跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林盛偉
研究生(外文):Sheng-Wei Lin
論文名稱:功能性矽奈米粒子及其薄膜元件的製備
論文名稱(外文):Preparation of functional Si nanoparticles and their thin film devices
指導教授:陳東煌陳東煌引用關係
指導教授(外文):Dong-hwang Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:194
中文關鍵詞:(金屬-氧化層-半導體)MOS光偵測器合金薄膜核-殼光致螢光奈米粒子
外文關鍵詞:core-shellphotodetectorMOS(metal-oxide-semiconductor)thin filmsiliconnanoparticlesphotoluminescencealloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本論文係有關功能性矽奈米粒子的製備及其薄膜元件的研究,主要是分別利用液相法及物理式研磨法製備矽奈米粒子,並透過表面的修飾,接下來合成出矽-二氧化矽核殼型奈米粒子及具磁性質的矽奈米複合粒子,探討所製備材料在粒徑、結構、光學特性、表面性質等,及其在電子傳遞及光電偵測等應用。其內容包括四個系統:水溶性矽奈米粒子的製備;具螢光之矽-二氧化矽核殼型奈米粒子薄膜的製備及溫度對薄膜光學特性的影響;可磁控制矽奈米粒子的製備與研究;矽奈米粒子薄膜在 (金屬-氧化層-半導體) MOS元件上的應用。
關於水溶性矽奈米粒子的合成,係利用溴水與前驅物矽化鎂在高溫下進行迴流反應,反應所得矽奈米粒子再經過表面修飾接上親水性官能基。結果發現,粒子其平均粒徑為4.11±1.72 nm且結構為鑽石晶格的矽,而型態為內部為結晶完美表面被覆一氧化層而類似核殼型的粒子,並可穩定分散於水溶液中且無明顯聚集現象。在光學特性方面,由於粒子尺寸及表面缺陷效應,展現出均勻且穩定的藍色螢光。除此之外,存放水溶液中長達六個月依然可以維持12%螢光效益值,完全表現出光學上良好的穩定性。此水溶性的藍色螢光矽奈米粒子對未來光電元件及生醫標定領域上具有一定的應用價值。
關於具螢光之矽-二氧化矽核殼型奈米粒子薄膜,係在親水性的矽奈米粒子表面藉由溶凝膠反應被覆上一層二氧化矽,並在矽基材上成膜,此法為有別於一般物理式沉積矽-二氧化矽薄膜的特殊方法。所得為粒徑30.43±2.63 nm核殼型奈米粒子,在360 nm及530 nm處呈現放射峰,其360 nm放射峰為電子-電洞對在粒子內部及表面氧相關缺陷中心做結合所致;而530 nm的黃綠光來自於光激發電子-電洞對跨越界面層並於氧化層附近做結合放光。而矽-二氧化矽核殼奈米粒子薄膜主要由粒徑約100 nm粒子所堆積而成,此薄膜可同時呈現藍、黃綠、紅色等可見光,而紅光主要來自於電子-電洞對跨越核殼界面層並於Si=O鍵上做結合放光所致,然而由於高強度的藍光放射峰,也因此在UV燈照射下此薄膜依然為一明顯藍色的螢光薄膜。此外,薄膜的低溫PL行為(77-297 K)在研究中也有仔細的探討,其結果對於光學薄膜研究上相信很有幫助。
關於可磁控制矽奈米粒子,係利用分散極佳的矽奈米粒子為晶種,在含有鐵或鎳金屬的前驅物,與油胺及油酸為保護劑下反應而得。所得為同時兼具磁性及光學性質的雙功能性奈米粒子,對於Fe2Si奈米粒子,為粒徑5~10 nm、可放出綠色螢光且分散性極佳的多邊形粒子;而NiSi2奈米粒子為粒徑30~40 nm且可放出藍光的不規則粒子。兩種粒子皆近乎超順磁狀態。
關於矽奈米粒子薄膜之金屬-氧化層-半導體結構上,係將矽奈米粒子在矽晶圓基材(n型及p型)上沉積成膜,並鍍上鋁電極而製得。探討電子在薄膜中的傳遞行為及元件的光偵測行為。結果發現,電子由基材處穿越粒子氧化層介面,利用矽奈米粒子在薄膜中連續堆疊連接成一導電路徑而流通電流;另外,在光偵測器元件上,利用不同波長激發光,透過不同的I-V行為,而藉以判斷不同的光波長。其總電流主要包括兩部份:本身系統的暗電流;及由於在薄膜中不同粒徑大小的矽奈米粒子可以迎合不同能量的波長,在粒子內部所光激發而生的電子,隨著基材所累積的電子而一起穿越進入薄膜。
This dissertation concerns the preparation of functional Si nanoparticles and the investigation of their thin film devices. Si nanoparticles were prepared via the solution route and the physical grinding route respectively and the fllowed modification on the surface of Si nanoparticles. Si-SiO2 core-shell nanoparticles and magnetic Si nanoparticles were synthesized subsequently to discuss the particle size, structure, optic proterties, and surface characteristics and the applications in electron transportation and optoelectronic detection. Four systems were studied, including “Preparation of water-soluble Si nanoparticles”, “Fabrication of Si-SiO2 core-shell nanoparticles thin film with photoluminescence and the temperature dependences on their optical properties”, Preparation and study of magnetically controllable silicon nanoparticles ”, “The applications in Si nanoparticles thin film MOS (metal-oxide-semiconductor) devices”.
Water-soluble Si nanoparticles were synthesized via a refluxing reaction in the prescence of Br2 and Mg2Si and the followed attachment of the hydrophilic functional group on the surface of Si nanoparticles. It was found that the resultant Si nanoparticles had an average diameter of 4.11±1.72 nm and a diamond structure, besides it also confirmed as a core-shell nanoparticle which had a high crystallinity inside and covered with an oxide layer on the surface of Si nanoparticles. The resultant Si nanoparticles could be dispersed in water stably without any significant aggregation. The Si nanoparticles could display homogeneous and stable blue luminescence and this colud be affected by both the particle size and surface. The Si nanoparticles exhibited excellent optical stability and the quantum yield for sample immersion in water for 6 months was about 12%. Such water-soluble blue photoluminescent Si nanoparticles may find promising applications in optoelectronic and biological labling in the future.
A novel Si nanocrystals embedded SiO2 thin film has been fabricated by the synthesis of Si-SiO2 core-shell (Si@SiO2) nanoparticles which the surface SiO2 coating of Si nanocrystals was achieved by a sol-gel process and the followed drop-coating on a silicon wafer. Such a route is different from the general physical deposition method. The resultant Si@SiO2 nanoparticles had a mean diameter of 30.43�b2.63 nm and they exhibited a peak around 360 nm and a green-yellow emission band around 530 nm. The 360 nm peak could be attributed to the electron-hole recombination in the Si cores and that via the oxide-related defects originally present on the surface of oxide-passivated Si cores, while the green-yellow emission might be attributed to the transfer of the electron-hole pairs generated in the Si cores across the core-shell interface and the followed recombination in the SiO2 shells. The resultant Si@SiO2 nanoparticle thin film had a mean grain size of about 100 nm. It showed not only blue emission and green-yellow emission but also red emission which might be due to the transfer of the electron-hole pairs generated in the Si cores across the core-shell interface and the followed recombination via the Si=O double bonds at the particle surface. Because blue emission was significant relatively, the Si@SiO2 nanoparticle thin film exhibited bright blue fluorescence under UV excitation. In addition, by investigating the temperature dependence of photoluminescence in the temperature range of 77 to 297 K, the nature of photoluminescence from the Si@SiO2 nanoparticle thin film was also clarified. The result should be helpful for the study on optical thin film.
The well-dispersed magnetic Si nanoparticles were synthesized via the thermal decomposition of precursor (iron pentacarbonyl or nitrate hexahydrate) in the presence of Si nanoparticles with oleic acid and oleylamine as stabilizers. The resultants were bifunctional alloy nanoparticles with magnetic and optical properties. The green photoluminescent iron-silicon nanoparticles had diameters roughly in the range of 5-10 nm with polygon shape and stable dispersity. The blue photoluminescent nickle-silicon nanoparticles had a diameters in the range of 30-40 nm with irregular shape. Both alloy nanoparticles were superparamagnetic.
A metal-oxide-semiconductor (MOS)-like structure was fabricated by depositing as-prepared Si nanoparticles on the silicon wafer (n and p-type) via a drop-coating method and the followed deposition of aluminum via thermal evaporation. The charge trapping effect and the photodetection behavior of Si nanoparticles embedded thin film were investigated. The charges sequentially moved through the Si thin film from the accumulated surface and transported on the conductive pathway which was bulit up by a series of Si nanoparticles. A photodetector was also fabricated to detect various light wavelength by observing different current-voltage behavior in this study. An enhanced photocurrent was composed of two parts, i.e., the dark current from the ejected electron in the system and the photoexcited electron with the energies matching the continuous energy band from various size Si nanoparticles in the thin film.
中文摘要…………………………………………………………… I
英文摘要…………………………………………………………… III
致謝…………………………………………………………………V I
總目錄………………………………………………………………V I I
表目錄………………………………………………………………X I
圖目錄………………………………………………………………X III
符號…………………………………………………………………X X I


第一章 簡介………………………………………………………1
1.1半導體奈米材料…………………………………………………1
1.1.1半導體奈米材料之簡介……………………………………1
1.2 矽奈米材料………………………………………………………8
1.2.1矽奈米材料之簡介…………………………………………8
1.2.2矽奈米材料之結構…………………………………………10
1.2.3矽奈米材料之表面修飾………………………………………20
1.3矽奈米粒子之光學特性……………………………………………27
1.3.1電子結構……………………………………………………27
1.3.2尺寸效應……………………………………………………29
1.3.3表面侷限效應………………………………………………33
1.3.4光學機制……………………………………………………37
1.3.5量子效益……………………………………………………42
1.4 矽奈米粒子之發展性………………………………………… 44
1.4.1複合奈米粒子………………………………………………43
1.4.2奈米薄膜及其光電元件……………………………………68
1.5 研究動機……………………………………………………… 77

第二章 材料與研究方法…………………………………………80
2.1藥品………………………………………………………………80
2.2儀器………………………………………………………………82
2.3材料………………………………………………………………83
2.4矽奈米粒子之製備………………………………………………84
2.4.1親水性矽奈米粒子之製備…………………………………84
2.4.2 疏水性矽奈米粒子之製備………………………………84
2.4.3 研磨法製備矽奈米粒子…………………………………85
2.5 Si@SiO2奈米粒子薄膜之製備…………………………………88
2.5.1Si@SiO2奈米粒子之製備.…………………………………88
2.5.2具PL特性之Si@SiO2奈米粒子薄膜之製備………………88
2.6 磁性可操控矽奈米粒子之製備………………………………91
2.6.1鐵矽奈米粒子之製備………………………………………91
2.6.2鎳矽奈米粒子之製備………………………………………91
2.7 金屬-氧化物-半導體結構之製備………………………………91
2.8 奈米粒子的特性分析……………………………………………92

第三章 結果與討論……………………………………………97
3.1親水性矽奈米粒子之特性分析…………………………………97
3.1.1親水性矽奈米粒子溶於水之特性分析……………………97
3.1.2親水性矽奈米粒子溶於乙醇之特性分析…………………114
3.2 Si@SiO2奈米粒子薄膜之特性分析……………………………120
3.2.1Si@SiO2奈米粒子之特性分析………………………………120
3.2.2Si@SiO2奈米粒子薄膜之結構分析…………………………125
3.2.3Si@SiO2奈米粒子薄膜之低溫光學特性分析………………127
3.3 可磁控矽奈米粒子之特性分析…………………………………134
3.3.1鐵矽奈米粒子之特性分析…………………………………134
3.3.2鎳矽奈米粒子之特性分析…………………………………151
3.4矽奈米粒子薄膜MOS結構之研究…………………………………161
3.4.1矽奈米粒子薄膜之特性分析………………………………161
3.4.2 Al/nc-Si/n-Si MOS結構電子傳遞行為之研究…………167
3.4.3 Al/ITO/nc-Si/p-Si MOS結構光偵測器之研究…………173

第四章 總結論………………………………………………………176
參考文獻………………………………………………………………179
自述及論文著作………………………………………………………194
1.Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. (2000) Pure Appl. Chem. 72, 295.
2.Kang, Z. ; Liu, Y. ; Tsang, C. H. A. ; Ma, D. D.; Fan, X.; Wong, N. B.; Lee. S. T. (2008) Adv. Mater. 20, 1.
3.Alamri, S. N.; Brinkman, A. W. (2000) J. Phys. D: Appl. Phys. 33, L1.
4.Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. (2004) Nat. Biotechnol. 22, 969.
5.Haram, S. K.; Quinn, B. M.; Bard, A. J. (2001) J. Am. Chem. Soc. 123, 8860.
6.Hickey, S. G.; J. Riley, D.; Tull, E. J. (2000) J. Phys. Chem. B 104, 7623.
7.Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P. (2002) Chem. Mater. 14, 2113.
8.Schierning, G.; Theissmann, R.; Wiggers, H.; Sudfeld, D.; Ebbers, A.; Franke, D.; Witusiewicz, V. T.; Apel, M. (2008) J. Appl. Phys. 103, 084305.
9.Buffat, P.; Borel, J. P. (1976) Phys. Rev. A 13, 2287.
10.Couhman, P. R.; Jesser, W. A. (1977) Nature 269, 481.
11.Wautelet, M. (1990) Solid State Commun. 74, 1237.
12.Goldstein, A. N. (1995) Appl. Phys. A: Mater. Sci. Process. 62, 33.
13.劉恩科,朱秉升,羅晉生 (2006) 半導體物理學,台北:新文京,8-12。
14.劉恩科,朱秉升,羅晉生 (2006) 半導體物理學,台北:新文京,41。
15.Yoffe, A. D. (1993) Advan. Phys. 42, 173.
16.Tilley, R. D.; Yamamoto, K. (2006) Adv. Mater. 18, 2053.
17.Warner, J. H.; Hoshino, A.; Yamamoto, K.; Tilley, R. D. (2005) Angew. Chem. 44, 4550.
18.Carter, R. S.; Harley, S. J.; Power, P. P.; Augustine, M. P. (2005) Chem. Mater. 17, 2932.
19.Tilley, R. D.; Warner, J. H.; Yamamoto, K.; Matsui, I.; Fujimori, H. (2005) Chem. Commun. 1833.
20.Li, Z. F.; Swihart, T.; Rukenstein, E. (2004) Lnagmuir 20, 1963.
21.Hua, F.; Swihart, M. T.; Ruckenstein, E. (2005) Langmuir 21, 6054.
22.Canham, L. T. (1990) Appl. Phys. Lett. 57, 1046.
23.Liu, S. M. (2008) J. Nanosci. Nanotechnol. 8, 1110.
24.黃淑娟 (2002) 化工資訊月刊 16,4,34。
25.Littau, K. A.; Szajowski, P. J.; Muller, A. J.; Kortan, A. R.; Brus, L. E. (1993) J. Phys. Chem. 97, 1224.
26.Buuren, T.; Dinh, L. N.; Chase, L. L.; Siekhaus, W. J.; Terminello, L. J. (1998) Phys. Rev. Lett. 80, 3803.
27.Murphy, C. J.; Coffer, J. L. (2002) Appl. Spectrosc. 56, 16A
28.Bapat, A.; Perrey, C. R. ; Carter, C. B.; Kortshagen, U. (2003) J. Appl. Phys. 94, 1970.
29.Jung, K. H.; Shih, S.; Shieh, T. Y.; Kwong, D. L. (1991) Appl. Phys. Lett. 59, 3264.
30.Belomoin, G.; Therrien, J.; Nayfeh, M. (2000) Appl. Phys. Lett. 77, 779.
31.Belomoin, G.; Therrien, J.; Smith, A.; Rao, S.; Twesten, R.; Chaieb, S.; Nayfeh, M. H.; Wagner, L.; Mitas, L. (2002) Appl. Phys. Lett. 80, 841.
32.Yamani, Z.; Ashhab, S.; Nayfeh, A.; Thompson, W. H.; Nayfeh, M. (1998) J. Appl. Phys. 83, 3929.
33.Bley, R. A.; Kauzlarich, S. M. (1996) J. Am. Chem. Soc. 118, 12461
34.Yang, C. S.; Bley, R. A.; Kauzlarich, S. M.; Lee, W. H.; Delgado, G. R. (1999) J. Am. Chem. Soc. 121, 5191.
35.Pettigrew, K. A.; Liu, Q.; Power, P. P.; Kauzlarich, S. M. (2003) Chem. Mater. 15, 4005.
36.Neiner, D.; Chiu, H. W.; Kauzlarich, S, M. (2006) J. Am. Chem. Soc. 128, 11016.
37.Zhang, X.; Neiner, D.; Wang, S.; Louie, A. Y.; Kauzlarich, S. M. (2007) Nanotechnology 18, 095601.
38.Liu, Q., Kauzlarich, S. M. (2002) Mater. Sci. Eng. B 96, 72.
39.Baldwin, R. K.; Pettigrew, K. A.; Ratai, E.; Augustine, M. P.; Kauzlarich, S. M. (2002) Chem. Comm. 1822.
40.Baldwin, R. K.; Pettigrew, K. A.; Garno, J. C.; Power, P. P.; Liu, G. Y.; Kauzlarich, S. M. (2002) J. Am. Chem. Soc. 124, 1150.
41.Wilcoxon, J. P.; Samara, G. A.; Provencio, P. N. (1999) Phys. Rev. B 60, 2704.
42.Tilley, R. D.; Yamamoto, K. (2006) Adv. Mater. 18, 2053.
43.Tilley, R. D.; Warner, J. H.; Yamamoto, K.; Matsui, I.; Fujimori, H. (2005) Chem. Commun. 1833.
44.Warner, J. H.; Hoshino, A.; Yamamoto, K.; Tilley, R. D. (2005) Angew. Chem. Int. Ed. 44, 4550.
45.Holmes, J. D; Ziegler, K. J.; Doty, R. C.; Pell, L. E.; Johnston, K. P.; Korgel, B. A. (2001) J. Am. Chem. Soc. 123, 3743.
46.English, D. S.; Pell, L. E.; Yu, Z. H.; Barbara, P. F.; Korgel, B. A. (2002) Nano Lett. 2, 681.
47.Fink, M. J.; Mitchell, B. S.; Heintz, A. S. (2007) Adv. Mater. 19, 3984.
48.Peukert, W.; Reindl, A.; Aldabergenova, S.; Altin, E.; Frank, G. Phys. Sat. Sol. (2007) 204, 2329.
49.Dhas Arul, N.; Paul Raj, C. ; Gedanken, A. (1998) Chem. Mater. 10, 3278.
50.Liu, S. M. ; Kobayashi, M. ; Sato, S.; Kimura, K. (2005) Chem. Commun. 4690.
51.Kanemitsu, Y.; Okamoto, S. (1997) Phys. Rev. B 55, R7375.
52.Puzder, A.; Williamson, A. J.; Grossman, J. C.; Galli, G. (2002) Phys. Rev. Lett. 88, 097401.
53.Ramos, L. E.; Furthmüller, J.; Bechstedt, F. (2005) Appl. Phys. Lett. 87, 143113.
54.Li, Q. S.; Zhang, R. Q.; Lee, S. T.; Niehaus, T. A.; Frauenheim, T. (2008) J. Chem. Phys. 128, 244714.
55.林盛偉,陳東煌 (2008) 化工技術,11,188,136。
56.Wolkin, M. V.; Jorne, J.; Fauchet, P. M. (1999) Phys. Rev. Lett. 82, 197.
57.Zhou, A.; Brus, L.; Friesner, R. (2003) Nano Lett. 3, 163.
58.Vasiliev, I.; Chelikowsky, J. R.; Martin, R. M. (2002) Phys. Rev. B 65, 121302.
59.Warner, J. H.; Rubinsztein-Dunlop, H.; Tilley, R. D. (2005) J. Phys. Chem. B 109, 19064.
60.Sato. S; Swihart, M. T. (2006) Chem. Mater. 18. 4083.
61.Li, Z. F.; Ruckenstein, E. (2004) Nano Lett. 4, 1463.
62.Lee, S.; Cho, W. J.; Chin, C. S.; Han, I. H.; Choi, W. J.; Park, Y. J.; Song, J. D.; Lee, J. I.; (2004) Jpn. J. Appl. Phys. 43, L784-L7896.
63.Lin, S. W.; Chen, D. H. (2008) Small 5, 72.
64.Hua, F.; Erogbogbo, F.; Swihart, M. T; Ruckenstein, E. (2006) Langmuir 22, 4363.
65.Rosso-Vasic, M.; Spruijt, E.; Lagen, B.; De Cola, L.; Zuilhof, H. (2008) Small 10, 1835.
66.Carter, S. S.; Harley, S. J.; Power, P. P.; Augustine, M. P.; (2005) Chem. Mater. 17, 2932.
67.Liu, S. M.; Sato, S.; Kimura, K. (2005) Langmuir 21, 6324.
68.Liu, S. M.; Y,; Sato, S.; Kimura, K. (2006) Chem. Mater. 18, 637.
69.Mayeri, D.; Phillips, B. L.; Augustine, M. P.; Kauzlarich, S. M. (2001) Chem. Mater. 13, 765.
70.Lee, S.; Cho, W. J.; Chin, C. S.; Han, I. H.; Choi, W. J.; Park, Y. J.; Song, J. D.; Lee, J. I.; (2004) Jpn. J. Appl. Phys. 43, L784-L7896.
71.Hua, F.; Swihart, M. T.; Ruckenstein, E. (2005) Langmuir 21, 6054.
72.Li, X.; He, Y.; Swihart, M. T. (2004) Langmuir 20, 4720.
73.Liao, Y. C.; Roberts, J. T. (2006) Nano Lett. 128, 9061.
74.Zou, J.; Baldwin, R. K.; Pettigrew, K. A.; Kauzlarich, S. M. (2004) Nano Lett. 4, 1181.
75.Jonathan Veinot, G. C. (2006) Chem. Commun. 4160.
76.Takagahara, T.; Takeda, K. (1992) Phys. Rev. B 46, 578
77.Linsebigler, A. L.; Lu, G.; Yates, J. T. (1995) Chem. Rev. 95, 735.
78.馬振基 編 (2004) 奈米材料科技原理與應用,台北:全華,2_12。
79.Delerue, C.; Allan, G.; Lannoo, M. (1993) Phys. Rev. B 48, 11024.
80.Ledoux, G.; Guillois O.; Porterat D.; Reynaud C. (2000) Phys. Rev. B 62, 15942.
81.Buuren, T. V.; Dinh, L. N.; Chase, L. L.; Siekhaus, W. J.; Terminello, L. T. (1998) Phys. Rev. Lett. 80, 3803.
82.Puzder, A.; Willamson, A. J.; Jeffery, C. G.; Galli, G. (2003) J. Am. Chem. Soc. 125, 2786.
83.Kanemitsu, Y.; Uto, H.; Masumoto, Y. (1993) Phys. Rev. B 48, 2827.
84.Kanemitsu, Y. (1994) Phys. Rev. B 49, 16845.
85.Kanemitsu, Y. (1993) Phys. Rev. B 48, 4883.
86.Tischler, M. A.; Collins, R. T.; Stathis, J. H.; Tsang, J. C. (1992) Appl. Phys. Lett. 60, 639.
87.Takeda, K.; Shiraishi, K. (1993) Solid State Commun. 85, 301.
88.盧志遠 (1979) 非晶型半導體之奧秘,科學月刊,0114。
89.Mott, N. (1975) Nature 257, 15.
90.劉恩科,朱秉升,羅晉生 (2006) 半導體物理學,台北:新文京,413-441。
91.謝嘉民,賴一凡,林永昌,枋志堯 (2005) 奈米通訊,12,28。
92.http://en.wikipedia.org/wiki/Fluorescence#Quantum_yield
93.徐國財,張立德 (2002) 奈米複合材料,北京:化學工業。
94.張揚狀 (2005) 表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應用,國立成功大學化學工程研究所博士論文。
95.陳東煌 (2003) 複合奈米粒子,化工資訊與商情,3,58。
96.葉晨聖 (2003) 金屬奈米顆粒及其應用,化工資訊與商情,5,54。
97.Susha, A. S.; Caruso, F.; Rogach, A. L.; Sukhorukov, G. B.; Kornowski, A.; Möhwald, H.; Giersig, M.; Eychmüller, A.; Weller, H. (2000) Colloid Surf. A 163, 39.
98.Danek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G. (1996) Chem. Mater. 8, 173.
99.Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. (1997) J. Am. Chem. Soc. 119, 7019.
100.Mohapatra, S.; Mishra, Y. K.; Avasthi, D. K.; Kabiraj, D.; Ghatak, J.; Varma, S. (2008) Appl. Phys. Lett. 92, 103105.
101.Kickelbick, G.; Liz-Marzán, L. M. (2004) Encyclopedia of Nanoscience and Nanotechnology. 2, 199-220.
102.Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (1997) J. Phys. Chem. B 101, 9463.
103.Danek, M.; Jensen, K. F.; Bawendi, M. G. (1996) Chem. Mater. 8, 173.
104.Hoener, C, F.; Allan, K. A.; Bard, A. J.; Campion, A.; Fox, A. M.; Mallouk. T. E.; Webber, S. E.; White, J. M. (1992) J. Phys. Chem. 96, 3812.
105.Malik, M. A.; O’Brien, P.; Revaprasadu, N. (2002) Chem. Mater. 14, 2004.
106.Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. (1997) J. Am. Chem. Soc. 119, 7019.
107.Revaprasadu, N.; Malik, M. A.; O’Brien, P. ; Wakefield, G. (1999) Chem. Commun. 1573.
108.Tian, Y.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H. (1996) J. Phys. Chem. 100, 8927.
109.Hao, E.; Sun, H.; Zhou, Z.; Liu, J.; Yang, B.; Shen, J. (1999) Chem. Mater. 11, 3096.
110.Han, M. Y.; Huang, W.; Chew, C. H.; Gan, L. M.; Zhang, X. J.; Ji, W. (1998) J. Phys. Chem. B 102, 1884.
111.Cao, Y. W.; Banin, U. (1999) Angew. Chem., Int. Ed. 38, 3692.
112.Hu, J. Q.; Bando, Y. (2004) Appl. Phys. Lett. 85, 3593.
113.韋文誠 (1993) 陶瓷材料的結構與特性,科學月刊,0283。
114.StÖber, W.; Fink, A.; Bohn, E. (1968) J. Colloid Interface Sci. 26, 62.
115.Liz-Marzán, L. M.; Giersig, M. Mulvaney, P. (1996) Langmuir 12, 4329.
116.Liz-Marzán, L. M.; Mulvaney, P. (1998) New J. Chem. 1285.
117.Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G. (2006) Nanotechnology 17, 4195.
118.Bai, J.; Xu, Y. H.; Thomas, J.; Wang, J. P. (2007) Nanotechnology 18, 065701.
119.Kwiatkowski, K. C.; Lukehart, C. M. (2002) Nanostructured materials and nanotechnology. San Diego:Academic Press, pp.57-91.
120.Li, W.; Seal, S. (2004) Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 8, pp.49-66.
121.Ohmori, M.; Matijevic, E. (1992) J. Colloid Interface Sci. 150, 594.
122.Thies-Weesie, D. M.; Philipse, A. P. (1995) Langmuir 11, 4180.
123.Philipse, A. P.; van Bruggen, M. P.; Pathmamanoharan, C. (1994) Langmuir 10, 92.
124.Correa-Duarte, M. A.; Giersig, M.; Kotov, N. A.; Liz-Marzán, L. M. (1998) Langmuir 14, 6430.
125.Liu, Q.; Xu, Z.; Finch, J. A.; Egerton, R. (1998) Chem. Mater. 10, 3936.
126.Donselaar, L. N.; Philipse, A. P. (1999) J. Colloid Interface Sci. 212, 14.
127.Aliev, F. G.; Correa-Duarte, M. A.; Mamedov, A.; Ostrander, J. W.; Giersig, M.; Liz-Marzán, L. M.; Kotov, N. A. (1999) Adv. Mater. 11, 1006.
128.Ohmori, M.; Matijevic, E. (1993) J. Colloid Interface Sci. 160, 288.
129.Liz-Marzán, L. M.; Philipse, A. P. (1995) J. Colloid Interface Sci. 176, 459.
130.Nooney, R. I.; Dhanasekaran, T.; Chen, Y.; Josephs, R.; Ostafin, A. E. (2002) Adv. Mater. 14, 529.
131.Obare, S. O.; Jana, N. R.; Murphy, C. J. (2001) P NanoLetters 1, 601.
132.Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. (1996) Langmuir 12, 4329.
133.Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R. (1999) Langmuir 15, 701.
134.Hall, S. R.; Davis, S. A.; Mann, S. (2000) Langmuir 16, 1454.
135.Liz-Marzán, L. M.; Mulvaney, P. (1998) New J. Chem. 1285.
136.Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. (1996) Chem. Commun. 731.
137.Hardikar, V. V.; Matijevic, E. (2000) J. Colloid Interface Sci. 221, 133.
138.Giersig, M.; Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. (1997) Adv. Mater. 9, 570.
139.Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y. (2002) Nanoletters 2, 427.
140.Giersig, M.; Liz-Marzán, L. M.; Ung, T.; Su, D.; Mulvaney, P. (1997) Phys. Chem. 101, 1617.
141.Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talhman, D. R.; Adair, J. H. (1999) Langmuir 15, 4328.
142.Pastoriza-Santos, I.; Liz-Marzán, L. M. (1999) Langmuir 15, 948.
143.Rogach, A. L.; Nagesha, D. K.; Ostrander, J. W.; Giersig, M.; Kotov, N. A. (2000) Chem. Mater. 12, 2676.
144.Correa-Duarte, M. A.; Giersig, M.; Liz-Marzán, L. M. (1998) Chem. Phys. Lett. 286, 497.
145.Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. (2001) J. Phys. Chem. B 105, 8861.
146.Bruchez, Jr. M.; Moronne, M.; Gin, P. ; Weiss, S. ; Alivisatos, A. P. (1998) Science 281, 2013.
147.Pastoriza-Santos, I.; Koktysch, D. ; Mamedov, A.; Kotov, N. A.; Liz-Marzán, L. M. (1999) Langmuir 16, 2731.
148.Oldfield, G.; Ung, T.; Mulvaney, P. (2000) Adv. Mater. 12, 1519.
149.賴來宏 (2007) 以電化學法鍍製多孔性SiO2材料之研究,國立成功大學材料工程研究所碩士論文。
150.洪詮雅 (1998) 氧化矽超微粒子之製備研究,國立成功大學化學工程研究所碩士論文。
151.Lau, H. W.; Tan, O. K.; Liu, Y.; Trigg, D. A.; Chen, T. P. (2006) Nanotechnology 17, 4078.
152.Fujioka, K.; Hiruoka, M.; Sato, K.; Manabe, N.; Miyasaka, R.; Hanada, S.; Hoshino, A.; Tilley, R. D.; Manome, Y.; Hirakuri, K.; Yamamoto, K. (2008) Nanotechnology 19, 415102.
153.Wang, L.; Reipa, V.; Blastic, J. (2004) Bioconjugate Chem. 15, 409.
154.Lee, H.; Lee, E.; Kim, D. K.; Jang, N. K.; Jeong, Y. Y.; Jon, S. (2006) J. Am. Chem. Soc. 128, 7383.
155.Lee, J. H.; Jun, Y. W.; Yeon, S. I.; Shin, J. S.; Cheon, J. (2006) Angew. Chem., Int. Ed. 45, 8160.
156.Salgueirino-Maceira, V.; Correa-Duarte, M. A.; Spasova, M.; Liz-Marzán, L. M.; Farle, M. (2006) Adv. Funct. Mater. 16, 509.
157.Redl, F. X.; Cho, K. S.; Murray, C. B.; O’Brien, S. (2003) Nature 423, 968.
158.Selvan, S. T.; Patra, P. K. Chung, Y. A.; Jackie, Y. Y. (2007) Angew. Chem., Int. Ed. 46, 2448.
159.Kwon, K. W.; Shim, M. (2005) J. Am. Chem. Soc. 127, 10269.
160.Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. (2005) J. Am. Chem. Soc. 127, 544.
161.Gu, H.; Zheng, R. Zhang, X. X.; Xu, B. (2009) J. Am. Chem. Soc. 126, 5664.
162.Gao, J.; Zhang, B.; Gao, Y.; Pan, Y.; Zhang, X. X.; Xu, B. (2007) J. Am. Chem. Soc. 129, 11928.
163.Gao, J.; Zhang, W.; Huang, P.; Zhang, B.; Zhang, X. X.; Xu, B. (2008) J. Am. Chem. Soc. 130, 3710.
164.丁志明,方冠榮,吳季珍,周維揚,胡裕民,翁鴻山,陳東煌,副昭銘,馮榮豐,黃榮俊,黃耀輝,張鼎張,劉全璞,蔡振章,蕭璦莉,謝達斌 編 (2005) 奈米科技-基礎、應用與實作-,台北:高立,56。
165.龔吉合 (1998) 材料科學導論,臺中:滄海。
166.Kodama, R. H. (1999) J. Magn. Magn. Mater. 200, 359.
167.Billas, I. M. L.; Châtelain, A.; de Heer, W. A. (1994) Science 265, 1682.
168.Billas, I. M. L.; Châtelain, A.; de Heer, W. A. (1997) J. Magn. Magn. Mater. 168, 64.
169.Freeman, A. J.; Fu, C. L.; Ohnishi, S.; Weinert, M. (1985) in: R. Feder (ed.), Polarized Electrons in Surface Physics, World Scientific, Singapore, pp. 3-66
170.馬振基 編 (2004) 奈米材料科技原理與應用,台北:全華,2_39。
171.Sorensen, C. M. (2001) Magnetism. In: Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York: Wiley Interscience, pp.169-222.
172.江宜蓁 (2007) 以有機金屬法合成兼具磁性與光學特性之金屬複合奈米粒子,國立成功大學化學工程研究所博士論文。
173.Cullity, B. D. (1972) Introduction to magnetic materials. California:Addison-Wesley
174.張煦,李學養 譯 (1982) 磁性物理學,臺北:聯經。
175.顏雅侖 (2002) 錳鋅鐵氧化物磁性流體之製備及分散研究,國立成功大學化學工程研究所碩士論文。
176.黃忠良 編 (1989) 磁性流體理論應用,臺南:復漢。
177.Calleja, W.; Aceves, M.; Falcony, C. (1998) Electron. Lett. 34, 1294.
178.DiMaria D. J.; Dong D. W.; Pesavento F. L. (1984) J. Appl. Phys 55, 3000.
179.Aceves, M.; Carrillo, J.; Carranza, J.; Calleja, W.; Falcony, C.; Rosales, P. (2000) Thin Solid Films 373, 134.
180.Shieh, J. M.; Lai, Y. F.; Ni, W. X. ; Kuo, H. C. ; Fang, C. Y. ; Huang, J. Y.; Pan, C. L. (2007) Appl. Phys. Lett. 90, 051105.
181.楊賜麟 譯 (2005) 半導體物理與元件,臺中:滄海。
182.劉恩科,朱秉升,羅晉生 (2006) 半導體物理學,台北:新文京,27-30。
183.Yu, Z.; Aceves, M.; Cabrera, M. (2006) Nanotechnology 17, 3962.
184.Yu, Z.; Aceves, M.; Carrillo, J.; Flores, F. (2003) Nanotechnology 14, 959.
185.Morales-Sánchez, A.; Barreto, J.; Domínguez, C.; Aceves, M.; Yu, Z.; Luna-López, J. A. (2008) Nanotechnology 19, 165401.
186.Lu, Y. ; Yin, Y. ; Li, Z. Y. ; Xia, Y. (2002) Nano Letters 2, 785
187.Lu, Y.; Yin, Y.; Mayers, T.; Xia, Y. (2002) Nano Letters 2,183.
188.Chao, Y.; Sˇ iller, L.; Krishnamurthy, S., Coxon, P. R.; Bangert, U.; Gass, M.; Kjeldgarrd, L.; Patole, S. N.; Lie, L. H.; O’Farell, N.; Alsop, T. A.; Houlton, A.; Horrocks, B. R. (2007) Nat. Nanotechnol. 2, 486
189.Yang, C. S.; Bley, R. A.; Kauzlarich, S. M., Lee, H. W. H.; Delgado, G. R. (1999) J. Am. Chem. Soc. 121, 5191.
190.Littau, K. A.; Szajowski, P. J.; Muller, A. J.; Kortan, A. R.; Brus, L. E. (1993) J. Phys. Chem. 97, 1224.
191.Beckmann, K. H. (1965) Surf. Sci. 3, 314.
192.Ruckenstein, E.; Li, Z. F. (2004) Nano Lett. 4, 1463
193.Luppi, M.; Ossicini, S. (2005) Phys. Rev. B 71, 035340.
194.Puzder, A.; Williamson, A. J.; Grossman, J. C.; Galli, G. (2002) Phys. Rev. Lett. 88, 097401.
195.Jubergs, D.; Rogojina, E.; Mangolini, L.; Kortshagen, U. (2006) Appl. Phys. Lett. 88, 233116.
196.Iacona, F.; Franzò, G.; Spinella, C. (2000) J. Appl. Phys. 87, 1295.
197.Kanemitsu, Y. (1993) Phys. Rev. B 48, 4883.
198.Han, P. G.; Ma, Z. Y.; Xia, Z. Y.; Chen, D. Y.; Wei, D. Y.; Qian, B.; Li, W.; Xu, J.; Huang, X. F.; Chen, K. J.; Feng, D. (2007) Nanotechnology 18, 255703
199.Wen, X.; Dao, L. V.; Hannaford, P. (2007) J. Appl. Phys. D 40, 3573.
200.Khriachtchev, L.; Räsänen, M.; Novikov, S.; Pavesi, L. (2004) Appl. Phys. Lett. 85, 1511.
201.http://crystdb.nims.go.jp/
202.Carriere, B.; Brion, D.; Escard, J.; Deville, J. P. (1977) J. Electron. Spectrosc. Relat. Phenom. 10. 85.
203.Ciampi, S.; Dicastro, V. (1995) Surface Science 331. 294
204.Debecdelievre, A. M.; Duret-Thual, C.; Vouagner, D.; Devaux, R. (1994) Corrosion Science 36, 171.
205.Jovner, D. J. ; Hercules, D. M. ; Johnson, O. (1980) J. Am. Chem. Soc. 102, 1910.
206.Gullis, A. G.; Canham, L. T.; Calcott, P. D. J. (1997) J. Appl. Phys. 82, 909.
207.Barr, T. L. (1978) J. Phys. Chem. 82, 1801.
208.Fauchet, P. M. Chapter 6 in Semiconductors and Semimetals (Academic, New York, 1998), Vol. 49. pp. 210-224.
209.Yu, Z.; Aceves, M.; Antonio Ipiña Cabrera, M. (2006) Nanotechnology 17, 3962.
210.Puzder, A.; Williamson, A. J.; Grossman, J. C.; Galli, G. (2002) Phys. Rev. Lett. 88, 097401.
211.Choi, S. H.; Elliman, R. G. (1999) Appl. Phys. Lett. 74, 3987.
212.Neugubauer, C. A.; Webb, M. B. (1962) J. Appl. Phys. 33, 74.
213.Antonova, I. V.; Gulyaev, M. (2008) Phys. Rev. B 77, 125318.
214.Hu, G. Y.; O’Connell, R. F.; He, Y. L.; Yu, M. B. (1995) J. Appl. Phys. 78, 3945.
215.Inoue, Y.; Tanaka, A.; Fujii, M.; Hayashi, S.; Yamamoto, K. (1999) J. Appl. Phys. 86. 3199.
216.Puzder, A.; Williamson, A. J.; Grossman, J. C.; Galli, G. (2002) Phys. Rev. Lett. 88, 097401.
217.Choi, S. H.; Elliman, R. G. (1999) Appl. Phys. Lett. 74, 3987.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top