2042-2051, 2007.
Lee, Y.L. and K.L. Liu, “Relaxation behaviors of monolayers of octadecylamine and stearic acid at the air/water interface,” Langmuir, 20, 3180-3187, 2004.
Lee, Y.L., Y.C. Yang and Y.J. Shen, “Monolayer characteristics of mixed octadecylamine and stearic acid at the air/water interface,” J. Phys. Chem. B, 109, 4662-4667, 2005.
Leonard, M., R.M. Morelis and P.R. Coulet, “Iinked influence of pH and cations on fatty-acid monolayer integrity related to high-quality Langmuir-Blodgett-films,” Thin Solid Films, 260, 227-231, 1995.
Li, L.S., Z. Hui, Y.M. Chen, X.T. Zhang, X.G. Peng, Z.F. Liu and T.J. Li, “Preparation and organized assembly of nanoparticulate TiO2-stearate alternating Langmuir-Blodgett films,” J. Colloid Interface Sci., 192, 275-280, 1997.
Li, W. and A. Amirfazli, “Microtextured superhydrophobic surfaces: A thennodynarnic analysis,” Adv. Colloid Interface Sci., 132, 51-68, 2007.
Li, Y.J., W.I.J. Huang and S.G. Sun, “A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface,” Angew. Chem.-Int. Edit., 45, 2537-2539, 2006.
Liang, Z.Q., K.L. Dzienis, J. Xu and Q. Wang, “Covalent layer-by-layer assembly of conjugated polymers and CdSe nanoparticles: multilayer structure and photovoltaic properties,” Adv. Funct. Mater., 16, 542-548, 2006.
Love, J.C., L.A. Estroff, J.K. Kriebel, R.G. Nuzzo and G.M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev., 105, 1103-1169, 2005.
Malikova, N., I. Pastoriza-Santos, M. Schierhorn, N.A. Kotov and L.M. Liz-Marzan, “Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions,” Langmuir, 18, 3694-3697, 2002.
Myers, D., Surfaces, Interfaces, and Colloid:Principles and applications, VCH, Chapter 8, 1999.
Mayya, K.M., A. Gole, N. Jain, S. Phadtare, D. Langevin and M. Sastry, “Time-dependent complexation of cysteine-capped gold nanoparticles with octadecylamine Langmuir monolayers at the air-water interface,” Langmuir, 19, 9147-9154, 2003.
Mayya, K.S., V. Patil and M. Sastry, “Influence of colloidal subphase pH on the deposition of multilayer Langmuir-Blodgett films of gold clusters,” J. Chem. Soc., Faraday trans., 93, 3377-3381, 1997.
Mayya, K.S., V. Patil and M. Sastry, “Lamellar multilayer gold cluster films deposited by the Langmuir-Blodgett technique,” Langmuir, 13, 2575-2577, 1997.
Mayya, K.S., V. Patil and M. Sastry, “On the stability of carboxylic acid derivatized gold colloidal particles: The role of colloidal solution pH studied by optical absorption spectroscopy,” Langmuir, 13, 3944-3947, 1997.
Mayya, K.S. and M. Sastry, “A study of the partitioning of colloidal particles based on their size during electrostatic immobilization at the air-water interface using fatty amine monolayers,” J. Phys. Chem. B, 101, 9790-9793, 1997.
McGovern, M.E., K.M.R. Kallury and M. Thompson, “Role of solvent on the silanization of glass with octadecyltrichlorosilane,” Langmuir, 10, 3607-3614, 1994.
Ming, W., D. Wu, R. van Benthem and G. de With, “Superhydrophobic films from raspberry-like particles,” Nano Lett., 5, 2298-2301, 2005.
Miwa, M., A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir, 16, 5754-5760, 2000.
Morra, M., E. Occhiello and F. Garbassi, “Contact-angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene),” Langmuir, 5, 872-876, 1989.
Musick, M.D., C.D. Keating, L.A. Lyon, S.L. Botsko, D.J. Pena, W.D. Holliway, T.M. McEvoy, J.N. Richardson and M.J. Natan, “Metal films prepared by stepwise assembly. 2. Construction and characterization of colloidal Au and Ag multilayers,” Chem. Mat., 12, 2869-2881, 2000.
Nakae, H., R. Inui, Y. Hirata and H. Saito, “Effects of surface roughness on wettability,” Acta Mater., 46, 2313-2318, 1998.
Neuman, R.D., “Calcium-binding in stearic acid monomolecular films,” J. Colloid Interface Sci., 53, 161-171, 1975.
Oliver, J.F., C. Huh and S.G. Mason, “Resistance to spreading of liquids by sharp edges,” J. Colloid Interface Sci., 59, 568-581, 1977.
Onda, T., S. Shibuichi, N. Satoh and K. Tsujii, “Super-water-repellent fractal surfaces,” Langmuir, 12, 2125-2127, 1996.
Oner, D. and T.J. McCarthy, “Ultrahydrophobic surfaces. Effects of topography length scales on wettability,” Langmuir, 16, 7777-7782, 2000.
Oregan, B. and M. Gratzel, “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films,” Nature, 353, 737-740, 1991.
Pang, S., O. Tetsuya, W. Tomoyuki, T. Kondo and T. Kawai, “Studies on 2D hybrid films of half surfactant-covered Au nanoparticles at the air/water interface,” J. Colloid Interface Sci., 285, 634-639, 2005.
Park, Y.K., S.H. Yoo and S. Park, “Assembly of highly ordered nanoparticle monolayers at a water/hexane interface,” Langmuir, 23, 10505-10510, 2007.
Parker, A.R. and C.R. Lawrence, “Water capture by a desert beetle,” Nature, 414, 33-34, 2001.
Parkin, I.P. and R.G. Palgrave, “Self-cleaning coatings,” J. Mater. Chem., 15, 1689-1695, 2005.
Pei, L.H., K. Mori and M. Adachi, “Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization,” Langmuir, 20, 7837-7843, 2004.
Pei, L.H., K. Mori and M. Adachi, “Investigation on arrangement and fusion behaviors of gold nanoparticles at the air/water interface,” Colloid Surf. A-Physicochem. Eng. Asp., 281, 44-50, 2006.
Plueddeman, E. P., “Silane Coupling Agents,” Plenum Press: New York, 1991.
Porter, L.J. and D.D. Perrin, “Nickel(Ⅱ) and Zinc(Ⅱ) complexes of mercaptosuccinic acid,” Aust. J. Chem., 22, 267-270, 1969.
Qi, Z.M., I. Honma, M. Ichihara and H.S. Zhou, “Layer-by-layer fabrication and characterization of gold-nanoparticle/myoglobin nanocomposite films,” Adv. Funct. Mater., 16, 377-386, 2006.
Qian, B.T. and Z.Q. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir, 21, 9007-9009, 2005.
Rabani, E., D.R. Reichman, P.L. Geissler and L.E. Brus, “Drying-mediated self-assembly of nanoparticles,” Nature, 426, 271-274, 2003.
Rao, C.N.R. and K.P. Kalyanikutty, “The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials,” Acc. Chem. Res., 41, 489-499, 2008.
Ravaine, S., G.E. Fanucci, C.T. Seip, J.H. Adair and D.R. Talham, “Photochemical generation of gold nanoparticles in Langmuir-Blodgett films,” Langmuir, 14, 708-713, 1998.
Reculusa, S., P. Masse and S. Ravaine, “Three-dimensional colloidal crystals with a well-defined architecture,” J. Colloid Interface Sci., 279, 471-478, 2004.
Reculusa, S. and S. Ravaine, “Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique,” Chem. Mat., 15, 598-605, 2003.
Reculusa, S. and S. Ravaine “Colloidal photonic crystals obtained by the
Langmuir-Blodgett technique,” Appl. Surf. Sci. , 246, 409-414, 2005.
Reincke, F., S.G. Hickey, W.K. Kegel and D. Vanmaekelbergh, “Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface,” Angew. Chem.-Int. Edit., 43, 458-462, 2004.
Reincke, F., S.G. Hickey, J.J. Kelly, T.W. Braam, L.W. Jenneskens and D. Vanmaekelbergh, “Electrochemical and topological characterization of gold(111) vertical bar oligo(cyclohexylidene) vertical bar gold nanocrystal interfaces,” J. Electroanal. Chem., 522, 2-10, 2002.
Roach, P., N.J. Shirtcliffe and M.I. Newton, “Progess in superhydrophobic surface development,” Soft Matter, 4, 224-240, 2008.
Roberts, G., “Langmuir-Blodgett Films,” Plenum, New York, 1990.
Sastry, M., A. Gole and V. Patil, “Lamellar Langmuir-Blodgett films of hydrophobized colloidal gold nanoparticles by organization at the air-water interface,” Thin Solid Films, 384, 125-131, 2001.
Sastry, M., V. Patil and S.R. Sainkar, “Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films,” J. Phys. Chem. B, 102, 1404-1410, 1998.
Sastry, M., M. Rao and K.N. Ganesh, “Electrostatic assembly of nanoparticles and biomacromolecules,” Acc. Chem. Res., 35, 847-855, 2002.
Sau, T.K. and C.J. Murphy, “Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes,” Langmuir, 21, 2923-2929, 2005.
Shi, F., Z.Q. Wang and X. Zhang, “Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders,” Adv. Mat., 17, 1005-1009, 2005.
Shibuichi, S., T. Onda, N. Satoh and K. Tsujii, “Super water-repellent surfaces resulting from fractal structure,” J. Phys. Chem., 100, 19512-19517, 1996.
Shipway, A.N., E. Katz and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” Chemphyschem, 1, 18-52, 2000.
Shiu, J.Y., C.W. Kuo, P.L. Chen and C.Y. Mou, “Fabrication of tunable superhydrophobic surfaces by nanosphere lithography,” Chem. Mat., 16, 561-564, 2004.
Silberzan, P., L. Leger, D. Ausserre and J.J. Benattar, “Silanation of silica surfaces - a new method of constructing pure or mixed monolayers,” Langmuir, 7, 1647-1651, 1991.
Srivastava, S. and N.A. Kotov, “Composite layer-by-layer (LBL) assembly with Inorganic Nanoparticles and Nanowires,” Acc. Chem. Res., 41, 1831-1841, 2008.
Stein, A., F. Li and N.R. Denny, “Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles,” Chem. Mat., 20, 649-666, 2008.
Stober, W., A. Fink and E. Bohn, “Controlled growth of monodisperse silica spheres in micron size range,” J. Colloid Interface Sci., 26, 62-69, 1968.
Swami, A., A. Kumar, P.R. Selvakannan, S. Mandal and M. Sastry, “Langmuir-Blodgett films of laurylamine-modified hydrophobic gold nanoparticles organized at the air-water interface,” J. Colloid Interface Sci., 260, 367-373, 2003.
Szabo, T., J. Nemeth and I. Dekany, “Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties,” Colloid Surf. A-Physicochem. Eng. Asp.
, 230, , 23-35, 2003.
Szekeres, M., O. Kamalin, R.A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons and I. Dekany, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir-Blodgett method,” J. Mater. Chem., 12, , 3268-3274, 2002.
Takahashi, M., K. Kobayashi, K. Takaoka and K. Tajima, “Adsorption behavior of Methyl Orange on the monolayer and Langmuir-Blodgett films of octadecylamine,” Bull. Chem. Soc. Jpn., 71, 1467-1470, 1998.
Takahashi, M., K. Kobayashi, K. Takaoka, T. Takada and K. Tajima, “Adsorption behavior and structural characterization of azo dyes on a Langmuir-Blodgett film of octadecylamine,” Langmuir, 16, 6613-6621, 2000.
Tao, A.R., J.X. Huang and P.D. Yang, “Langmuir-Blodgettry of nanocrystals and nanowires,” Acc. Chem. Res., 41, 1662-1673, 2008.
Teare, D.O.H., C.G. Spanos, P. Ridley, E.J. Kinmond, V. Roucoules, J.P.S. Badyal, S.A. Brewer, S. Coulson and C. Willis, “Pulsed plasma deposition of super-hydrophobic nanospheres,” Chem. Mat., 14, 4566-4571, 2002.
Tsai, P.S., Y.M. Yang and Y.L. Lee, “Fabrication of hydrophobic surfaces by coupling of Langmuir-Blodgett deposition and a self-assembled monolayer,” Langmuir, 22, 5660-5665, 2006.
Tsai, P.S., Y.M. Yang and Y.L. Lee, “Hierarchically structured superhydro -phobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nanosized particles and surface silanization,” Nanotechnology, 18, 465604(7pp), 2007.
Tserepi, A.D., M.E. Vlachopoulou and E. Gogolides, “Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces,” Nanotechnology, 17, 3977-3983, 2006.
Ulman, A., “An Introduction to Ultrathin Organic Films,” Academic Press, San Diego, 1991.
Ulman, A., “Formation and structure of self-assembled monolayers,” Chem. Rev., 96, 1533-1554, 1996.
Vallant, T., J. Kattner, H. Brunner, U. Mayer and H. Hoffmann, “Investigation of the formation and structure of self-assembled alkylsiloxane monolayers on silicon using in situ attenuated total reflection infrared spectroscopy,” Langmuir, 15, 5339-5346, 1999.
Vansant, E. F., Van Der Voort, P., Vrancken, K. C., “Characterization and chemical modification of the silica surface,” Elsevier: Amsterdam, 1995.
Wagner, T., C. Neinhuis and W. Barthlott, “Wettability and contaminability of insect wings as a function of their surface sculptures,” Acta Zool., 77, 213-225, 1996.
Wall, J.F., F. Grieser and C.F. Zukoski, “Monitoring chemical reactions at the gold/solution interface using atomic force microscopy,” J. Chem. Soc., Faraday Trans., 93, 4017-4020, 1997.
Wang, Z.S., H. Kawauchi, T. Kashima and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev., 248, 1381-1389, 2004.
Weidemann, G. and D. Vollhardt, “Long range tilt orientational order in fatty acid ethyl ester monolayers,” Langmuir, 12, 5114-5119, 1996.
Wenzel, R.N., “Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng.Chem., 28, 988-994, 1936.
Xing, W., Y. Shan, D. Guo, T. Lu and S. Xi, “Mechanism of iron inhibition by stearic-acid langmuir-blodgett monolayers,” Corrosion, 51, 45-49, 1995.
Xiu, Y., L. Zhu, D.W. Hess and C.P. Wong, “Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity,” Nano Lett., 7, 3388-3393, 2007.
Xiu, Y.H., L.B. Zhu, D.W. Hess and C.P. Wong, “Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition,” Langmuir, 22, 9676-9681, 2006.
Yang, S.Y., S. Chen, Y. Tian, C. Feng and L. Chen, “Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process,” Chem. Mat., 20, 1233-1235, 2008.
Yoshimitsu, Z., A. Nakajima, T. Watanabe and K. Hashimoto, “Effects of surface structure on the hydrophobicity and sliding behavior of water droplets,” Langmuir, 18, 5818-5822, 2002.
Zhai, L., F.C. Cebeci, R.E. Cohen and M.F. Rubner, “Stable superhydrophobic coatings from polyelectrolyte multilayers,” Nano Lett., 4, 1349-1353, 2004.
Zhang, G., D.Y. Wang, Z.Z. Gu and H. Mohwald, “Fabrication of superhydrophobic surfaces from binary colloidal assembly,” Langmuir, 21, 9143-9148, 2005.
Zhang, J.H., P. Zhan, Z.L. Wang, W.Y. Zhang and N.B. Ming, “Preparation of monodisperse silica particles with controllable size and shape,” Journal of Materials Research, 18, 649-653, 2003.
Zhang, L.B., H. Chen, J.Q. Sun and J.C. Shen, “Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate-facile method to prepare a superhydrophobic surface,” Chem. Mat., 19, 948-953, 2007.
Zhang, X., F. Shi, X. Yu, H. Liu, Y. Fu, Z.Q. Wang, L. Jiang and X.Y. Li, “Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface,” J. Am. Chem. Soc., 126, 3064-3065, 2004.
Zhao, W.Z., M.W. Kim, D.B. Wurm, S.T. Brittain and Y.T. Kim, “Silver n-octadecanethiolate Langmuir monolayers mimicking self-assembled monolayers on silver,” Langmuir, 12, 386-391, 1996.
Zhu, T., K. Vasilev, M. Kreiter, S. Mittler and W. Knoll, “Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid,” Langmuir, 19, 9518-9525, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊