跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝誌鴻
研究生(外文):Chih-Hung Hsieh
論文名稱:微藻培養與微藻油脂生產之研究
論文名稱(外文):Studies on Cultivation of Microalgae and Microalgal Lipid Production
指導教授:吳文騰
指導教授(外文):Wen-Teng Wu
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:158
中文關鍵詞:微藻生物質量油脂Luedeking-Piret方程式邏輯方程式光生化反應器
外文關鍵詞:Logistic modelLuedeking-Piret equationChlorella sp.BiomassLipidPhotobioreactor
相關次數:
  • 被引用被引用:31
  • 點閱點閱:1723
  • 評分評分:
  • 下載下載:616
  • 收藏至我的研究室書目清單書目收藏:2
微藻生長快速且能經由光合作用固定大氣中的二氧化碳,將二氧化碳轉化生成生物質,故培養微藻來吸收太陽能並進行二氧化碳的固定,同時作為生產生質能源的生產者,是相當具有發展潛力。因此,本研究為獲得高微藻生物質量與油脂量產率,設計新型光生化反應器以提供小球藻更佳的培養光環境,並探討最佳培養條件以及培養方式,再以透過培養策略操作的最佳化,建立量產小球藻的培養系統與方法。
本研究中設計三款透明矩型槽放置於開放式微藻培養池中(TRC1,TRC2,TRC3),可有效增加微藻培養系統的光照面積,並將外部光源重新分散光強度再導入微藻培養系統中等特性,改變培養系統內的光分佈情況。所設計的光生化反應器TRC3中,可提供最高的照光面積對體積比值與最佳的光環境條件。實驗結果顯示,在13天批次培養下,TRC3可獲得最高的微藻細胞濃度與微藻產率,分別為3.745 g L-1與0.340 g L-1 d-1,並且TRC3中的微藻光合作用效率高於開放式培養池的光合作用效率56%。因此,所設計的透明矩型槽,為一簡單的裝置,可有效的方式增加微藻培養系統的光使用效率,並提高微藻的產能。
在最佳培養條件探討方面,於光照強度為600 μ mol photon m-2 s-1、培養溫度為30℃、鹽度為33.3 g L-1、二氧化碳濃度為2.0%(v/v)以及初始尿素濃度為0.100 g L-1培養條件下,小球藻可生產最高的油脂量為0.713 g L-1。此外,對於小球藻培養策略方面,實驗結果顯示,利用重覆批次培養方式,並以25%置換比例(補充0.025 g L-1尿素)培養小球藻,可獲得高油脂產率為0.139 g d-1 L-1,與批次培養方式相比其油脂產率增加26.4%。這實驗結果證實重覆批次培養策略,可有效地增加小球藻油脂產量。
為有效提高小球藻生物質量產率與油脂產率,研究中建立邏輯生長模型與Luedeking-Piret油脂生成模型,以精確描述小球藻的生長與油脂生成量。再經由最佳化程序,求得獲得最高生物質量之重覆批次培養操作條件:前批次培養時間為1.5天,置換比例31%與置換培養時間0.5天,預測可達到最高藻體產率為0.499 g L-1 d-1。經由實驗培養結果,可獲得的生物質量產率為0.481 g L-1 d-1,與預測結果相對誤差為4.0%。然而,求得獲得最高油脂量之重覆批次培養操作條件:前批次培養時間為2天,置換比例27%與置換培養時間0.5天下,預測可達到最高油脂生成量產率為0.144 g L-1 d-1。從實驗結果可知,本研究中透過光生化反應器的設計,培養條件與培養策略操作的最佳化,能有效提高製程上小球藻生長速率與油脂產能,並提升培養微藻生產生質油脂的經濟效益。
The bio-fuel production from photosynthetic microorganisms is considered as a process to produce renewable energy for global warming mitigation. For mass production of bio-fuel, the economic feasibility of microalgal culture greatly depends on the productivity of biomass and lipids. In this study, an open tank photobioreactor containing transparent rectangular chambers (TRCs) was developed to improve the photosynthetic efficiency of microalgal cultivation. The average irradiance, Iav, was calculated by Lambert-Beer’s law, and was used to determine the light conditions in the cultivation system. The photobioreactor provided large areas of illumination that improved the effective utilization of light energy for microalgae growth and created a good artificial environment for a high rate of cell growth, even at low Iav. The biomass concentration of Chlorella sp. reached 3.745 g L-1 on the 13th day, with biomass productivity of 0.340 g L-1d-1. The total biomass obtained was 56% more than that of similar culture systems without TRCs. Different cultivation modes can affect the growth rate and biochemical composition of microalgae. In fed-batch cultivation, the highest lipid content was obtained by feeding 0.025 g L-1 of urea during the stationary phase. However, a repeated batch culture was carried out by harvesting the culture and renewing urea at 0.025 g L-1 each time when the cultivation achieved the early stationary phase. The maximum lipid productivity of 0.139 g d-1 L-1 in the repeated batch culture was highest in comparison with those in the batch and fed-batch cultivations. For maximizing the biomass and lipid production, the operating conditions of the culture system are determined by using Logistic model and Luedeking-Piret equation - parametric equations describing the growth of microalgae and lipid production, respectively. The objective of the optimal operation for the repeated batch culture is to determine the highest biomass yield. The optimal operating conditions of the preliminary batch culture time, cycle time, and renewal rate are 1.5 days, 0.5 days and 31%, respectively. And the highest biomass productivity of Chlorella sp. was 0.481 g L-1 d-1. The predicted results are in good agreement with the experimental ones in the cultivation as demonstrated having a relative error of 4.0%. The optimal operating conditions of the preliminary batch culture time, cycle time, and renewal rate are 2.0 days, 0.5 days and 27%, respectively. And the highest lipid productivity of Chlorella sp. was 0.144 g L-1 d-1. Consequently, mass production of biomass and lipid from microalgae for bio-fuel production can be successfully accomplished by the photobioreactor design and using an optimal operation of repeated batch culture.
目錄
摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 XI
符號 XV
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 本文綱要 5
第二章 文獻回顧 7
2-1 藻類簡介 7
2-2微藻生理介紹 9
2-2-1 光合作用 9
2-2-2 微藻產油代謝過程 11
2-3 微藻培養系統 15
2-4 微藻培養重要變數 19
2-4-1 光源 19
2-4-2 二氧化碳濃度 23
2-4-3 溫度 23
2-4-4 鹽度 24
2-5 微藻培養方式 25
2-6 微藻生長動力學模型 27
第三章 實驗材料與方法 28
3-1 藻種與藻種保存 28
3-2 培養基配方 29
3-3 實驗儀器與設備 31
3-4 微藻培養系統 32
3-4-1 新型光生化反應器 32
3-4-2微藻培養系統 34
3-5 實驗方法 35
3-5-1 種培養 35
3-5-2 前培養 35
3-5-3 主培養 35
3-5-4 實驗流程 36
3-6 分析方法 37
3-6-1 微藻濃度分析 37
3-6-1-1 微藻細胞數分析 37
3-6-1-2 微藻乾藻重分析 37
3-6-1-3 微藻濃度分析 37
3-6-2 尿素濃度測定 40
3-6-3 總油脂與脂肪酸分析方法 42
3-7 光強度衰退參數估算與光生化反應器光分佈計算 44
3-7-1光強度衰退模型建立 44
3-7-2透明矩形槽(TRCs)分散光強度之估算 45
3-7-3新型光生化反應器平均光強度之估算 46
3-8 微藻生長與油脂生成動力學模型 48
3-9 重覆批次培養之最佳化 50
第四章 新型光生化反應器設計 52
4-1 前言 52
4-2 實驗結果與討論 53
4-2-1 新型光生化反應器中光強度分佈計算 53
4-2-1-1光強度衰退參數估算 53
4-2-1-2透明矩形槽(TRCs)分散光強度之估算 55
4-2-2 新型光生化反應器設計 57
4-2-3 新型光生化反應器用於小球藻培養 61
4-2-3-1新型光生化反應器與開放式培養池之比較 61
4-2-3-2 不同透明矩形槽效能之比較 66
4-2-3-3 新型光生化反應器光合作用效率之比較 70
4-3 結論 71
第五章 小球藻最佳培養條件與培養策略之探討 72
5-1 前言 72
5-2 實驗結果與討論 73
5-2-1 光強度對小球藻生長與油脂累積之影響 73
5-2-2 培養溫度對小球藻生長與油脂累積之影響 77
5-2-3 培養鹽度對小球藻生長與油脂累積之影響 80
5-2-4 二氧化碳濃度對小球藻生長與油脂累積之影響 84
5-2-5 氮源濃度對小球藻生長與油脂累積之影響 87
5-2-6 氮源饋料培養對小球藻生長與油脂累積之影響 91
5-2-7 重覆批次培養對小球藻生長與油脂累積之影響 97
5-3 結論 100
第六章 小球藻生長動力學與重覆批次培養之最佳化 102
6-1 前言 102
6-2 實驗結果與討論 102
6-2-1 重覆批次培養 102
6-2-2 小球藻生長與油脂生成動力學模型之參數估算 108
6-2-3 小球藻生長動力學模型與油脂生成模型之驗證 113
6-2-4 小球藻生物質量最佳化培養操作之探討 118
6-2-5 小球藻產油量最佳化培養操作之探討 124
6-3 結論 127
第七章 總結與未來展望 128
7-1 總結 128
7-2 未來展望 131
參考文獻 132
個人簡歷 140

表目錄
表1-1 微藻油脂含量之比較 6
表2-1 微藻產量與應用 8
表3-1 Walne’s medium 營養源培養液 30
表3-2 Walne’s medium 微量金屬元素培養液 30
表3-3 Walne’s medium 維生素培養液 30
表4-1 不同光生化反應器之比較 65
表5-1 不同光照強度下,小球藻生長與產油量之比較 76
表5-2 不同培養溫度下,小球藻生長與產油量之比較 79
表5-3 不同培養海水鹽度下,小球藻生長與產油量之比較 83
表5-4 不同濃度二氧化碳培養下,小球藻生長與產油量之比較 86
表5-5 不同濃度尿素濃度培養下,小球藻生長與產油量之比較 90
表5-6 小球藻生物質量與產油量於不同饋料策略培養之比較 96
表6-1 不同重覆批次培養操作條件下,小球藻生長與產油量之比較 107
表6-2 不同尿素濃度培養條件下,小球藻生長模型與油脂生成模型之參數值 112
表6-3 小球藻重覆批次培養最佳操作條件與模型計算結果 120
表6-4 小球藻重覆批次培養最佳操作條件與模型計算結果 122

圖目錄
圖2-1 光合作用之光反應與暗反應示意圖 9
圖2-2 光合作用之光反應電子傳遞途徑示意圖 10
圖2-3 脂肪酸合成代謝路徑圖 13
圖2-4 三酸甘油脂合成代謝路徑圖 14
圖2-5 開放式藻類培養系統示意圖 16
圖2-6 密閉式藻類培養系統示意圖 18
圖2-7 光合作用速率與光照強度關係圖 20
圖3-1 小球藻 (Chlorella sp.) 28
圖3-2 新型光生化反應器 33
圖3-3光生化反應器 34
圖3-4 實驗流程圖 36
圖3-5 於培養氮源充足與耗盡下,微藻細胞數與乾藻重趨勢圖 38
圖3-6 小球藻藻體濃度檢量線 39
圖3-7 尿素濃度檢量線 41
圖3-8 透明矩形槽(TRC)設計圖 45
圖3-9 最佳化程序流程圖 51
圖4-1 不同微藻濃度下,光強度衰退與光徑關係圖 54
圖4-2 透明矩形槽不同邊長對周長比(L/T)下,分散光強度(Id0)與光強度(Ia)關係圖 56
圖4-3 開放式培養池與新型光生化反應器光強度分佈比較圖 58
圖4-4 各光生化反應器在不同微藻濃度下,模擬的平均光強度變化圖 60
圖4-5 新型光生化反應器與開放式培養池批次培養微藻生長圖 63
圖4-6新型光生化反應器與開放式培養池微藻產率與平均光強度變化圖 64
圖4-7 新型光生化反應器之生物質量趨勢圖 68
圖4-8 各光生化反應器之生質產量與平均光強度變化圖 69
圖5-1 在不同光強度下,小球藻的生長圖 75
圖5-2 不同培養溫度下,小球藻的生長圖 78
圖5-3 不同培養海水鹽度下,小球藻的生長圖 82
圖5-4 不同濃度二氧化碳培養下,小球藻的生長圖 85
圖5-5不同尿素濃度培養下,小球藻的生長圖 89
圖5-6於對數生長前期饋料培養下,小球藻生長與油脂累積圖 93
圖5-7不同尿素濃度於對數生長後期饋料培養下,小球藻生長與油脂累積圖 94
圖5-8不同尿素濃度於停滯期饋料培養下,小球藻生長與油脂累積圖 95
圖5-9 尿素限制策略重覆批次培養下,小球藻生長與油脂累積圖 99
圖6-1 重覆批次培養下,小球藻生長圖 105
圖6-2 重覆批次培養下,小球藻之油脂生成圖 106
圖6-3不同尿素濃度培養下,小球藻的生長圖 110
圖6-4不同尿素濃度培養下,小球藻油脂生成圖 111
圖6-5 重覆批次培養下,小球藻生長圖 114
圖6-6 重覆批次培養下,小球藻之油脂生成圖 115
圖6-7 小球藻生物質量之實驗數據與模型預測驗證圖 116
圖6-8 小球藻油脂產量之實驗數據與模型預測驗證圖 117
圖6-9 重覆批次最佳培養條件下,小球藻的生長圖 121
圖6-10 重覆批次最佳培養條件下,小球藻的生長圖 123
圖6-11 重覆批次最佳培養條件下,小球藻的生長圖 125
圖6-12 重覆批次最佳培養條件下,油脂生成圖 126
Apt, K. E. and Behrens, P. W., Commercial developments in microalgal biotechnology, Journal of Phycology, 35, 215-226 (1999).
Borowitzka, M. A., Commercial production of microalgae: ponds, tanks, tubes and fermenters, Journal of Biotechnology, 70, 313-321 (1999).
Butler, W.R., Calaman, J.J., and Beam, S.W., Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle, Jounral of Animal Science, 74, 858-865 (1996).
Carlozzi, P., Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by Cyanobacteria (Arthrospira platensis), Biotechnology and Bioengineering, 81, 305-315 (2003).
Chisti, Y., Biodiesel from microalgae, Biotechnology Advances, 25, 294-306 (2007).
Connemann, J. and Fischer, J., Biodiesel quality Y2K and market experiences withFAME, CEN/TC 19 Automotive Fuels Millennium Symposion, The Netherlands: Amsterdam, 25-26 (1999).
Eriksen, N. T., The technology of microalgal culturing, Biotechnology Letters, 30, 1525-1536 (2008).
Fabregas, J., Patino, M., Moralea, E.D., Cordero B., and Otero, A., Optimal renewal rate and nutrient concentration for the production of the marine microalga Phaeodactylum tricornutum in semicontinuous cultures, Applied and Environmental Microbiology, 62, 266-268 (1996).
Fabregas, J., Garcia, D., Morales, E., Dominguez, A., and Otero, A., Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity, Journal of Fermentation and Bioengineering, 86, 477-481 (1998).
Gouveia, L. and Oliveira A. C., Microalage as a raw material for biofuels production, Journal of Industrial Microbiology and Biotechnology, 36, 269-274 (2009).
Grima, E.M., Sevilla, J.M.F., Perez, J.A.S., and Camacho, F.G., A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances, Journal of Biotechnology, 45, 59-69 (1996).
Grima, E. M., Acie´n Ferna´ndez, F. G., Camacho, F. G., and Chisti, Y., Photobioreactors: light regime, mass transfer, and scaleup, Journal of Biotechnology, 70, 231-247 (1999).
Grima, E. M., Belarbi, E. H., Fernandez, F. G. A., Medina, A. R., Chisti, Y., Recovery of microalgal biomass and metabolites: process options and economics, Biotechnology Advances, 20, 491-515 (2003).
Huang, G. H., Chen, F., Wei, D., Zhang, X. W., and Chen, G., Biodiesel production by microalgal biotechnology, Applied Energy, doi:10.1016/j.apenergy.2009.06.016, (2009).
Hu, Q., Handbook of microalgal culture: biotechnology and applied phycology, Environmental effects on cell composition, Richmond, A., Blackwell Science, UK, 85-88 (2004).
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, The Plant Journal, 54, 621-639 (2008).
Illman, A.M., Scragg, A.H., and Shales, S.W., Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme and Microbial Technology, 27, 631- 635 (2000).
Jin, H.F., Lim, B.R., and Lee, K., Influence of nitrate feeding on carbon dioxide fixation by microalgae, Journal of Environmental Science and Health, Part A, 41, 2813-2824 (2006).
Lee Y.K., Commercial production of microalgae in the Asia-Pacific rim, Journal of Applied Phycology, 9, 403-411 (1997).
Lepage, G. and Roy, C.C., Improved recovery of fatty acid through direct transesterification without prior extraction or purification, Journal of Lipid Research, 25, 1391-1396 (1984).
Li, Y., Horsman, M., Wang, B., Wu, N., and Lan, C.Q., Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans, Applied Microbiology and Biotechnology, 81, 629- 636 (2008).
Liu, Z. Y., Wang, G. C., Zhou, B. C., Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresource Technology, 99, 4717- 4722 (2008).
Macintyre, H.L., Cullen, J.J., Using cultures to investigate the physiological ecology of microalgae, In: Andersen, R., (ed) Algal culturing techniques. Elsevier/Academic Press., 287-326 (2005)
Maedal, K., Owadai, M., Kimura, N., Omata, K., and Karubd, I., CO2 fixation from the flue gas on coal-fired thermal power plantby microalgae, Energy Conversion and Management, 36, 717-720 (1995).
Masojidek, J., Koblizek, M., and Torzillo, G., Handbook of microalgal culture: biotechnology and applied phycology, photosynthesis in microalgae. Edited by Amos Richmond, Blackwell Science, 20-39 (2004).
Mazzuca, S. T, Garcı´a, C. F, Camacho, R. F, Acie´n Ferna,´ ndez F.G., Grima, E. M., Carbon dioxide uptake efficiency by outdoormicroalgal cultures in tubular airlift photobioreactors, Biotechnology and Bioengineering, 67, 465-475 (2000).
Ogawa, T., Kozawa, H., and Terui, G., Studies on the growth of Spirulina platensis(II) growth kinetics of an autotrophic culture, Journal of Fermentation Technology 50: 143-149 (1971).
Ogbonna, J. C. and Tanaka, H., Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors, Journal of Applied Phycology, 12, 207-218 (2000).
Otero, A., Garcia, D., Morales, E.D., Aran, J., and Fabregas, J., Manipulation of the biochemical composition of eicosapentaenoic acid-rich microalga Isochrysis galbana in semicontinuous cultures, Biotechnology and Applied Biochemistry, 26, 171-177 (1997).
Pauline, S., Claire, J.C., Elie, D., and Arsene, I., Commercial application of microalgae, Journal of bioscience and bioengineering, 101, 87-96 (2006).
Piorreck, M., Baasch, K. H., and Pohl, P., Biomass production, total protein, chlorophylls, lipids and fetty acids of freshwater green and blue-green algae under different nitrogen regimes, Phytochemistry, 23, 207-216 (1984).
Pulz, O., Photobioreactors: production systems for phototrophic microorganisms, Applied Microbiology and Biotechnology, 57, 287-293 (2001).
Radmann, E.M., Reinehr, C.O., and Costa, J.A.V., Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds, Aquaculture, 265, 118-126 (2007).
Ranga Rao, A., Dayananda, C., Sarada, R., Shamala, T.R., and Ravishanker, G.A., Effect of salinity on growth of green alga Botryococcus braunii and its constituents, Bioresource Technology, 98, 560-564 (2007).
Rebecca, M. W. and David, F. O., Extracellular microbial polysaccharides I. substrate, biomass, and product kinetic equations for batch xanthan gum fermentation, Biotechnology and Bioengineering, 12, 859-873 (1980).
Reinehr, C.O., Costa, J.A.V., Repeated batch cultivation of the microalga Spirulina platensis, World Journal of Microbiology and Biotechnology, 22, 937-943 (2006).
Reitan, K. I., Rainuzzo, J. R., and Olsen, Y., Effect of nutrient limitation on fatty-acid and lipid-content of marine microalgae, Journal of Phycology, 30, 972- 979 (1994).
Renaud, S. M., Parry, D. L. Thinh, L. V., Kuo, C., Padovan, A., and Sammy, N., Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture, Journal of Applied Phycology, 3, 43-53 (1991).
Renaud, S. M., Zhou, H. C., Parry, D. L., Thinh, L. V., and Woo, K. C., Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO), Journal of Applied Phycology, 7, 595- 602 (1995).
Renaud, S.M., Thinh, L.V., Lambrinidis, G., and Parry, D.L., Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures, Aquaculture, 211, 195-214 (2002).
Richmond, A., Microalgal biotechnology at the turn of the millennium: A personal view, Journal of Applied Phycology, 12, 441-451 (2000).
Richmond, A., Principles for attaining maximal microalgal productivity in photobioreactors: an overview, Hydrobiologia, 512, 33-37 (2004).
Roessler, P.G., Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency, Archives of Biochemistry and Biophysics, 267, 521- 528 (1988).
Roessler, P.G., Bleibaum, J.L., Thompson, G.A., and Ohlrogge, J.B., Characteristics of the gene that encodes acetyl-CoA carboxylase in the diatom Cyclotella cryptic, Annals of the New York Academy of Sciences, 721, 250- 256 (1994).
Shipton, C.A. and Barber, J., In vivo and in vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-II reaction center proteins, European Journal of Biochemistry, 220, 801-808 (1994).
Somerville, C., Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanbacteria, Proceedings of the National Academy of Sciences USA, 92, 6215-6218 (1995).
Suen, Y. J., Hubbcird, S., Holzer, G. and Toniabene, T. G., Total lipid production of the green alga Nannochloropsis sp. qii under different nitrogen regimes, Journal of Phycology, 23, 289-296 (1987).
Suh, I. S. and Lee, S. B., Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor, Journal of Applied Phycology, 13, 381-388 (2001).
Sukenik, A. and Livne, A., Variations in lipid and fatty acid content in relation to acetyl coa carboxylase in the marine prymnesiophyte isochrysis galbana, Plant Cell Physiology, 32, 371- 378 (1991).
Takagi, M., Karseno, and Yoshida, T., Effect of salt concentration on intracellular accumulation of lipids and Triacylglyceride in marine microalgae Dunaliella cells, Journal of Science and Bioengineering, 101, 223- 226 (2006).
Takagi, M., Watanabe, K., Yamaberi, K., and T. Yoshida, Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999, Applied Microbiology and Biotechnology, 54, 112- 117 (2000).
Turpin, D., Effect of inorganic N availability on algal photosynthesis and carbon metabolism, Journal of Phycology, 27, 14-20 (1991).
Watanabe, Y. and Saiki, H., Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas, Energy Conversion and Management 38: S499-S503 (1997).
Xu, H., Miao, X., and Wu, Q., High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, Journal of Biotechnology, 126, 499-507 (2006).
Xu, X.Q., Beardall, J., Effect of salinity on fatty acid composition of a green microalga from an Antarctic hypersaline lake, Phytochemistry, 45, 655-658 (1997).
Zeiler, K. G., I-ieacox, D. A., Toon, S. T., Kadam, K. L., and Brown, L. M., The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas, Energy Conversion and Management, 36, 707-712 (1995).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊