跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭柏佑
研究生(外文):Po-Yu Kuo
論文名稱:磷化鐵奈米柱與奈米花的合成及研究
論文名稱(外文):Sythesis and determination of Fe2P nanorods and nanoflowers
指導教授:羅介聰
指導教授(外文):Chieh-Tsung Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:磷化鐵奈米柱
外文關鍵詞:nanorodsiron phosphide
相關次數:
  • 被引用被引用:3
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討利用有機鐵前驅物的多重注射(multiple injections)機
制,經由熱分解反應法(thermal decomposition)改變磷化鐵奈米柱的長度和寬度之比值(aspect ratio),與奈米花(nanoflowers)的尺寸分佈。分次注射iron pentacarboxyl (Fe(CO)5)與trioctylphosphine (TOP)的混合物於含有trioctylphosphine (TOP) 、didodecyldimethylammonium bromide (DDAB)與Fe3O4 球形晶種(平均粒徑5.5 nm)等混合溶液(300oC)的反應容器,在氬氣環境下,以300oC 進行反應。
藉由掃描式電子顯微鏡(scanning electron microscope, SEM)可確
認所合成粒子為一維奈米柱,再經由穿透式電子顯微鏡(transmissionelectron microscope, TEM)分析,在僅改變注射次數,且總反應物濃度、總反應時間及其他參數固定下,奈米柱的長寬比可以控制分佈在4~30 間,且隨著注射次數增加,長寬比也愈大。奈米花也因注射次數之改變,而呈現不同的尺寸分佈。此外,奈米柱形成規則的自組裝(self-assembled)排列現象,推測可能是因界面活性劑之表面張力所致。再者,亦綜合討論反應物濃度、反應時間、反應溫度,對合成磷化鐵奈米柱之影響。粒子粉末經由X 光繞射儀(x-ray diffractometer spectrometer, XRD)和超導量子干涉磁量儀(superconducting quantum interference device, SQUID),可分析其結晶性以及磁性質與外觀型態的相關性。於本文中亦推測磷化鐵奈米柱之合理的成長機制,以及磁性體分辨,與阻絕溫度(blocking temperature, TB)隨粒子尺寸變化趨勢
的說明。
本研究成功地利用多重注射與晶種促進長成法(seed-mediated
growth),以Fe3O4 球形晶種合成出不同外形與尺寸的Fe2P 奈米粒子,相較於以往的合成程序,僅能單一控制粒子外形變化或是尺寸分佈,本研究方法具備高度的選擇性且更有效率,對於磁性質的探討與應用,更具潛力。
Iron phosphide nanorods and nanoflowers with size distributions were prepared by the multiple injections of organometallic precursor into hot surfactants via the thermal decomposition. The injections of iron
pentacarboxyl (Fe(CO)5) dissolved in trioctylphosphine (TOP) into the mixture of trioctylphosphine (TOP), didodecyldimethylammonium bromide (DDAB), and spherical Fe3O4 seeds (~5.5nm) at 300oC, under argon atmosphere.
Nanorods, analyzed through scanning electron microscope (SEM) and transmission electron microscope (TEM), with different aspect ratios from 4 to 30 can be prepared by using multiple injections under constant total reactant concentration and reaction time, and the increasing number
of injections with the increase of aspect ratios. The size of nanoflowers also increases with the increasing number of injections. Besides,nanorods assembled at TEM grids caused by the surface tension of surfactants probably. Furthermore, the effect of reactant concentration,
reaction time and temperature on the synthesis of nanorods was discussed comprehensively. X-ray diffractometer spectrometer (XRD) and superconducting quantum interference device (SQUID) were used to characterize the crystallization and magnetization of the iron phosphide
nanorods according to the effect of morphology of the rods. Finally, we presumed a reasonable growth mechanism and determined the magnetism of nanorods, and identified the blocking temperature (TB) of the rods as a function of the length of the rods.
Fe2P nanoparticles were prepared from Fe3O4 seeds via multiple injections and seed-mediated growth successfully. Compared with the past syntheses, it’s more alternative and effective on our study to control the shape and size distributions of particles in one synthetic process, and
more potential on researches and applications of magnetic properties.
中文摘要................................................. I
Abstract............................................... III
總目錄....................................................V
表目錄................................................. VII
圖目錄.................................................VIII
第一章 緒論...............................................1
1.1 前言..................................................1
1.2 研究動機..............................................3
第二章 文獻回顧...........................................4
2.1 奈米基礎理論........................................................4
2.1.1 久保理論(Kubo Theory)...............................4
2.1.2 奈米效應........................................................5
2.1.3 奈米材料的種類及應用................................7
2.1.4 奈米材料的製備......................................8
2.2 磁學理論.......................................................11
2.2.1 磁性體分類.........................................12
2.2.2 磁性奈米微粒之磁性質探討...........................17
2.3 磁性奈米粒子的合成與形狀控制.........................25
2.3.1 磁性奈米粒子的製備.................................26
2.3.2 一維奈米粒子的形狀控制.............................34
2.3.3 三維磁性奈米粒子簡介...............................38
第三章 實驗部分..........................................40
3.1 試藥.................................................40
3.2 儀器.................................................40
3.3 實驗流程.......................................................42
3.3.1 Fe3O4 球形晶種的合成...............................43
3.3.2 Fe2P 奈米柱的合成..................................44
3.3.3 儀器分析...........................................45
第四章 結果與討論........................................46
4.1 Fe2P 奈米柱..........................................46
4.1.1 SEM 與XRD 分析.....................................47
4.1.2 TEM 分析...........................................50
4.1.3 成長機制與磁性質探討...............................70
4.2 奈米花...............................................83
第五章 結論..............................................90
參考文獻.................................................92
[1]R. Kubo, Journal of the Physical Society of Japan, 1962, 17, 975-986.
[2]ITIS產業資訊服務網。
[3]Sang-Jae Park, Seungsoo Kim, Suyoun Lee, Zheong G. Khim, Kookrin Char, Taeghwan Hyeon, J. Am. Chem. Soc. 2000, 122,8581.
[4]Chikazumi, S. 著;張喣、李學養合譯。磁性物理學,聯經出版社,1981.
[5]Dale L. Huber, small 2005, 1, No.5, 482-501.
[6]陳奕瀚,以離子型高分子製備核殼型與中空型奈米磁性複合微粒之研究,南台科技大學化材系碩士論文,民國95 年。
[7]物理雙月刊(廿六卷四期)2004 年8 月。
[8]S. Neveu, A. Bee, M. Robineau, D Talbot, J. Colloid Interface Sci.2002, 255, 293.
[9]F. Grasset, N. Labhsetwar, D. Li, D. C. Park, N. Saito, H. Haneda, O.Cador, T. Roisenel, S. Mornet, E. Duguet, J. Portier, J. Etourneau,Langmuir 2002, 18, 8209.
[10]S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124, 8204.
[11]S. J. Park, S. Kim, S. Lee, Z. Khim, K. Char, T. Hyeon, J. Am. Chem.Soc. 2000, 122, 8581.
[12]V. F. Puntes, K. M. Krishan, A. P. Alivisatos, Science 2001, 291,2115.
[13]Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. J. Zhang, J.Magn. Magn. Mater. 1999, 194, 1.93
[14]J. Park, K. An. Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park,N. M. Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891.
[15]S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000,287, 1989.
[16]E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M.Haase, H. Weller, J. Am. Chem. Soc. 2002, 124, 11480.
[17]S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang,G. Li, J. Am. Chem. Soc. 2004, 126, 273.
[18]F. X. Redl, C. T. Black, G. C. Papaefthymiou, R. L. Sandstrom, M.Yin, H. Zeng, C. B. Murray, S. P. O’Brien, J. Am. Chem. Soc. 2004,126, 14583.
[19]J. Rockenberger, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc.1999, 121, 11595.
[20]D. Farrell, S. A. Majetich, J. P. Wilcoxon, J. Phys. Chem. B. 2003,107, 11022.
[21]B. K. Paul, S. P. Moulik, Curr. Sci. 2001, 80, 990.
[22]X. Wang, J. Zhuang, Q. Peng, Y Li, Nature 2005, 437, 121.
[23]H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem.2005, 117, 2841;Angew. Chem. Int. Ed. 2005, 44, 2782.
[24]An-Hui Lu, E. L. Salabas, Ferdi Schüth, Angew. Chem. Int. Ed. 2007,46, 1222-1244.
[25]Ho Jin Lee, Kyoungja Woo, J. Magn. Magn. Mater. 272-276 (2004)e1155-e1156.
[26]Jongnam Park, Bonil Koo, Ki Youl Yoon, Yosun Hwang, MisunKang, Je-Geun Park, Taeghwan Hyeon, J. Am. Chem. SOC. 2005,127,8433.
[27]Sheng Peng, Chao Wang, Jin Xie, Shouheng Sun, J. Am. Chem.SOC.2006, 128, 10676-10677.
[28]Anna T. Kelly, Irene Rusakova, Teyeb Ould-Ely, Cristina Hofmann,Andreas Lüttge, Kenton, H. Whitmire, A. P. Nano. Lett. 2007, 7, 2920-2925.
[29]Min Chen, Timothy Pica, Ying-Bing Jiang, Peng Li, Kazuaki Yano, J.Ping. Liu, Abhaya K. Datye, Hongyou Fan, J. AM. CHEM. SOC.2007,129, 6348-6349.
[30]Xianluo Hu, Jimmy C. Yu, Adv. Funct. Mater. 2008, 18, 880-887.
[31]S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M.Setogawa, Y. Kurihara, J. Magn. Magn. Mater. 1987, 65, 245.
[32]A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnermann, B.Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth, Angew. Chem.2004,116, 4403.
[33]S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett,Angew. Chem. 2004, 116, 5763.
[34]A. K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995.
[35]S. Mornet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A.Demourgues, J. Portier, E. Pollert, E. Duguet, Prog Solid State Chem.2006, 34, 237.
[36]Z. Li, L. Wei, M. Y. Gao, H. Lei, Adv. Mater. 2005, 17, 1001.
[37]T. Hyeon, Chem. Commun. 2003, 927.
[38]D. W. Elliott, W.-X. Zhang, Environ. Sci. Technol. 2001, 35, 4922.
[39]M. Takafuji, S. Ide, H. Ihara, Z. Xu, Chem. Mater. 2004, 16, 1977.
[40]Angewandte Chemie International Editon, issue 34, July, 2007.
[41]H. Bönnemann, W. Brijoux, R. Brinkmann, N. Matoussevitch,N.Waldoefner, N. Palina, H. Modrow, Inorg. Chim. Acta. 2003, 350, 617.
[42]C. R. Vestal, Z. J. Zhang, J. Am. Chem. Soc. 2002, 124, 14312.
[43]Young-wook Jun, Jin-sil Choi, jinwoo Cheon, Angew. Chem. Int. Ed.2006, 45, 3414-3439.
[44]Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko, D. E.Discher, Nat. Nanotechnol. 2007, 2, 249.
[45]Leslie-Pelecky, D. L.;Rieke, R. D. Chem. Mater. 1996, 8, 1770-1783.
[46]Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers,Byron Gates, Yadong Yin, Franklin Kim, Haoquan Yan, Adv. Mater. 2003,15, No. 5, March 4.
[47]R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
[48]X. F. Duan, C. M. Leiber, Adv. Mater. 2000, 12, 298. X. F. Duan, C.M. Leiber, J. Am. Chem. Soc. 2000, 122, 188. A. M. Morales, C. M.Leiber, Science 1998, 79,208.
[49]G. F. Taylor, Phys. Rev. 1924, 23, 655.
[50]R. M. Penner, M. J. Heben, T. L. Longin, N. S. Lewis, Science 1990,250, 1118.
[51]C. Pacholski, A. Kornowski, H.Weller, Angew. Chem. 2002, 114,1234;Angew. Chem. Int. Ed. 2002, 41, 1188.
[52]J. Yu, J. Joo, H. M. Park, S.-I. Baik, Y. W. Kim, S. C. Kim, T. Hyeon,J. Am. Chem. Soc. 2005, 127, 5662.
[53]K.-S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, J. Am. Chem.Soc. 2005, 127, 7140.
[54]K. Ahrenstorf, O. Albrecht, H. Heller, A. Kornowski, D. Görlitz, H.Weller, small, 2007, 3, No.2, 271-274.
[55]Y. Zhang, J. Zhu, X. Song, X. Zhong, J. Phys. Chem. C, 2008, 112,5322-5327.
[56]Breen, T. L.;Tien. J.;Oliver, S. R. J;Hadzic, T.;Whitesides, G. M.Science, 1999, 284, 948.
[57]Cao, A. M.;Hu, J. S.;Lianng, H. P.;Wan, L. J., Angew. Chem. Int. Ed.2005, 44, 4391.
[58]G. Sun, X. Zhang, M. Cao, B. Wei, C. Hu, J. Phys. Chem. C, 2009,113(17), 6948-6954.
[59]Y. Zhang, Y. Chen, T. Wang, J. Zhou, Y. Zhao, Microporous and Mesoporous Materials, 2008, 114, 257-261.
[60]Feng Luo, Hui-Lan Su, Wei Song, Zhe-Ming Wang, Zheng-Guang Yan, Chun-Hua Yan, J. Mater. Chem., 2004, 14, 111-115.
[61]M. Chidambaram, S. U. Sonavane, J. de la Zerda, Y. Sasson,Tetrahedron., 2007, 63, 7696-7701.
[62]K. Y. Koo, S. B. Park, J. Am. Ceram. Soc., 2007, 90(12), 3767-3772.
[63]Suzana Šegota, Stanka Heimer, Ðurdica Tezak, Colloids and Surfaces A, 2006, 274, 91-99.
[64]C. Qian, F. Kim, L. Ma, F. Tsui, P. Yang, J. Liu. J. Am. Chem. Soc.2004, 126, 1195-1198.
[65]J. Park, B. Koo, Y. Hwang, C. Bae, K. An, J. G. Park, H. M. Park, T.Hyeon. Angew. Chem. Int. Ed. 2004, 43, 2282-2285.
[66]Jongnam Park, Jin Joo, Soon Gu Kwon, Youngjin Jang, Taeghwan Hyeon, Angew. Chem. Int. Ed. 2007, 46, 4630-4660.
[67]Min Chen, Timothy Pica, Ying-Bing Jiang, Peng Li, Kazuaki Yano, J.Ping. Liu, Abhaya K. Datye, Hongyou Fan, J. AM. CHEM. SOC.2007, 29,6348-6349.
[68]F. Kim, S. Kwan, J. Akana, P. Yang, J. Am. Chem. Soc. 2001, 123,4360-4361.
[69]Meyer, A. J. P;Cadeville, M. C., J. Phys. Soc. Jpn. 1962, 17, 223-225.
[70]Fujii, H.;Uwatoko, Y.;Motoya, K.;Ito, Y.;Okamoto, T., J. Phys. Soc.Jpn. 1988, 57, 2143-2153.
[71]T. Manago, A.Sinsarp, K. Kawaguchi, H. Akinaga, Journal of Crystal Growth, 2007, 301-302, 647-650.
[72]F. Ono, H. Inoue, S. Wei, A. Takahashi, S. Endo, N. Fujii, T.Kanomata, R. Zach, A. Iwase, Journal of Alloys and Compounds, 2001,317-318, 254-257.
[73]H. Inoue, Y. Motoshimizu, R. Zach, T. Kanomata, S. Endo, F. Ono,Journal of Alloys and Compounds, 2007, 442, 162-164.
[74]N. Kervan, S. Kervan, H. Sözeri, A. Gencer, Materials Chemistry and Physics, 2009, 116, 586-588.
[75]E. C. Stoner, E. P. Wohlfarth, Philos. Trans. Roy. Soc. London, Series A240(1948)599.
[76]M. C. Buján-Núñez, N. Fontaiña-Troitiño, C. Vázquez, M. A.López-Quintela, Y. Piñeiro, D. Serantes, D. Baldomir, J. Rivas, Journal of Non-Crystalline Solids, 2008, 354, 5222-5223.
[77]K. A. Gregg, S. C. Perera, G. Lawes, S. Shinozaki, S. L. Brock, Chem.Mater. 2006, 18, 879-886.
[78]J. P. Chen, C. M Sorensen, K. J. Klabunde, G. C. Hadjipanayis, J.Appl. Phys. 76(10), 15 November 1994.
[79]A. C. Johnston-Peck, J. Wang, J. B. Tracy, American Chemical Society, 2009, 3, 5, 1077-1084.
[80]P. Poddar, S. Srinath, J. Gass, B. L. V. Prasad, H. Srikanth, J. Phys.Chem. C, 2007, 111, 14060-14066.
[81]O. Masala, D. Hoffman, N. Sundaram, K. Page, T. Proffen, G. Lawes,R. Seshadri, Solid State Sciences, 2006, 8, 1015-1022.
[82]M. S. Bakshi. J. Phys. Chem. C 2009, 113, 10921-10928.
[83]X. M. Lin, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis,Langmuir, 1998, 14, 7140-7146.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top