跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林士達
研究生(外文):Shih-da Lin
論文名稱:陽極氧化法製備二氧化鈦奈米管陣列氫氣感測器之研究
論文名稱(外文):Preparation of Hydrogen Sensors Based on Titania Nanotube Arrays by Anodization Technique
指導教授:陳慧英陳慧英引用關係
指導教授(外文):Huey-ing Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:124
中文關鍵詞:二氧化鈦氫氣感測器陽極氧化奈米管
外文關鍵詞:anodizationtitaniahydrogen sensornanotube
相關次數:
  • 被引用被引用:2
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:156
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以陽極氧化法製備 TiO2/quartz 電阻式氫氣感測器,並探討其氫氣感測特性。實驗中,首先利用濺鍍法將鈦膜沉積在石英基材上,接著在 NH4F/ethylene glycol 電解液中進行陽極氧化,針對實驗操作變因,如施加偏壓、陽極氧化時間、pH 值、電解液組成及�f燒溫度等因素來加以探討,並進行元件之特性分析,包括:表面形態、管徑、管長及晶態等。其次,以濺鍍法將鉑(Pt)沉積於 TiO2/quartz 上,製成 Pt-TiO2/quartz 元件,並與 TiO2/quartz元件比較其氫氣感測性能。此外,針對氫氣在TiO2上之吸附行為及感測機制來加以解析。
在陽極氧化製程中,管長隨著陽極氧化時間的增加而增長;管徑隨著施加偏壓的增加而增大;表面覆蓋的氧化層隨著 NH4F 濃度的提昇而減少。
由實驗結果發現,元件對氫氣感測之靈敏度隨著 TiO2 幾何面積增加而提升。在 373 K 下,TiO2/quartz 元件靈敏度可達 2×105(1% H2/N2)。甚至在極低濃度下,例如 5 ppm H2/N2時,靈敏度仍可達到8.9×102。由暫態響應結果發現,響應速率與回覆速率皆隨著溫度的上升而增快。當溫度為 423 K、氫氣濃度為 1% H2/N2時,響應時間僅約2 秒。
相較於 TiO2/quartz 元件而言,Pt-TiO2/quartz 元件具有更優異之感測性能,即高靈敏度(7.2×106 for 1% H2/N2)、低偵檢極限(2.1×102 for 1 ppm H2/N2) 及快速響應速率。推測由於 Pt之存在有助於氫氣之解離及吸附,使得靈敏度增加且響應速率增快。
進一步解析元件之氫氣感測機制發現,氫氣在 TiO2 上之吸附行
為扮演重要角色,其平衡吸附可以 Langmuir isotherm 模式來描述,響應速率則可以一階動力模式來加以描述。由分析結果估算出氫氣在TiO2/quartz上之吸附熱與活化能分別為-22.87 kJ mole-1 (373-473K)、5.95 kJ mole-1,而 Pt-TiO2/quartz 則分別為 -16.07 kJ mole-1(423-473K)、5.03 kJ mole-1。
由本研究結果得知,以陽極氧化法所得 TiO2/quartz 電阻式氫氣
感測器可適用於低氫氣濃度之檢測,而 Pt-TiO2/quartz元件則因 Pt 之催化作用,其氫氣感測性能更為提升。因此本研究中所開發之元件展現優異之感測性能,具有未來發展之潛力。
In this work, TiO2/quartz resistive-type hydrogen sensors were fabricated by the anodization technique. Firstly, a titanium thin film was deposited on quartz by the RF sputtering and followed by anodizing in a NH4F/ethylene glycol electrolyte. Experimentally, effects of anodization
conditions such as the applied voltage, anodization time, pH value and the composition of electrolyte on diameter, length and crystalline structure of TiO2 nanotubes were investigated. Furthermore, the Pt-TiO2/quartz devices were prepared for promoting the sensing performances. Moreover, the hydrogen adsorption model was also investigated in this work.
In the anodization process, the length of TiO2 nanotubes were increased with increasing anodization time, and the diameter were increased with increasing applied voltages. Besides, the oxide cap-layer of nanotubes was reduced with increasing the NH4F concentration.
Experimental results, it was found that the sensing sensitivity increased with increasing the geometric area, at 373 K, the sensitivity of TiO2/quartz device at 1% H2/N2 reached up to 2×105. Even at extremely low hydrogen concentration, e.g., 5 ppm H2/N2, the sensitivity still
approached to 8.9×102. From the result of transient state analysis, it revealed that both of the response rate and recovery rate were increased with increasing temperature. At 423 K and 1% H2/N2, the response time was about 2 sec.
As compared with TiO2/quartz device, the Pt-TiO2/quartz
demonstrated superior sensing performance, i.e., higher sensitivity (7.2×106 for 1% H2/N2), lower detection limit (2.1×102 for 1 ppm H2/N2) and faster response time. This was attributed to the presence of Pt which was favorable to the dissociation and adsorption of hydrogen.
To further analyze the mechanism of hydrogen sensing, it indicated that the adsorption of hydrogen on TiO2 played an important role in the sensing. The hydrogen adsorption could be described by the Langmuir isotherm model, and the initial rate of transient detection could be expressed by using first-order kinetic model. From results of analyses, the adsorption heat and activation energy were estimated as -22.87 (373-473K) and 5.95 kJ mole-1, respectively, for TiO2/quartz device, and those were -16.07 kJ mole-1(423-473K) and 5.03 kJ mole-1, respectively, for Pt-TiO2/quartz device.
From this study, the TiO2/quartz resistive-type hydrogen sensors fabricated by anodization technique were suitable for hydrogen sensing at extremely low hydrogen concentration. The sensing performances of the Pt-TiO2/quartz device could be further promoted due to the catalytic properties of Pt. In conclusion, the studied devices in this work showed the promising potential in future developments.
中文摘要……………………………………………………………I
英文摘要…………………………………………………………III
總目錄………………………………………………………………V
表目錄……………………………………………………………VIII
圖目錄………………………………………………………………IX

第一章 緒論……………………………………………………1
1.1氫氣之重要性………………………………………………1
1.2氫氣感測器…………………………………………………1
1.2.1電容型…………………………………………………1
1.2.2蕭特基二極體型………………………………………2
1.2.3電阻型………….……………………………………2
1.3二氧化鈦氫氣感測器………………………………………3
1.4陽極氧化法…………………………………………………4
1.5研究動機與目的……………………………………………5
第二章 原理………………………………………………………11
2.1陽極氧化法生成二氧化鈦奈米管…………………………11
2.2吸附理論…………………………………………………12
2.2.1空乏型吸附…………………………………………13
2.2.2積蓄型吸附……………………………………………13
2.3二氧化鈦氫氣感測機制……………………………………14
2.3.1穩態下氫氣感測模式………………………………15
2.3.2暫態下氫氣感測動力模式…………………………16
第三章 實驗部分…………………………………………………21
3.1材料與藥品…………………………………………………21
3.2儀器及分析設備…………………………………………22
3.3實驗步驟……………………………………………………23
3.3.1TiO2/quartz元件之製備……………………………23
3.3.1.1基材前處理……………………………………23
3.3.1.2鈦金屬層之沉積………………………………23
3.3.1.3二氧化鈦奈米管之製備………………………23
3.3.2Pt-TiO2/quartz元件之製備…………………………24
3.3.3氫氣感測實驗………………………………………24
3.3.3.1穩態量測……………………………………………25
3.3.3.2暫態量測……………………………………………25
第四章 奈米管製備變因對二氧化鈦微結構之影響……………30
4.1�f燒溫度之影響……………………………………………30
4.2陽極氧化時間之影響………………………………………30
4.3電解液組成之影響…………………………………………32
4.3.1pH值影響…………………………………………………32
4.3.2NH4F含量之影響…………………………………………32
4.3.3H2O含量之影響…………………………………………33
4.4施加偏壓之影響……………………………………………33
4.5TEM分析………………………………………………………34
第五章 TiO2/quartz元件對氫氣感測之探討…………………58
5.1製程變因對所得元件氫氣感測之影響………………………58
5.1.1施加偏壓之影響……………………………………………58
5.1.2�f燒溫度之影響……………………………………………59
5.1.3陽極氧化時間之影響………………………………………59
5.1.4電解液組成之影響…………………………………………60
5.1.5幾何面積對靈敏度之影響…………………………………61
5.2氫氣吸附模式解析……………………………………………62
5.2.1穩態量測……………………………………………………62
5.2.2暫態量測……………………………………………………64
第六章 Pt-TiO2/quartz元件對氫氣感測之探討………………89
6.1元件結構(表面形態)分析……………………………………89
6.2氫氣吸附模式解析……………………………………………89
6.2.1穩態量測……………………………………………………89
6.2.2暫態量測……………………………………………………91
6.2.3氧氣存在效應………………………………………………92
第七章 結論與建議………………………………………………110
7.1結論……………………………………………………………110
7.2建議……………………………………………………………111

參考文獻……………………………………………………….…113
自述…………………………………………………………….…....124
[1] L. F. Brown, “A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles”, Int. J. Hydrog. Energy, 26, 381-397(2001).
[2] L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells: Principles, types, fuels, and applications”, ChemPhysChem, 1, 162-193 (2000).
[3] N. Graber, H. L�榛i, and H. M. Widmer, “The use of chemical sensors in industry”, Sen. Actuators B., 53, 239-243 (1990).
[4] I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen –sensitive MOS field-effect transistor”, Appl. Phys. Lett., 26, 55-57 (1975).
[5] I. Lundstrom, S. Shivaraman, and C. Svensson, “A
hydrogen-sensitive Pd-gate MOS transistor”, J. Appl.
Phys., 46, 3876-3881 (1975).
[6] A. Arbab, A. Spetz, Q. U. Wahab, M. Willander, and I. Lundstrom,“Chemical sensors for high temperature based on silicon carbide”,Sensors Mater., 4, 173-185 (1993).
[7] M. Yousul, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors”, Solid State Electron, 25, 753-758 (1982).
[8] N Tasaltin, F. Dumludag, M. A. Ebeoglu, H. Yuzer, and Z. Z. Ozturk,“Pd/native nitride/n-GaAs structures as hydrogen sensors”, Sens. Actu. B., 130, 59-64 (2008).
[9] Y. Y. Tsai, K. W. Lin. H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd-and Pt-InGaP metal-oxide-semiconductor Schottky diode”, J. Vac. Sci. Technol. B, 21, 2471-2477 (2003).
[10] L. Voss, B. P. Gila, S. J. Pearton, H. T. Wang and F. Ren,“Characterization of bulk GaN rectifiers for hydrogen gas sensing”, J. Vac. Sci. Technol. B, 23, 2373-2377 (2005).
[11] J. Song, W. Lu, J. S. Fyynm, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperature with different catalyst metals”, Solid State Electron, 49, 1330-1334 (2005).
[12] H. Hasegawa, “Fermi level pinning and Schottky barrier height control at metal-semiconductor interfaces of InP and related materials”, Jpn. J. Appl. Phys., 38, 1098-1102 (1999).
[13] W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su and I. Linde, “New and unfied model for Schottky-barrier and III-V insulator interface states formation”, J. Vac. Sci. Technol. B, 16, 1422-1433 (1979).
[14] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating”, Sen. Actuators B., 85, 10-18 (2002).
[15] 吳忠燁, “無電鍍法製備鈀/氮化鋁鎵蕭特基二極體氫氣感測器之研究”, 成功大學化工系碩士論文 (2008)
[16] C. C. Wang, S. A. Akbar, and M. J. Madou, “Ceramic based resistive sensors”, J. Electroceram., 2, 273-282 (1998).
[17] L. D. Birkefeld, A. M. Azad, and S. A. Akbar, “Carbon Monoxide and Hydrogen Detection by Anatase Modification of Titanium Dioxide”, J. Am. Ceram. Soc., 75, 2964-2968 (1992).
[18] H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Detection of hydrogen at room temperature with catalyst-coated multiple ZnO nanorods”, Appl. Phys. A, 81, 1117-1119 (2005).
[19] S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T.Shigemori, and S. Takahashi, “A fiber-optic wvanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide”, Sens. Actu. B, 66, 412-145 (2000).
[20] D. Ding, Z. Chen, and C. Lu, “Hydrogen sensing of nanoporous palladium film supported by anodic aluminum oxide”, Sens. Actu. B, 120, 182-186 (2006).
[21] S. Shukla, S. Seal, L. Ludwig, and C. Parish, “Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor”, Sen. Actuators B., 97, 256-265 (2004).
[22] C. C. Li, Z. F. Du, and L. M. Li, “Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature”, Appl. Phys. Lett., 91, 032101 (2007).
[23] K. T. Kim, S. J. Sim, and S. M. Cho, “Hydrogen Gas Sensor Using Pd Nanowires Electro-Deposited Into Anodized Alumina Template”, IEEE Sens. J., 6, 509-513 (2006).
[24] M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, and K. G. Ong,“Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes”,Nanotechnology, 17, 398–402, (2006).
[25] R. R. J. Maier, B. J. S. Jones, J. S. Bartion, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing”, J. Opt. A:Pure Appl. Opc., 9, S45-S59 (2007).
[26] B. Baranowski, S. Majchrzak, and T. B. Flanagan, “The volume increase of fcc metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents”, J. Phys. F: Met. Phys., 1, 258–261, (1971).
[27] J. G. Mavroides, D. I. Tcherney, J. A. Kafalas, and D. F. Kolesar “Photoelectrolysis of water in cell with TiO2 anodes”, Mater. Res. Bull.,10, 1023-1030, (1975).
[28] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep.,48, 53-229, (2003).
[29] D. Gong, C. A. Grimes, and O. K. Varghese, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res., 16, 3331-3334, (2001).
[30] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, “Hydrogen sensing using titania nanotubes”, Sens. Actu. B, 93, 338-344, (2003).
[31] O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, and, E. C. Dickey, “Crystallization and high-temperature structural stability of titanium oxide nanotube arrays”, J. Mater. Res., 18, 156-165, (2003).
[32] O. K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, and M. Mukherjee N, “A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations”, J. Nanosci. Nanotechnol., 4, 733-737, (2004).
[33] X. F. Yu, Y. X. Li, W. Wlodarski, S. Kandasamy, and K. Kalantar-Zadeh, “Fabrication of nanostructured TiO2 by anodization A comparison between electrolytes and substrates”, Sens. Actu. B, 130, 25-31, (2008).
[34] Y. D. Premchand, T. Djenizian, F. Vacandio, and P. Knauth,“Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces”, Electrochem. Commun., 8, 1840-1844 (2006).
[35] J. M. Macak, H. Tsuchiya, S. Berger, S. Bauer, S. Fujimoto, and P. Schmuki, “On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si”, Chem. Phys. Lett., 428, 421-425 (2006).
[36] D. J. Yang, H. G. Kim, S. J. Cho, and W. Y. Choi,
“Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method”, Mater. Lett., 62, 775-779 (2008).
[37] S. Berger, J. M. Macak, J. Kunze, and P. Schmuki, “High-efficiency conversion of sputtered Ti thin films into TiO2 nanotubular layers”, Electrochem. Solid State Lett., 11, C37-C40 (2008).
[38] D. J. Yang, H. G. Kim, S. J.Cho, and W. Y. Choi, “Vertically Oriented Titania Nanotubes Prepared by Anodic Oxidation on Si Substrates”, IEEE Trans. Nanotechnol., 7, 131-134 (2008).
[39] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, Nano Lett., 6, 215-218 (2006).
[40] B. Oregan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737-740 (1991).
[41] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications”, Science, 297, 787-792 (2002).
[42] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393, 49-52 (1998).
[43] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells”, Nat. Mater., 4, 455-459 (2005).
[44] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., 15, 464-466 (2003).
[45] W. I . Park, G. C. Yi, J. W. Kim, and S. M. Park, “Schottky nanocontacts on ZnO nanorod arrays”, Appl. Phys. Lett., 82, 4358-4360 (2003).
[46] D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices”, Nano Lett., 4, 1919-1924 (2004).
[47] S. H. Wang, T. C. Chou, and C. C. Liu, “Nano-crystalline tungsten oxide NO2 sensor”, Sens. Actu. B, 94, 343-351 (2003).
[48] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett., 84, 3654-3656 (2004).
[49] E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconductingoxide nanobelts”, Appl. Phys.
Lett., 81, 1869-1871 (2002).
[50] J. F. Liu, X. Wang, Q. Peng, and Y. D. Li, “Vanadium pentoxide nanobelts highly selective and stable ethanol sensor materials”, Adv. Mater., 17, 764-767 (2002).
[51] P. Keller, H. Ferkel, K. Zweiacker, J. Naser, J. U. Meyer, and W. Riehemann, “The application of nanocrystalline BaTiO3-composite films as CO2-sensing layers”, Sens. Actuator B-Chem., 57, 39-46 (1999).
[52] S. V. Manorama, N. Izu, W. Shin, I. Matsubara, and N. Murayama,“On the platinum sensitization of nanosized cerium dioxide oxygen sensors”, Sens. Actu. B, 89, 299-304 (2003).
[53] H. Masuda, K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, 268, 1466-1468 (1995).
[54] K. Yasui,K. Nishio, and H. Masuda, “Fabrication of Nanocomposites by Filling Nanoholes in Highly Ordered Anodic Porous Alumina by Vacuum Deposition of Metal”, Jpn. J. Appl. Phys., 44, L1181-L1183 (2005).
[55] S. Berger, J. M. Macak, J. Kunze, and P. Schmuki,“High-efficiency conversion of sputtered Ti thin films into TiO2 nanotubular layers”, Electrochem. Solid State Lett., 11, C37-C40 (2008).
[56] E. Ammar, Z. Jun, H. M. H. Fadlalla, Z. Feng, W. Hui, D. Xiaoxia, and H. Zhixin, Tang. Chengcun“Self-organized TiO2 nanotubes with controlled dimensions by anodic oxidation”, J. Mater. Sci., 43, 7219-7224 (2008).
[57] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 m in Length”, J. Phys. Chem. B, 110, 16179-16184 (2006).
[58] S. Yoriya, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes”, J. Phys. Chem. C, 111, 13770-13776 (2007).
[59] Q. Y. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation”, J. Mater. Res., 20, 230-236 (2005).
[60] A. Elsanousi, J. Zhang, H. M. H. Fadlalla, F. Zhang, H. Wang, X. X. Ding, Z. X. Huang, and C. C. Tang, “Self-organized TiO2 nanotubes with controlled dimensions by anodic oxidation”, J. Mater. Sci., 43, 7219-7224 (2008).
[61] K. Yasuda, J. M. Nacak, S. Berger, A. Ghicov, and P. Schmuki, “Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals”, J. Electrochem. Soc., 154, C472-C478 (2007).
[62] I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, “Formation of self-organized niobium porous oxide on niobium”, Electrochem. Commun., 7, 97-100 (2005).
[63] J. Choi, J.H. Lim, S.Ch. Lee, J.H. Chang, K.J. Kim, and M.A. Cho, “Porous niobium oxide lms prepared by anodization in HF/H3PO4”, Electrochim. Acta., 51, 5502-5507 (2006).
[64] J. Choi, J.H. Lim, J. Lee, and K.J. Kim, 18 (2007),, “Porous niobium oxide films prepared by anodization–annealing–anodization”, Nanotechnology, 18, 055603 (2007).
[65] R. Karlinsey, “Preparation of self-organized niobium oxide microstructures via potentiostatic anodization”, Electrochem. Commun., 7, 1190-1194 (2005).
[66] H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, “Self-organized porous WO3 formed in NaF electrolytes”, Electrochem. Commun, 7, 295-298 (2005).
[67] N. R. de Tacconi, C. R. Chenthamarakshan, G. Yogeeswaran, A. Watcharenwong, R. S. de Zoysa, and N. A. Basit, K. Rajeshwar, “Nanoporous TiO2 and WO3 Films by Anodization of Titanium and Tungsten Substrates: Influence of Process Variables on Morphology and Photoelectrochemical Response”, J. Phys. Chem.
B, 110, 25347-25355 (2006).
[68] S. Berger, H. Tsuchiya, A. Ghicov, and P. Schmuki, “High photocurrent conversion efficiency in self-organized porous WO3”, Appl. Phys. Lett., 88, 203119 (2006).
[69] I. Sieber, P. Schmuki, “Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation”, J. Electrochem. Soc., 153, C639-C644 (2005).
[70] I. Sieber, B. Kannan, and P. Schmuki, “Self-Assembled Porous Tantalum Oxide Prepared in H2SO4/HF Electrolytes”, Electrochem. Solid-State Lett., 8, J10-J12 (2005).
[71] H. Tsuchiya, P. Schmuki, “Self-organized high aspect ratio porous hafnium oxide prepare by electrochemical anodization”, Electrochem. Commun., 7, 49-52 (2005).
[72] T. Mukherjee, S. K. Hazra, and S. Basu, “Porous titania thin films grown by anodic oxidation for hydrogen sensors”, Mater. Manuf. Process., 21, 247-251 (2006).
[73] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, “High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd”, Sens. Actu. B, 83, 195-201 (2002).
[74] O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, E. C. Dickey, and C. A. Grimes, “Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure”, Adv. Mater., 15, 624-627 (2003).
[75] M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, and K. G. Ong,“Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes”,Nanotechnology, 17, 398–402, (2006).
[76] Q. Chen, D. Xul, Z. Wu, and Z. Liu, “Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting”, Nanotechnology, 19, 365708–365713, (2008).
[77] J. H. Ming, L. H. Xiang, M. D. Fang, Y. J. Jun, and M. S. Cai, “Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays”, Chin. Sci. Bull., 53, 1352-1357 (2008).
[78] G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, “Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements”, Thin Solid Films, 496, 42–48, (2006).
[79] G. K. Mor, O. K. Varghese, “Fabrication of tapered, conical-shaped titania nanotubes”, J. Mater. Res., 18, 2588-2593 (2003).
[80] J. Zhao, X. Wang, R. Chen, and L. Li, “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid state Commum., 134, 705-710 (2005).
[81] J. M. Macak, H. Tsuchiya, and P. Schmuki, “High-aspect-ratio TiO2 nanotubes by anodization of titanium”, Angew. Chem.-Int. Edit., 44, 2100-2102 (2005).
[82] S. R. Morrison, “The Chemical Physics of Surfaces, 1st Edition, Plenum Press, New York, NY, 1997.
[83] C. A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes”, J. Mater. Chem., 17, 1451-1457 (2007).
[84] J. Ding, T. J. McAvoy, R. E. Cavicchi, and S. Semancik, “Surface state trapping models for SnO2-based microhotplate sensors”, Sen. Actu. B., 77, 597-613 (2001).
[85] S. Shukla, P. Zhang, H. J. Cho, S. Seal, and L. Ludwig, “Room temperature hydrogen response kinetics of nano-micro-integrated doped tin oxide sensor”, Sen. Actu. B., 120, 573-583 (2007).
[86] F. Rittner, B. Boddenberg, “Adsorption of nitrogen on rutile (110): Monte carlo computer simulations”, Langmuir, 15, 1456-1462 (1999).
[87] R. D. Shannon, “Phase transformation studies in TiO2 supporting different defect mechanisms in vacuum-reduced and hydrogen-reduced rutile”, J. Appl. Phys., 35, 3414 (1964).
[88] V. E. Henrich, R. L. Kurtz, “ Surface electronic structure of TiO2 Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen”, J. Appl. Phys. B, 23, 6280 (1981).
[89] 劉慈薇, “二氧化鈦光電極之製備及其在光電化學法產氫之應用”,成功大學化工系碩士論文 (2008)
[90] S. H. Kang, J. Y. Kim, H. S. Kim, and Y. E. Sung, “ Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate”, J. Ind. Eng. Chem., 14, 52-29 (2008).
[91] Q. Y. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation”, J. Mater. Res., 20, 230-236 (2005)
[92] W. Gopel, G. Rocker, and R. Feierabend, “Intrinsic defects of TiO2(110): Interaction with chemisorbed O2, H2, CO, and CO2”, Phys. Rev. B, 28, 3427-3438 (1983)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊