跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳泓宇
研究生(外文):Hung-Yu Chen
論文名稱:以紅外光譜技術探討牛血漿白蛋白對氣/液界面上混合脂質單分子層行為的影響
論文名稱(外文):An investigation of the effects of bovine serum albumin on the mixed lipid monolayer behavior at air/liquid interfaces by infrared spectroscopy
指導教授:張鑑祥張鑑祥引用關係
指導教授(外文):Chien-Hsiang Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:141
中文關鍵詞:混合單分子層單分子層肺泡界面活性劑脂質/蛋白質交互作用反射吸收式紅外光譜技術氣/液界面
外文關鍵詞:lung surfactantmixed monolayermonolayerair/liquid interfaceinfrared reflection-absorption spectroscopylipid/protein interaction
相關次數:
  • 被引用被引用:5
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用反射吸收式紅外光譜分析技術,探討牛血漿白蛋白 (bovine serum albumin, BSA) 對氣/液界面上 dipalmitoyl phosphatidylcholine (DPPC)/1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG) (3:1) 混合單分子層於連續來回壓縮-擴張界面條件下之行為的影響。在 BSA 吸附分子層存在之氣/液界面上分佈 DPPC 分子後,得到的 νa-CH2 reflection-absorbance intensity (RA 值)-相對面積及表面壓-相對面積遲滯曲線顯示,當 DPPC 分子被壓縮至緊密狀態時,BSA 分子會被 DPPC 分子擠壓出界面。在 BSA 分子被擠壓出界面時,亦會造成界面上自由 DPPC 分子的損失。而在後續的界面擴張階段中,發現表面壓有所提升,推測是 BSA 分子的再吸附所造成的。此外,在 DPPC 分子的 νa-CH2 吸收波數-相對面積遲滯曲線中,觀察到自由之 DPPC 分子都是緊密排列在擴張之氣/液界面上,這很可能是 BSA 分子的再吸附所導致的。由以上結果推斷,BSA 分子會經由減少 DPPC 分子的數量及本身的競爭吸附,抑制 DPPC 的動態界面活性。當 BSA 在液相中的濃度從 1000 ppm 降為 10 ppm 時,以上所述的抑制現象就變得較不明顯。
  在 BSA 吸附分子層存在之氣/液界面上分佈 DPPC/POPG (3:1) 分子後,由得到的 νa-CH2 RA 值-相對面積及表面壓-相對面積遲滯曲線,推測 POPG 具有比 DPPC 更佳的 BSA 親和性,而會選擇性地與 BSA 一同被排擠出界面。POPG 選擇性被排出界面的行為,或許可以解釋急性呼吸窘迫症候群患者肺部的 phosphatidylglycerol 含量減少,以及磷脂質組成改變的現象。
  The effects of bovine serum albumin (BSA) on the mixed dipalmitoyl phosphatidylcholine (DPPC)/1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG) (3:1) monolayer behavior at cyclic air/liquid interfaces were investigated by infrared reflection-absorption spectroscopy (IRRAS). The νa-CH2 reflection-absorbance (RA) intensity-relative area and surface pressure-relative area hysteresis curves of adsorbed BSA layers with spread DPPC molecules at air/liquid interfaces revealed that BSA molecules were expelled from interfaces as the DPPC molecules were compressed to condensed states. The squeezed-out of BSA molecules also induced the loss of free DPPC molecules at interfaces. It was found that the surface pressure was increased during the following interface expansion stage, probably due to the readsorption of the BSA molecules. Furthermore, one could observe in the νa-CH2 wavenumber-relative area hysteresis curves that the free DPPC molecules were always close-packed at expanded interfaces, most likely resulting from the readsorption of BSA molecules. The results suggested that the inhibition of DPPC dynamic surface activity at the interface by BSA was attributed to the decreased number of free DPPC molecules and the competitive adsorption of BSA at the interface. When the BSA concentration in the subphases was lowered from 1000 ppm to 10 ppm, the inhibition phenomena mentioned above then became insignificant.
  Base on the νa-CH2 RA intensity-relative area and surface pressure-relative area hysteresis curves of adsorbed BSA layers with spread DPPC/POPG (3:1) molecules at air/liquid interfaces, one could presume that POPG had a higher affinity than DPPC with BSA and was selectively expelled from interfaces with BSA. The behavior of selectively expelled POPG from the interface might explain the decrease in the amount of phosphatidylglycerol and the alteration of the phospholipid composition observed in the lungs of patients with the acute respiratory distress syndrome.
摘要 I
Abstract III
誌謝 V
總目錄 VI
表目錄 X
圖目錄 XII
符號說明 XX

第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 肺泡界面活性劑 2
1.2.2 急性呼吸窘迫症候群 4
1.2.3 氣/液界面上單分子層的行為 5
1.2.3.1 肺泡界面活性劑單分子層的行為 5
1.2.3.2 蛋白質在氣/液界面上的吸附行為 7
1.2.3.3 肺泡界面活性劑與血漿蛋白的交互作用 9
1.2.4 反射吸收式紅外光譜技術的應用 10
1.2.4.1 肺泡界面活性劑作用的機制 11
1.2.4.2 肺泡界面活性劑與血漿蛋白的交互作用 13
1.2.4.3 人工肺泡界面活性劑的特性 14
1.3 研究動機與目的 16

第二章 實驗 20
2.1 藥品 20
2.2 儀器 20
2.2.1 Langmuir 槽 20
2.2.2 反射吸收式紅外光譜儀 22
2.3 實驗方法 25
2.3.1 藥品配製 25
2.3.2 Langmuir 單分子層行為的分析 26
2.3.2.1 磷脂質單分子層遲滯行為的測量 27
2.3.2.2 白蛋白吸附分子層動態表面壓與遲滯行為的測量 28
2.3.2.3 磷脂質/白蛋白混合分子層遲滯行為的測量 28
2.3.3 反射吸收式紅外光譜的操作 29
2.3.3.1 磷脂質單分子層遲滯行為的測量 32
2.3.3.2 磷脂質/白蛋白混合分子層遲滯行為的測量 33

第三章 結果與討論 42
3.1 單分子層行為與反射吸收式紅外光譜 42
3.2 氣/液界面上磷脂質單分子層的遲滯行為 44
3.2.1 DPPC 單分子層 44
3.2.1.1 表面壓-相對面積遲滯曲線 44
3.2.1.2 νa-CH2 反射吸收值與吸收波數-相對面積遲滯曲線 46
3.2.2 POPG 單分子層 48
3.2.2.1 表面壓-相對面積遲滯曲線 48
3.2.2.2 νa-CH2 反射吸收值與吸收波數-相對面積遲滯曲線 49
3.2.3 DPPC/POPG 混合單分子層 51
3.2.3.1 表面壓-相對面積遲滯曲線 51
3.2.3.2 νa-CH2 反射吸收值與吸收波數-相對面積遲滯曲線 54
3.3 氣/液界面上之白蛋白吸附分子層的界面行為 55
3.3.1 表面壓-時間吸附曲線 55
3.3.2 表面壓-相對面積遲滯曲線 56
3.4 氣/液界面上 DPPC/白蛋白混合分子層的遲滯行為 58
3.4.1 表面壓-相對面積遲滯曲線 59
3.4.2 νa-CH2 反射吸收值與吸收波數-相對面積遲滯曲線 64
3.5 氣/液界面上 POPG/白蛋白混合分子層的遲滯行為 68
3.5.1 表面壓-相對面積遲滯曲線 68
3.5.2 νa-CH2 反射吸收值與吸收波數-相對面積遲滯曲線 72
3.6 氣/液界面上 DPPC/POPG/白蛋白混合分子層的遲滯行為 75
3.6.1 表面壓-相對面積遲滯曲線 75
3.6.2 νa-CH2 反射吸收值與吸收波數-相對面積遲滯曲線 80

第四章 結論與建議 123
4.1 結論 123
4.2 後續工作建議 126

參考文獻 127
自述 141
Baudouin, S.V., “Exogenous surfactant replacement in ARDS–One day, someday, or never?,” N. Engl. J. Med., 351, 853, 2004.

Bourbon, J.R., Pulmonary Surfactant: Biochemical, Functional, Regulatory, and Clinical Concepts, CRC press, Boca Raton, 1991.

Bringezu, F., Ding, J., Brezesinski, G., and Zasadzinski J.A., “Changes in model lung surfactant monolayers induced by palmitic acid,” Langmuir, 17, 4641, 2001.

Buontempo, J.T., and Rice, S.A., “Infrared external reflection spectroscopic studies of phase transitions in Langmuir monolayers of heneicosanol,” J. Chem. Phys., 99, 5835, 1993.

Cai, P., Flach, C.R., and Mendelsohn, R., “An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)4K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids,” Biochemistry, 42, 9446, 2003.

Chang, C.-H., Yu, S.-D., Chuang, T.-K., and Liang, C.-N., “Roles of γ-globulin in the dynamic interfacial behavior of mixed dipalmitoylphosphatidylcholine/γ-globulin monolayers at air/liquid interfaces,” J. Colloid Interface Sci., 227, 461, 2000.

Cheng, C.-C., and Chang, C.-H., “Retardation effect of tyloxapol on inactivation of dipalmitoyl phosphatidylcholine surface activity by albumin,” Langmuir, 16, 437, 2000.

Cho, D., and Cornec, M., “Adsorptive behavior of a globular protein with a monoglyceride monolayer spread on the aqueous surface,” Korean J. Chem. Eng., 16, 371, 1999.

Cho, D., Narsimhan, G., and Franses, E.I., “Adsorption dynamics of native and pentylated bovine serum albumin at air-water interfaces: surface concentration/surface pressure measurements,” J. Colloid Interface Sci., 191, 312, 1997.

Clements, J.A., “Surface tension of lung extracts,” Proc. Soc. Exp. Biol. Med., 95, 190, 1957.

Clements, J.A., “Lung surfactant: a personal perspective,” Ann. Rev. Physiol., 59, 1, 1997.

Creuwels, L.A.J.M., van Golde, L.M.G., and Haagsman, H.P., “The pulmonary surfactant system: biochemical and clinical aspects,” Lung, 175, 1, 1997.

Dluhy, R.A., “Quantitative external reflection infrared spectroscopic analysis of insoluble monolayers spread at the air-water interface,” J. Phys. Chem., 90, 1373, 1986.

Dluhy, R.A., “Infrared spectroscopy of biophysical monomolecular films at interfaces: theory and applications,” Appl. Spectrosc. Rev., 35, 315, 2000.

Dluhy, R.A., and Cornell, D.G., “In situ measurement of the infrared spectra of insoluble monolayers at the air-water interface,” J. Phys. Chem., 89, 3195, 1985.

Dluhy, R.A., Reilly, K.E., Hunt, R.D., Mitchell, M.L., Mautone, A.J., and Mendelsohn, R., “Infrared spectroscopic investigations of pulmonary surfactant. Surface film transitions at the air-water interface and bulk phase thermotropism,” Biophys. J., 56, 1173, 1989.

Dluhy, R.A., Wright, N.A., and Griffith, P.R., “In situ measurement of the FT-IR spectra of phospholipids monolayers at the air/water interface,” Appl. Spectrosc., 42, 138, 1988.

Flach, C.R., Gericke, A., and Mendelsohn, R., “Quantitative determination of molecular chain tilt angles in monolayer films at the air/water interface: infrared reflection/absorption spectroscopy of behenic acid methyl ester,” J. Phys. Chem. B, 101, 58, 1997.

Frerking, I., Günther, A., Seeger, W., and Pison, U., “Pulmonary surfactant: functions, abnormalities and therapeutic options,” Intensive Care Med., 27, 1699, 2001.

Fuchimukai, T., Fujiwara, T., Takahashi, A., and Enhorning, G., “Artificial pulmonary surfactant inhibition by proteins,” J. Appl. Physiol., 62, 429, 1987.

Gericke, A., Flach, C.R., and Mendelsohn, R., “Structure and orientation of lung surfactant SP-C and L-α-dipalmitoylphosphatidylcholine in aqueous monolayers,” Biophys. J., 73, 492, 1997.

Goerke, J., “Pulmonary surfactant: functions and molecular composition,” Biochim. Biophys. Acta, 1408, 79, 1998.

Gopal, A., and Lee, K.Y.C., “Morphology and collapse transitions in binary phospholipid monolayers,” J. Phys. Chem. B, 105, 10348, 2001.

Graham, D.E., and Philips, M.C., “Proteins at liquid interfaces. III. Molecular structure of adsorbed films,” J. Colloid Interface Sci., 70, 427, 1979.

Gunasekara, L., Schoel, W.M., Schürch, S., and Amrein, M.W., “A comparative study of mechanisms of surfactant inhibition,” Biochim. Biophys. Acta, 1778, 433, 2008.

Harbottle, R.R., Nag, K., McIntyre, N.S., Possmayer, F., and Petersen, N.O., “Molecular organization revealed by time-of-flight secondary ion mass spectrometry of a clinically used extracted pulmonary surfactant,” Langmuir, 19, 3698, 2003.

Hernández, E.M., and Franses, E.I., “Adsorption and surface tension of fibrinogen at the air/water interface,” Colloids Surf. A, 214, 249, 2003.

Holm, B.A., Enhorning, G., and Notter, R.H., “A biophysical mechanism by which plasma proteins inhibition lung surfactant activity,” Chem. Phys. Lipids, 49, 49, 1988.

Jones, M.N., and Chapman, D., Micelles, Monolayer, and Biomembranes, Wiley-Liss, New York, 1995.

Keough, K.M.W., Parsons, C.S.P., Phang, T., and Tweeddale, M.G., “Interactions between plasma proteins and pulmonary surfactant: surface balance studies,” Can. J. Physiol. Pharmacol., 66, 1166, 1988.

Kim, S.H., and Franses, E.I., “Competitive adsorption of fibrinogen and dipalmitoylphosphatidylcholine at the air/aqueous interface,” J. Colloid Interface Sci., 295, 84, 2006.

Kim, S.H., Park Y., Matalon, S., and Franses, E.I., “Effect of buffer composition and preparation protocol on the dispersion stability and interfacial behavior of aqueous DPPC dispersions,” Colloids Surf. B, 67, 253, 2008.

Kuo, R.-R., Chang, C.-H., Yang, Y.-M., and Maa, J.-R., “Induced removal of dipalmitoyl phosphatidylcholine by the exclusion of fibrinogen from compressed monolayers at air/liquid interfaces,” J. Colloid Interface Sci., 257, 108, 2003.

Lewis, J.F., and Veldhuizen, R., “The role of exogenous surfactant in the treatment of acute lung injury,” Annu. Rev. Physiol., 65, 613, 2003.

Magdassi, S., Surface Activity of Proteins: Chemical and Physicochemical Modifications, Marcel Dekker, New York, 1996.

McClellan, S.J., and Franses, E.I., “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids Surf. B, 28, 63, 2003.

Mendelsohn, R., Brauner, J.W., and Gericke, A., “External infrared reflection absorption spectrometry of monolayer films at the air-water interface,” Annu. Rev. Phys. Chem., 46, 305, 1995.

Miller, N.J., Postle, A.D., Orgeig, S., Koster, G., and Daniels, C.B., “The composition of pulmonary surfactant from diving mammals,” Respir. Physiol. Neurobiol., 152, 152, 2006.

Miller, R., Fainerman, V.B., Makievski, A.V., Krägel, J., Grigoriev, D.O., Kazakov, V.N., and Sinyachenko, O.V., “Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface,” Adv. Colloid Interface Sci., 86, 39, 2000.

Mitchell, M.L., and Dluhy, R.A., “In situ FT-IR investigation of phospholipid monolayer phase transitions at the air-water interface,” J. Am. Chem. Soc., 110, 712, 1988.

Myers, D., Surfaces, Interfaces, and Colloids: Principles and Applications, Wiley-VCH, New York, 1999.

Na Nakorn, P., Meyer, M.C., Flach, C.R., Mendelsohn, R., and Galla, H.J., “Surfactant protein C and lung function: new insights into the role of α-helical length and palmitoylation,” Eur. Biophys. J., 36, 477, 2007.

Nag, K., Munro, J.G., Inchley, K., Schürch, S., Petersen, N.O., and Possmayer, F., “SP-B refining of pulmonary surfactant phospholipid films,” Am. J. Physiol.–Lung Cell. Mol. Physiol., 277, 1179, 1999.

Nag, K., Pérez-Gil, J., Ruano, M.L.F., Worthman, L.A.D., Stewart, J., Casals, C., and Keough, K.M.W., “Phase transitions in films of lung surfactant at the air-water interface,” Biophys. J., 74, 2983, 1998.

Nakahara, H., Dudek, A., Nakamura, Y., Lee, S., Chang, C.-H., and Shibata, O., “Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air-water interface by an IRRAS measurement,” Colloids Surf. B, 68, 61, 2009.

Nakahara, H., Lee, S., Sugihara, G., Chang, C.-H., and Shibata, O., “Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with Surfacten (Surfactant TA),” Langmuir, 24, 3370, 2008.

Nakahara, H., Lee, S., Sugihara, G., and Shibata, O., “Mode of interaction of hydrophobic amphiphilic α-helical peptide/dipalmitoylphosphatidylcholine with phosphatidylglycerol or palmitic acid at the air-water interface,” Langmuir, 22, 5792, 2006.

Notter, R.H., Lung Surfactants: Basic Science and Clinical Applications, Marcel Dekker, New York, 2000.

Pastrana-Rios, B., Flach, C.R., Brauner, J.W., Mautone, A.J., and Mendelsohn, R., “A direct test of the “squeeze-out” hypothesis of lung surfactant function. External reflection FT-IR at the air/water interface,” Biochemistry, 33, 5121, 1994.

Pastrana-Rios, B., Taneva, S., Keough, K.M.W., Mautone, A.J., and Mendelsohn, R., “External reflection absorption infrared spectroscopy study of lung surfactant proteins SP-B and SP-C in phospholipid monolayers at the air/water interface,” Biophys. J., 69, 2531, 1995.

Pérez-Gil, J., and Keough, K.M.W., “Interfacial properties of surfactant proteins,” Biochim. Biophys. Acta, 1408, 203, 1998.

Phang, T.L., and Franses, E.I., “Expulsion of bovine serum albumin from the air/water interface by a sparingly soluble lecithin lipid,” J. Colloid Interface Sci., 275, 477, 2004.

Phang, T.L., McClellan, S.J., and Franses, E.I., “Displacement of fibrinogen from the air/aqueous interface by dilauroylphosphatidylcholine lipid,” Langmuir, 21, 10140, 2005.

Piknova, B., Schram, V., and Hall, S.B., "Pulmonary surfactant: phase behavior and function," Curr. Opin. Struct. Biol., 12, 487, 2002.

Putnam, F.W., The Plasma Proteins: Structure, Function, and Genetic Control, Academic Press, New York, 1975.

Rana, F.R., Mautone, A.J., and Dluhy, R.A., “Surface chemistry of binary mixtures of phospholipids in monolayers. Infrared studies of surface composition at varying surface pressures in a pulmonary surfactant model system,” Biochemistry, 32, 3169, 1993.

Rodriguez-Capote, K., Nag, K., Schürch, S., and Possmayer, F., “Surfactant protein interactions with neutral and acidic phospholipid films,” Am. J. Physiol.–Lung Cell. Mol. Physiol., 281, 231, 2001.

Russell-Schulz, B., Booth, V., and Morrow, M.R., “Perturbation of DPPC/POPG bilayers by the N-terminal helix of lung surfactant protein SP-B: a 2H NMR study,” Eur. Biophys. J., 38, 613, 2009.

Serrano, A.G., and Pérez-Gil, J., “Protein-lipid interactions and surface activity in the pulmonary surfactant system,” Chem. Phys. Lipids, 141, 105, 2006.

Takamoto, D.Y., Lipp, M.M., von Nahmen, A., Lee, K.Y.C., Waring, A.J., and Zasadzinski, J.A., “Interaction of lung surfactant proteins with anionic phospholipids,” Biophys. J., 81, 153, 2001.

Taneva, S.G., and Keough, K.M.W., “Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine,” Biochemistry, 33, 14660, 1994.

Tripp, B.C., Magda, J.J., and Andrade, J.D., “Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics,” J. Colloid Interface Sci., 173, 16, 1995.

Veldhuizen, E.J.A., and Haagsman, H.P., “Role of pulmonary surfactant components in surface film formation and dynamics,” Biochim. Biophys. Acta, 1467, 255, 2000.

Veldhuizen, R., Nag, K., Orgeig, S., and Possmayer, F., “The role of lipids in pulmonary surfactant,” Biochim. Biophys. Acta, 1408, 90, 1998.

Wang, L., Cai, P., Galla, H.J., He, H., Flach, C.R., and Mendelsohn, R., “Monolayer-multilayer transitions in a lung surfactant model: IR reflection-absorption spectroscopy and atomic force microscopy,” Eur. Biophys. J., 34, 243, 2005.

Wang, X., Zhang, Y., Wu, J., Wang, M., Cui, G., Li, J., and Brezesinski, G., “Dynamical and morphological studies on the adsorption and penetration of human serum albumin into phospholipid monolayers at the air/water interface,” Colloids Surf. B, 23, 339, 2002.

Wang, Z., Hall, S.B., and Notter, R.H., “Dynamic surface activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids,” J. Lipid Res., 36, 1283, 1995.

Warriner, H.E., Ding, J., Waring, A.J., and Zasadzinski, J.A., “A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants,” Biophys. J., 82, 835, 2002.

Wegman, M.E., “Annual summary of vital statistics–1990,” Pediatrics, 88, 1081, 1991.

Wen, X., and Franses, E.I., “Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film,” Colloids Surf. A, 190, 319, 2001.

Yin, C.-L., and Chang, C.-H., “Infrared spectroscopy analysis of mixed DPPC/fibrinogen layer behavior at the air/liquid interface under a continuous compression-expansion condition,” Langmuir, 22, 6629, 2006.

Zasadzinski, J.A., Ding, J., Warriner, H.E., Bringezu, F., and Waring, A.J., “The physics and physiology of lung surfactants,” Curr. Opin. Colloid Interface Sci., 6, 506, 2001.

Zhao, J., Vollhardt, D., Brezesinski, G., Siegel, S., Wu, J., Li, J.B., and Miller, R., “Effect of protein penetration into phospholipid monolayers: morphology and structure,” Colloids Surf. A, 171, 175, 2000.

Zuo, Y.Y., Veldhuizen, R.A.W., Neumann, A.W., Petersen, N.O., and Possmayer, F., “Current perspectives in pulmonary surfactant-inhibition, enhancement and evaluation,” Biochim. Biophys. Acta, 1778, 1947, 2008.

李寶琴,以反射吸收式紅外光譜分析技術探討氣/液界面上DPPC/Albumin混合單分子層行為的研究,國立成功大學化學工程學系碩士論文,2004。

李威達,陰陽離子型液胞組成材料之混合單分子層中分子作用的探討,國立成功大學化學工程學系博士論文,2008。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以反射吸收式紅外光譜分析技術探討氣/液界面上DPPC/Albumin混合分子層行為的研究
2. 陰陽離子型液胞組成材料之混合單分子層中分子作用的探討
3. 以紅外光譜法探討離子對雙親分子∕雙十八碳鏈陽離子型界面活性劑∕膽固醇之混合Langmuir單分子層的分子排列特性
4. 白蛋白對含雙鏈陽離子型界面活性劑之陰陽離子液胞物化特性的影響
5. 在氣/液界面上DPPC/長碳鏈醇類混合單分子層的行為
6. 含DPPC之混合單分子層的分子間交互作用
7. 脂質/雙鏈陽離子型界面活性劑所形成之Langmuir單分子層及液胞的特性分析
8. Albumin對DPPC在氣液界面上吸附行為的影響
9. 以反射-吸收式紅外光譜法分析pH值對氣液界面上十八碳胺單分子層行為的影響
10. 膽固醇的添加對於離子對雙親分子/雙十六碳鏈陰離子型脂質混合Langmuir單分子層行為的影響
11. 碳氫鏈長度對於含雙鏈陽離子型界面活性劑之離子對雙親分子/膽固醇混合Langmuir單分子層行為的影響
12. 氣/液界面上離子對雙親分子/長碳鏈醇類混合單分子層行為的反射-吸收式紅外光譜分析
13. 離子對雙親分子/雙十六碳鏈陰離子型界面活性劑/膽固醇之混合Langmuir單分子層行為的反射吸收式紅外光譜分析
14. 以螢光顯微鏡法探討牛血漿白蛋白對氣/液界面上混合雙電性/負電性磷脂質單分子層行為的影響
15. 以螢光顯微鏡分析法探討氣/液界面上磷脂質/血漿蛋白質混合分子層的行為
 
無相關期刊