1. Salkind, A.J. and P. Israel. Thomas Alva Edison - battery and device innovation in response to application's needs. in 23rd International Power Sources Symposium. 2003. Amsterdam, NETHERLANDS: Elsevier Science Bv.
2. Liaw, S.-K. and S.-Y. Chang, Recently Technologies Development of High-Power White Light Emitting Diodes. Instruments Today, 2006. 152: p. 78-86.
3. Sugiura, M., Review of metal-halide discharge-lamp development 1980-1992. Iee Proceedings-a-Science Measurement and Technology, 1993. 140(6): p. 443-449.
4. Jacobson, M.Z., Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2009. 2(2): p. 148-173.
5. White, M.A., Properties of materials. 1999, New York: Oxford University Press, Inc.
6. Neamen, D.A., Semiconductor physics and devices: basic principles. third ed., ed. K. Butcher. 2003, New York: McGraw-Hill Companies, Inc.
7. Xie, R.-J. and N. Hirosaki, Silicon-based oxynitride and nitride phosphors for white LEDs-A review. Science and Technology of Advanced Materials, 2007. 8(7-8): p. 588-600.
8. 劉如熹與紀喨勝(民92),紫外光發光二極體用螢光分介紹。台北市:全華科技圖書股份有限公司。
9. Kitai, A., Luminescent Materials and Applications. Wiley Series in Materials for Electronic and Optoelectronic Applications, ed. P. Capper, S. Kasap, and A. Willoughby. 2008: John Wiley & Sons Ltd.
10. 王卉宜,“氮化物紅色螢光粉體之合成製程開發 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國97年 (2008年)。11. Lee, W.-C., et al., Novel process for combustion synthesis of AlN powder. Journal of Materials Research, 1995. 10(3): p. 774-778.
12. Lee, W.-C. and S.-L. Chung, Combustion synthesis of Si3N�� powder. Journal of Materials Research, 1997. 12(3): p. 805-811.
13. Hwang, C.-C. and S.-L. Chung, Combustion synthesis of boron nitride powder. Journal of Materials Research, 1998. 13(3): p. 680-686.
14. Lin, C.-N. and S.-L. Chung, Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). Journal of Materials Research, 2004. 19(10): p. 3037-3045.
15. Chung, S.-L., C.-W. Chang, and F.J. Cadete Santos Aires, Reaction mechanism in combustion synthesis of -Si3N4 powder using NaN3. Journal of Materials Research, 2008. 23(10): p. 2720-2726.
16. Yen, W.M., S. Shionoya, and H. Yamamoto, Phosphor handbook. 2nd ed. 2006, New York: CRC Press Taylor & Francis Group.
17. 溫佑良,“不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國92年 (2003年)。18. 高弘任,“檸檬酸法製備鋁酸鍶鈣螢光粉體及其光性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國97年 (2008年)。19. Saller, E.J., Cathodoluminescence detector for applied research laboratories electron microprobe. Review of Scientific Instruments, 1967. 38(6): p. 837-&.
20. Gurnett, K.W., The light emitting diode (LED) and its application. Microelectronics Journal, 1996. 27(4-5): p. R37-R41.
21. Lloyd, R.A., Low level chemiluminescence from hydrocarbon autoxidation reactions. Part 2.—Thermal decomposition of benzoyl peroxide, cumene hydroperoxide and U.V. irradiated solvents. Transactions of the Faraday Society, 1965. 61(514P): p. 2182-&.
22. McKeever, S.W.S., Thermoluminescence of Solids. Cambridge Solid State Science Series. October 1988: Oklahoma State University.
23. Barber, B.P., et al., Defining the unknowns of sonoluminescence. Physics Reports-Review Section of Physics Letters, 1997. 281(2): p. 65-143.
24. Blasse, G. and B.C. Grabmaier, Luminescent Materials. September 1994: Springer-Verlag Telos.
25. 陳嘉民,“微波輔助溶液燃燒合成法製備螢光粉體 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國95年 (2006年)。26. Kuboniwa, S., H. Kawai, and T. Hoshina, Cathodoluminescence Saturation and Decay Characteristics of ZnS: Cu,Al Phosphor. Japanese Journal of Applied Physics, 1980. 19(9): p. 1647-1653.
27. 石景仁,“白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析 ”,碩士論文,國立臺灣大學化學系,台北市,台灣,民國90年 (2001年)。28. Cao, G.Z. and R. Metselaar, alpha'-SiAlON ceramic - a review. Chemistry of Materials, 1991. 3(2): p. 242-252.
29. Ekstrom, T. and M. Nygren, SiAION ceramic. Journal of the American Ceramic Society, 1992. 75(2): p. 259-276.
30. Schnick, W., Nitridosilicates, oxonitridosilicates (sions), and oxonitridoaluminosilicates (sialons): New materials with promising properties. International Journal of Inorganic Materials, 2001. 3(8): p. 1267-1272.
31. Xie, R.J., et al., Preparation and luminescence spectra of calcium- and rare-earth (R = Eu, Tb, and Pr)-codoped alpha-SiAlON ceramics. Journal of the American Ceramic Society, 2002. 85(5): p. 1229-1234.
32. van Krevel, J.W.H., et al., Luminescence properties of terbium-, cerium-, or europium-doped alpha-sialon materials. Journal of Solid State Chemistry, 2002. 165(1): p. 19-24.
33. Karunaratne, B.S.B., R.J. Lumby, and M.H. Lewis, Rare-earth-doped alpha'-Sialon ceramics with novel optical properties. Journal of Materials Research, 1996. 11(11): p. 2790-2794.
34. Shen, Z.J., M. Nygren, and U. Halenius, Absorption spectra of rare-earth-doped alpha-sialon ceramics. Journal of Materials Science Letters, 1997. 16(4): p. 263-266.
35. Sakuma, K., et al., Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor. Optics Letters, 2004. 29(17): p. 2001-2003.
36. Xie, R.J., et al., Eu2+-doped Ca-alpha-SiAlON: A yellow phosphor for white light-emitting diodes. Applied Physics Letters, 2004. 84(26): p. 5404-5406.
37. Suehiro, T., et al., Powder synthesis of Ca-alpha'-SiAlON as a host material for phosphors. Chemistry of Materials, 2005. 17(2): p. 308-314.
38. Xie, R.-J., et al., Photoluminescence of rare-earth-doped Ca-alpha-SiAlON phosphors: Composition and concentration dependence. Journal of the American Ceramic Society, 2005. 88(10): p. 2883-2888.
39. Huang, J.-S., et al. A study of luminescent and structure properties of alpha-SiAlON:Yb2+ phosphors prepared by hydrothermal synthesis process. 2007. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc.
40. Lin, C.-H., et al. An investigation of luminescent and structure properties of Ca-alpha-SiAlON doped Eu2+ phosphors fabricated by hydrothermal synthesis process. 2007. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc.
41. Sakuma, K., N. Hirosaki, and R.-J. Xie, Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-alpha-SiAlON ceramic phosphors. Journal of Luminescence, 2007. 126(2): p. 843-852.
42. Li, H.L., et al., Phase purity and luminescence properties of fine Ca-alpha-SiAlON:Eu phosphors synthesized by gas reduction nitridation method. Journal of the Electrochemical Society, 2008. 155(6): p. 175-179.
43. Ryu, J.H., et al., Luminescent properties of Ca-alpha-SiAlON: Eu2+ phosphors synthesized by gas-pressured sintering. Journal of the Electrochemical Society, 2008. 155(4): p. 99-104.
44. Suehiro, T., et al., One-step preparation of Ca-alpha-SiAlON: Eu2+ fine powder phosphors for white light-emitting diodes. Applied Physics Letters, 2008. 92(19): p. 191904.
45. Chen, K., et al., Microstructure and formation mechanism of combustion-synthesized rodlike Ca-alpha-sialon crystals. Journal of Materials Research, 2001. 16(7): p. 1928-1934.
46. Fu, R., et al., Combustion synthesis of rod-like alpha-SiAlON seed crystals. Materials Letters, 2004. 58(12-13): p. 1956-1958.
47. Liu, G., et al., Effect of diluents and NH4F additive on the combustion synthesis of Yb-alpha-SiAlON. Journal of the European Ceramic Society, 2005. 25(14): p. 3361-3366.
48. Liu, G., et al., Growth mechanism of Y-alpha-SiAlON whiskers prepared by combustion synthesis. Journal of Materials Research, 2005. 20(4): p. 889-894.
49. Liu, G., et al., Preparation of (Ca, Mg) -SiAlON powders by combustion synthesis. Journal of Materials Science, 2005. 40(12): p. 3255-3257.
50. Liu, G., et al., Preparation of Ca-alpha-SiAlON powders with rod-like crystals by combustion synthesis. Ceramics International, 2006. 32(4): p. 411-416.
51. Liu, G., et al., Novel faceted -SiAlON micro-crystals prepared by combustion synthesis. Journal of the American Ceramic Society, 2006. 89(1): p. 364-366.
52. Liu, G., et al., Phase transformation and growth of rod-like alpha-SiAlON particles during combustion synthesis. Materials Letters, 2006. 60(9-10): p. 1276-1279.
53. Liu, G., et al., Fabrication of (Ca + Yb)- and (Ca + Sr)-stabilized alpha-SiAlON by combustion synthesis. Materials Research Bulletin, 2006. 41(3): p. 547-552.
54. Liu, G., et al., Mechanical-activation-assisted combustion synthesis of alpha-SiAlON in air. Materials Research Bulletin, 2007. 42(6): p. 989-995.
55. Liu, G., et al., Fabrication of one-dimensional rod-like alpha-SiAlON powders in large scales by combustion synthesis. Journal of Alloys and Compounds, 2008. 454(1-2): p. 476-482.
56. Mitomo, M., M. Takeuchi, and M. Ohmasa, Preparation of alpha-Sialon powders by carbothermal reduction and nitridation. Ceramics International, 1988. 14(1): p. 43-48.
57. Munir, Z.A., Synthesis of high-temperature materials by self-propagating combustion methods. American Ceramic Society Bulletin, 1988. 67(2): p. 342-349.
58. Yi, H.C. and J.J. Moore, Self-propagating high-temperature (cimbustion) synthesis (SHS) of powder-compacted materials. Journal of Materials Science, 1990. 25(2B): p. 1159-1168.
59. Subrahmanyam, J. and M. Vijayakumar, Self-propagating high-temperature synthesis. Journal of Materials Science, 1992. 27(23): p. 6249-6273.
60. White, D.R., Temperature Measurement, in Kirk‑Othmer Encyclopedia of Chemical Technology. 2006, John Wiley & Sons, Inc.
61. Tsuji, K., X-Ray Technology, in Kirk‑Othmer Encyclopedia of Chemical Technology. 2007, John Wiley & Sons, Inc.
62. Weaver, R., Microscopy, in Kirk‑Othmer Encyclopedia of Chemical Technology. 2003, John Wiley & Sons, Inc.
63. Hwang, S.L. and I.W. Chen, Nucleation amd growth of alpha'-Sialon on alpha-Si3N4. Journal of the American Ceramic Society, 1994. 77(7): p. 1711-1718.
64. C. E. Curtis, A.G.T., Ceramic Properties of Europium Oxide. Journal of the American Ceramic Society, 1959. 42(3): p. 151-156.