跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李明狄
研究生(外文):Ming-di Li
論文名稱:以創新噴霧流體化床製備多功能磁性奈米核殼複合粒子及其在癌症治療與肌紅蛋白心肌梗塞的檢測
論文名稱(外文):New spray-fluidized bed to prepare multifunctional magnetic core-shell nanoparticles for cancer therapy and detection of myoglobin myocardial infarction
指導教授:周澤川
指導教授(外文):Tse-chuan Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:176
中文關鍵詞:噴霧流體化床磁性奈米粒子熱治療術肌紅蛋白分子模版
外文關鍵詞:Fe3O4hyperthermiamyoglobinspray-fluidized bed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
四氧化三鐵(Fe3O4)磁性奈米粒子因其具有獨特的特性,如超順磁性與生物相容性,在生物醫學領域具有廣闊的應用前景。癌症已蟬聯國人十大死因之首26年了,因此許多生醫上面的研究多著重於開發新技術應用於癌症的治療。
在高頻交流磁場下,氧化鐵磁性奈米粒子因磁滯損耗所產生熱能可以用於臨床上對於腫瘤組織的高溫熱療法。一般溫度高於42℃即可殺死癌細胞。此種熱治療的表現與效率與癌細胞的種類以及氧化鐵磁性奈米粒子的大小、粒徑分佈、表面官能基有關。本研究利用化學共沈澱法與水熱合成法成功的製備四氧化三鐵磁性奈米粒子,粒徑大約20-30nm左右。且利用葡萄糖酸內酯(D-(+)-gluconic acid δ-lactone)表面修飾為親水性,比起傳統的化學共沈澱法所製備之四氧化三鐵在相同的磁場下可以提供更多的熱能,實驗結果顯示自製的磁性流體在濃度5.6 mg Fe3O4/0.2ml DI-Water,15分鐘內可以提昇溫度到70℃以上,具有良好的升溫能力。
此外研究也利用本實驗室開發中的噴霧流化床法製備肌紅蛋白分子模版,肌紅蛋白主要分佈於心肌與骨骼中,負責儲存氧分子與運送氧分子至肌肉組織。當心肌受損時,肌紅蛋白會迅速釋放至血液中,可以作為心肌梗塞早期的標幟物,當胸痛發生後3-6小時後,可以藉由檢測肌紅蛋白於人體的濃度是否超過正常值來判斷心肌梗塞發生的可能性。先前的研究已證實TEGDMA和MMA對於肌紅蛋白的辨識能力極高,為以後發展奈米人工抗體之可能,本研究利用噴霧流化床法來製備肌紅蛋白分子模版,目前顆粒大小大約500-1500 nm左右,經由酵素連結免疫吸附分析法(ELISA)測得模版上的冷光值為6.828 a.u.證實確實噴霧聚合過程對於肌紅蛋白傷害力小。並且計算模版的效能模印係數(α)達5.62。
本研究不但成功製備出高升溫能力之四氧化三鐵核心,並且結合噴霧流體化床法製備對於肌紅蛋白具親和力之磁性奈米核殼顆粒分子模版。
In several years, the cancer is the top ten of cause of death. Many studies in the biotechnology were focused on the development of the new technique to cure the cancers. In our laboratory, we integrate magnetic nanoparticles, molecular template and spray-fluidized bed technology to create a new chemical engineering technique and hope that we can work through it.
Magnetic particles have generated a lot of interests in the biomedical applications, like MRI contrast enhancement, magnetic separation, drug delivery, and hyperthermia. One of the prospective applications of magnetic nanoparticles is hyperthermia treatment of cancer. By the action of AC magnetic field, the magnetic particles generate heat through hysteresis losses. In clinical hyperthermia, efforts are made to optimize the thermal homogeneity at 42-46℃ in the tumor tissue by advanced therapy and thermometry. In this study, we successfully obtain magnetite with high heating effect through hydrothermal method. In 15 minutes, our product can get 70℃ which is much higher than the commercial product Resovist (Model Resovist, Schering AG, Germany) in the same concentration. Resovist is the contrast and is the only one product that can be injected into the human body.
Molecular imprinting is one of the promising techniques for giving a predetermined molecular recognition property onto synthetic materials such as polymers. For our laboratory, previous studies show that Methyl methacrylate (MMA) and Tetraethylene glycol methacrylate (TEGDMA) have high affinity. In this study, we use this formula combined the spray-fluidized bed successfully to prepare myoglobin molecularly imprinted polymer. The imprinting factor(α) is 5.68 which shows that the spherical particle MIP has affinity towards myoglobin.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 XII
圖目錄 XIV
專有名詞縮寫對照表 XX
第一章 緒論 1
1-1 奈米材料和奈米技術 1
1-1-1 奈米技術的簡介 1
1-1-2 奈米材料的物理性質 2
1-2 磁性奈米粒子的應用 4
1-3 分子模版之簡介 6
第二章 實驗原理 8
2-1 磁性理論 8
2-1-1 磁滯曲線 14
2-2 鐵氧化物 16
2-2-1 鐵氧化物之表面修飾 21
2-3 熱療法簡介 24
2-3-1 熱治療的歷史 24
2-3-2 熱治療的機制 25
2-3-3 熱治療的方法 28
2-3-4 磁熱治療機制 30
2-4 分子模版技術 37
2-4-1 分子模版原理 37
2-4-2 分子模版之製備 42
2-4-3 分子模版的型態 43
2-4-4 肌紅蛋白之簡介 44
2-4-4.1 肌紅蛋白的臨床意義 45
2-4-5 磁性奈米核殼複合粒子在分子模版上的應用 47
2-5 研究動機與目的 49
2-6 實驗架構 51
2-7儀器分析 52
2-7-1 穿透式電子顯微鏡 52
2-7-2 熱重分析儀 52
2-7-3 超導量子干涉振動磁量儀 53
2-7-4 X-ray 繞射儀 54
2-7-5 傅立葉轉換紅外線光譜儀 56
2-7-6 高週波電感應加熱器 57
2-7-7 螢冷光偵測儀 58
2-7-7.1 免疫分析 58
2-7-7.2 螢冷光發光機制原理 59
第三章 實驗設備與步驟 61
3-1 實驗藥品 61
3-2 儀器設備 63
3-3 實驗步驟 64
3-3-1 四氧化三鐵奈米粒子 64
3-3-2 水溶性氧化鐵的製備 65
3-3-3 油溶性氧化鐵的製備 66
3-3-4 升溫實驗流程 66
3-3-5 噴霧流體化床法製備肌紅蛋白分子模版之流程 67
3-3-5.1 噴霧流化床系統的簡介 67
3-3-5.2 噴霧器的規格 69
3-3-5.3 聚合液的配方 72
3-3-5.4 肌紅蛋白分子模版目標物之移除 73
3-3-5.5 肌紅蛋白分子模版目標物再吸附實驗 73
3-3-5.6 化學冷光偵測步驟 74
第四章 結果與討論 76
4-1 磁性氧化鐵奈米粒子的特性分析 76
4-1-1 未修飾磁性氧化鐵奈米粒子的鑑定 76
4-1-2 未修飾磁性氧化鐵奈米粒子的TEM分析 77
4-1-3 未修飾磁性氧化鐵奈米粒子的熱重分析 86
4-1-4 未修飾磁性氧化鐵奈米粒子的XRD分析 89
4-1-5 未修飾磁性氧化鐵奈米粒子的SQUID分析 92
4-2 未經修飾之磁性氧化鐵奈米粒子的升溫分析 96
4-2-1 修飾後磁性氧化鐵奈米粒子的TEM分析 101
4-2-2 修飾後磁性氧化鐵奈米粒子的熱重分析 105
4-2-3 修飾後磁性氧化鐵奈米粒子的XRD分析 107
4-2-4 修飾後磁性氧化鐵奈米粒子的FT-IR分析 109
4-2-5 修飾後磁性氧化鐵奈米粒子的SQUID分析 111
4-2-6水溶性與油溶性磁性氧化鐵奈米粒子的分析 114
4-2-7水溶性磁性氧化鐵奈米粒子的升溫分析 115
4-3 利用噴霧流體化床製備肌紅蛋白分子模版 120
4-3-1 聚合後磁性複合奈米粒子之ELISA測試 123
4-3-2 肌紅蛋白分子於溶液中校正曲線 125
4-3-3 吸附時間對肌紅蛋白分子模版之效能 126
4-3-4 肌紅蛋白分子模版的效能探討 128
4-3-5 肌紅蛋白分子模版之FT/IR-ATR定性分析 130
4-3-6 不同溶劑與交聯劑比例製備分子模版比較 133
4-3-7 使用離心機分離所製備分子模版探討 137
第五章 綜合討論 140
5-1 四氧化三鐵核心升溫能力 140
5-1-1 未經修飾之四氧化三鐵核心升溫能力 140
5-1-2 葡萄糖酸內酯修飾四氧化三鐵核心升溫能力 141
5-2 噴霧流體化床製備肌紅蛋白分子模版 143
5-2-1 噴霧聚合過程對肌紅蛋白的影響 143
5-2-2 吸附時間對肌紅蛋白分子模版之效能 143
5-2-3 不同方式製備肌紅蛋白分子模版之效能討論 144
5-2-4 氧化鐵磁性奈米粒子製備分子模版之討論 146
5-2-5不同溶劑與交聯劑比例製備分子模版比較 150
第六章 結論與建議 151
參考文獻 153
附錄 A 163
附錄 B 167
附錄 C 168
附錄 D 170
附錄E 173
自述 176
[1] 廖婉茹,奈米科技與生活,2006
[2] 尹邦躍,奈米時代,第一章:什麼是奈米科技,2002
[3] P. Tartaj, M. Morales, S. V.-Verdaguer, T. G.-Carre�瓨, C. J-Serna, “The preparation of magnetic nanoparticles for applications in biomedicine”, J. Phys. D: Appl. Phys. 36, R182-R197, 2003
[4] M. Arruebo, R. F.-Pacheco, M.R. Ibarra, J. Santamar�朦, “Magnetic nanoparticles for drug delivery”, Nanotoday, 2, 22-32
[5] N.R. Jana, Y. Chen, X. Peng, "Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach", Chem. Mater., 16, 3931-3935, 2004
[6] W.S. Zhanga, E. Br�佟k, Z.D. Zhang, O. Tegus, W.F. Li, P.Z. Si, D.Y. Geng, K.H.J. Buschow, “Structure and magnetic properties of Cr nanoparticles and Cr2O3 nanoparticles”, Physica B, 358, 332-338, 2005
[7] 蘇煒翔,“製備高選擇性分子模版從蛋及疫苗中進行固相萃取過敏原卵白蛋白”,國立成功大學化學工程學系碩士論文,2008
[8] D. William, JR. Callister, “Materials science and engineering-An introduction”, 2nd edition, Chapter 21, 676-702
[9] 近角聰信撰(張煦、李學養譯),“磁性物理學”,1982
[10] D. Jiles, “Introduction to magnetism and magnetic materials”, 1991
[11] 張揚狀,“表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應用”,國立成功大學化學工程學系博士論文,2005
[12] 金重勳,“磁性技術手冊”,第三十三章:磁流體及其應用,2002
[13] D.L. Huber, “Synthesis, properties, and applications of iron nanoparticles”, small, 1, 482-501, 2005
[14] H.G. Bagaria, E.T. Ada, M. Shamsuzzoha, D.E. Nikles, D.T, Johnson, “Understanding Mercapto Ligand Exchange on the Surface of FePt Nanoparticles”, Langmuir, 22, 7732-7737, 2006
[15] D.J. Craik, “Magnetic Oxides: Part 2”, 1975
[16] R.M. Cornell, U. Schwertmann, “The iron oxides :structure, properties, reactions, occurrences and uses”, 2nd edition
[17] W. Wu, Q. He, C. Jiang, “Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies”, Nanoscale Res Lett, 3, 397-415, 2008
[18] A.K. Gupta, M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications", Biomaterials, 26, 3995-4021, 2005
[19] T.J. Daou, G. Pourroy, S. B.-Colin, J.M. Greneche, C. U.-Bouillet, P. Legare, et al, "Hydrothermal synthesis of monodisperse magnetite nanoparticles", Chem. Mater, 18, 4399-4404, 2006
[20] An-Hui Lu, E.L. Salabas, F. Sch�厎h, “Magnetic nanoparticles: Synthesis, protection, functionalization, and application”, Angew. Chem. Int. Ed., 46, 1222-1244, 2007
[21] B. Feng, R.Y. Hong, L.S. Wang, L. Guo, H.Z. Li, J. Ding, Y. Zheng, D.G. Wei, “Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 328, 52–59, 2008
[22] L. Fu, V.P. Dravid, D.L. Johnson, “Self-assembled(SA) bilayer molecular coating on magnetic nanoparticles”, Appl. Surf. Sci., 181, 173-178, 2001
[23] L. Shen, P.E. Laibinis, T.A. Hatton, “Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces”, Langmuir, 15, 447-453, 1999
[24] Y. Sahoo, A. Goodarzi, M.T. Swihart, T.Y. Ohulchanskyy, N. Kaur, E.P. Furlani, P.N. Prasad, “Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control”, J. Phys. Chem. B., 109, 3879-3885, 2005
[25] H. Pardoe, W. Chua-Anusorn, T.G. St. Pierre, J. Dobson, “Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol”, J. Magn. Magn. Mater., 225, 41-46, 2001
[26] Y. Zhang, S.W.Y. Gong, L. Jin, S.M. Li, Z.P. Chen, M. Ma, N. Gu, “Magnetic nanocomposites of Fe3O4/SiO2-FITC with pH-dependent fluorescence emission”, Chinese Chemical Letters, 20, 969–972, 2009
[27] J.D. Qiu, M. Xiong, Ru-Ping Liang, Hua-Ping Peng, F. Liu, “Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application”, Biosensors and Bioelectronics, 24, 2649-2653, 2009
[28] M. Gautherie, “Biological basis of oncologic thermotherapy”, Chapter 1: Biological Basis of Thermotherapy, 1990
[29] J.W. Strohbehn, E.B. Douple, “Hyperthermia and cancer therapy: A review of biomedical engineering contributions and challenges”, IEEE Transactions on Biomedical Engineering, BME-31, 779-787, 1984
[30] C. W. Song, “Effect of local hyperthermia on blood flow and microenvironment: A review”, Cancer Research, 44, 4721s-4730s, 1984
[31] E.J. Hall, “Radiobiology for the Radiologist”, 4th edition, Chapter 16: Hyperthermia, 1994
[32] M. Nikfarjam, V. Muralidharan, C. Christophi, “Mechanisms of focal heat destruction of liver tumors”, Journal of Surgical Research, 127, 208-223, 2005
[33] F.K. Storm, D.L. Morton, “Local hyperthermia in the treatment of cancer”, CA-A Cancer Journal for Clinicians, 44-56
[34] J.-P. Fortin, C. Wilhelm, J. Servais, C. M�聲ager, J.-C. Bacri, F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia”, J. AM. CHEM. SOC., 129, 2628-2635, 2007
[35] G. Ciofani, C. Riggio, V. Raffa, A. Menciasse, A. Cuschieri, “A bi-modal approach against cancer: Magnetic alginate nanoparticles for combined chemotherapy and hyperthermia”, Medical Hypotheses, 73, 80-82, 2009
[36] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, “Magnetic nanoparticles design for medical diagnosis and therapy”, J. Mater. Chem., 14, 2161-2175, 2004
[37] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, “Topical Review: Applications of magnetic nanoparticles in biomedicine”, J. Phys. D.: Appl. Phys., 36, R167-R181, 2003
[38] A.S. Teja, P.-Y. Koh, “Synthesis, properties, and applications of magnetic iron oxide nanoparticles”, Progress in Crystal Growth and Characterization of Materials, 2008 (Article in press)
[39] M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A.
Pankhurst, “Suitability of commercial colloids for magnetic hyperthermia”, Journal of Magnetism and Magnetic Materials, 321, 1509-1513, 2009
[40] 曾�c瑜,“使用超順磁氧化鐵於癌症高溫治療之研究”,國立成功大學工程科學系碩士論文,2007
[41] S.E. Barry, “Challenges in the development of magnetic particles for therapeutic applications”, Int. J. Hyperthermia, 24, 451-466, 2008
[42] 李維鈞,“利用電噴霧製備磁性奈米核殼複合粒子及其應用於蛋白質分子模版上的應用”,國立成功大學化學工程學系碩士論文,2007
[43] E. Fischer, “Einfluss der Configuration auf die Wirkung der Enzyme”, Berichte der deutschen chemischen Gesellschaft, 27, 2985-2993, 1894
[44] A. G. Mayes a, M. J. Whitcombeb, “Synthetic Strategies for the Generation of Molecularly Imprinted Rrganic Polymers” , Advanced Drug Delivery Reviews, 57, 1742-1778, 2005
[45] P. Linus, “A Theory of the Structure and Process of Formation of Antibodies”, Journal of the American Chemical Society, 62, 2643-2657, 1940
[46] F. H. Dickey, “The Preparation of Specific Adsorbents”,Proceedings of the National Academy of Sciences of the United States of America, 35, 227-229, 1949
[47] G.Wulff, A. Sarhan, “Use of Polymers with Enzyme-analogous Structures for the Resolution of Racemates”, Angewandte Chemie International Edition, 11, 341-344, 1972
[48] G. Wulff, A. Sarhan, K. Zabrocki, “Enzyme-analogue Built Polymers and Their Use for the Resolution of Race Mates“, Tetrahedron Letters, 44, 4329-4332, 1973
[49] G. Wulff, R. Vesper, R. Grobe-Einsler, A. Sarhan, “Enzyme-analogue Built Polymers, 4. On the Synthesis of
Polymers Containing Chiral Cavities and Their Use for the Resolution of Racemates”, Makromolekulare Chemie-Macromolecular Chemistry and Physics, 178, 2799–2816, 1977
[50] K.J. Shea, T.K. Dougherty, “Molecular Recognition on Synthetic Amorphous Surfaces—the Influence of Functional-group Positioning on the Effectiveness of Molecular Recognition”, Journal of the American Chemical Society, 108, 1091–1093, 1986
[51] G. Wulff, W. Best, A. Akelah, “Enzyme-analogue Built Polymers: 17. Investigations on the Racemic Resolution of Aminoacids”, Reactive Polymers, 2, 167–174, 1984
[52] R. Arshady, K. Mosbach, “Synthesis of Substrate-selective Polymers by Host–guest Polymerization”, Makromolekulare Chemie-Macromolecular Chemistry and Physics, 182, 687– 692, 1981
[53] O. Norrl�屳, M. Glad, K. Mosbach, “Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates”, Journal of Chromatography, 299, 29– 41, 1984
[54] G. Vlatakis, L. I. Andersson, R. M�摔LER, K. Mosbach, “Drug Assay Using Antibody Mimics Made by Molecular Imprinting”, Nature, 361, 645–647, 1993
[55] O. Ramstr�卌, K. Mosbach, “Synthesis and Catalysis by Molecularly Imprinted Materials”, Current Opinion in Chemical Biology, 3, 759–764, 1999
[56] M. J. Whitcombe, M. E. Rodriguez, P. Villar, E. N. Vulfson, “A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting—Synthesis and Characterization of Polymeric Receptors for Cholesterol”, Journal of the American Chemical Society, 117, 7105–7111, 1995
[57] A. Arkhipov, R. Braun, Y. Yin, “Case Study: Myoglobin”, Beckman Institute for Advanced Science and Technology, 2009/06/23
http://www.ks.uiuc.edu/Training/CaseStudies/pdfs/myoglobin.pdf
[58] W. S. Caughey, G. A. Smythe, D. H. O'Keeffe, J. E. Maskasky, M. I. Smith, “Heme A of Cytochrome C Oxicase. Structure and Properties: Comparisons with Hemes B, C, and S and Derivatives”, J. Biol. Chem., 250, 7602–7622, 1975
[59] E. Antman, J. P. Bassand, W. Klein, M. Ohman, J. L. P. Sendon, L. Ryd�聲, M. Simoons, and M. Tendera, “Myocardial Infarction Redefined—A Consensus Document of The Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction: The Joint European Society of Cardiology/ American College of Cardiology Committee”, Journal of the American College of Cardiology, 36, 959-969, 2000
[60] 福島醫檢資訊網, http://www.supermt.com.tw/MTindex-1.htm 2009/6/23
[61] 中華檢驗網, http://www.chinalabnet.co?id=830&cid=m/show.aspx89, 2009/6/23
[62] A. G. Engel, B. Q. Banker, A. S. Penn, “Myoglobinuria”, Myology. Basic and Clinical, McGraw-Mill Book Co, New York, 1785-1805, 1986
[63] C.J. Tan, Y.W. Tong, “Preparation of superparamagnetic Ribonuclease A surface –imprinted submicrometer particles for protein recognition in aqueous media”, Anal. Chem., 79, 299-306, 2007
[64] X. Wang, L. Wang, X. He, Y. Zhang, L. Chen, “A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition”, Talanta, 78, 327-332, 2009
[65] X. Kan, Z. Geng, Y. Zhao, Z. Wang, J.-J. Zhu, “Magnetic molecularly imprinted polymer for aspirin recognition and controlled release”, Nanotechnology, 20, 1-7, 2009
[66] H.Y. Lin, J. Rick, T. C. Chou, “Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer-formed using a micro-contact imprinting method”, Biosensors and Bioelectronics, 22, 3293-3301, 2007
[67] P. C. Chou, J. Rick, T. C. Chou, “C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach”, Analytica chimica Acta, 542, 20-25, 2005
[68] 林麗娟,X光繞射原理及其應用,100-109,工業材料86期,83年2月
[69] Y. Yong, Y. Bai, Y. Li, L. Lin, Y. Cui, C. Xia, “Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization”, Journal of Magnetism and Magnetic Materials, 320, 2350-2355, 2008
[70] 王怡文,微接觸法、芳香官能基作用法與噴霧流體化床法製備肌紅蛋白分子模版之比較,國立成功大學化學工程學系碩士論文,2008
[71] H. Zhao, K. Saatchi, U. O. Hafeli, “Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite”, Journal of Magnetism and Magnetic Materials.(Article in press)
[72] M. Marini, B. Pourabbas, F. Pilati, P. Fabbri, “Functionally modified core-shell silica nanoparticles by one-pot synthesis”, Colloids and Surface A: Physicochem. Eng. Aspects, 317, 473-481, 2008
[73] Q. Lan, C. Liu, F. Yang, S. Liu, J. Xu, D. Sun, “Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions”, Journal of Colloid and Interface Science, 310, 260–269, 2007
[74] X. Wanga, H. Gub, Z. Yang, “The heating effect of magnetic fluids in an alternating magnetic field”, Journal of Magnetism and Magnetic Materials, 293, 334-340, 2005
[75] M. G.-Weimuller, M. Zeisberger, K. M. Krishnan, “Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia”, Journal of Magnetism and Magnetic Materials, 321, 1947-1950, 2009
[76] Z. Donglin, Z. Xianwei, X. Qisheng, T. Jintian, “Inductive heat property of Fe3O4 in AC magnetic field for local hyperthermia”, Rare Metals, 25, 621-625, 2006
[77] P. Pradhan, J. Giri, G. Samanta, H.D. Sarma, K.P. Mishra, J. Bellare, R. Banerjee, D. Bahadur, “Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B,12-22, 2007
[78] T. Atsumi, B. Jeyadevan, Y. Sato, K. Tohji, “Heating efficiency of magnetite nanoparticles exposed to AC magnetic field”, Journal of Magnetism and Magnetic Materials, 310, 2841-2843, 2007
[79] M. Suto, Y. Hirota, H. Mamiya, A. Fujia, R. Kasuya, K. Tohji, B. Jeyadevan, “Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia”, Journal of Magnetism and Magnetic Materials, 2009
[80] M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, “Size depencence of specific power absorption of Fe3O4 particles in AC magnetic field”, Journal of Magnetism and Magnetic Materials, 268, 33-39, 2004
[81] S. W. Lee, S. Bae, Y. Takemura, In-Bo Shim, T. M. Kim, J. Kim, H. J. Lee, S. Zurn, C. S. Kim, “Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application”, Journal of Magnetism and Magnetic Materials, 310, 2668-2870, 2007
[82] C. J. Tan, H. G. Chua, K. H. Ker, Y. W. Tong, “Preparation of bovin serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization”, Anal. Chem., 80, 683-692, 2008
[83] L. Li, X. He, L. Chen, Y. Zhang, ”Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovin hemoglobin”, Chem. Asian. J., 4, 286-293,2009
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top