跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林彥宏
研究生(外文):Yan-Hong Lin
論文名稱:透明二氧化矽奈米粒子薄膜表面的超疏水/超親水圖案化及超疏水-超親水梯度化研究
論文名稱(外文):Superhydrophobic/superhydrophilic patterning and superhydrophobic-superhydrophilic gradient on the surface of a transparent silica nanoparticulate thin film
指導教授:楊毓民楊毓民引用關係
指導教授(外文):Yu-Min Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:靜電逐層組裝透明SiO2奈米粒子薄膜超疏水/超親水表面圖案化自組裝單分子層超疏水-超親水表面梯度化
外文關鍵詞:superhydrophobic-superhydrophilic gradient surfatransparent SiO2 nanoparticulate thin filmelectrostatic layer-by-layer(ELbL) assemblysuperhydrophobic/superhydrophilic patterning surself-assembled monolayer(SAM)
相關次數:
  • 被引用被引用:6
  • 點閱點閱:2904
  • 評分評分:
  • 下載下載:404
  • 收藏至我的研究室書目清單書目收藏:0
本研究運用靜電逐層組裝技術在玻璃基板上交替地進行聚電解質與SiO2奈米粒子的雙面多層沉積,經鍛燒去除聚電解質並燒結後,形成SiO2奈米粒子薄膜。首先在玻璃基板上沉積帶正、負電的聚電解質建構接著層(adhesion layers),然後再沉積聚電解質與雙尺寸(22nm 及 7nm) SiO2混合奈米粒子建構本體層(body layers) ,最後沉積聚電解質與單尺寸(7nm) SiO2奈米粒子建構上表層(top layers) 。本體層雙尺寸SiO2奈米粒子溶液,是以不同體積比例混合而成,分別為22nm : 7 nm = 4:1,2:1,1:1,1:2,1:3,1:4,1:5,1:6。另外,亦以個別的單一尺寸SiO2奈米粒子做為本體層當做比較基準。實驗結果顯示,在20個雙層本體層22nm : 7 nm = 1:4,1:5,1:6的條件下,奈米粒子薄膜皆具有透明且超親水的性質,水滴前進接觸角均小於10°,可見光區(400-800 nm)平均穿透度為91.8~92.4%若再植入矽烷自組裝單分子層(self-assembled monolayer, SAMs),可得到一透明且超疏水表面,水滴前進接觸角可達169~171°,接觸角遲滯只有7~9°,平均穿透度為90.2~91%。這種奈米粒子薄膜的表面在進行矽烷自組裝單分子層處理前後,分別具有超親水與超疏水的極端潤濕性質,提供了表面圖案化與梯度化的絕佳機會。因此,本研究進一步將透明超疏水表面以濕式(聚電解質溶液)法及乾式(雷射雕刻)法進行點、線、面的表面圖案化,可成功得到透明超疏水/超親水圖案化表面﹔此外,亦將透明超親水表面以濕式(前進溶液)法,控制矽烷的反應時間及濃度,亦可成功得到透明超疏水-超親水梯度化表面。
Surfaces patterned with high contrast of wettability and surfaces with continuous wettability gradients may find
many potential allications. Superhydrophilic/superhydrophobicpatterning and superhydrophilic/superhydrophobic gradient on a surface are, therefore, most desirable. In the first part of this work, an electrostatic layer-by-layer (ELbL) assembly process, by which adhesion, body, and top layers were sequentially deposited on glass substrate, was utilized
to fabricate nanoparticulate thin films[PAH (4.0) / PAA (4.0)]5+ [PAH ( 7.5 ) / ( 22+7nm ) SiO2 ( 9.18 )]20 + [PAH ( 7.5 )/ 7nm SiO2 ( 9.18 )]3 by using SiO2 nanoparticles and polyelectrolytes. The effects of differently sized nanoparticles in body layers on transmittance in visible light region and surface superhydrophobicity were especially emphasized. Actually,
ten compositions in the binary mixture solution of 22 nm and 7 nm silica nanoparticles for body layer deposition were systematically studied. After high temperature sintering and silanization, the as-fabricated nanoparticulate thin films were subjected to characterization. The experimental results revealed that nanoparticulate thin films with average transmittance
higher than that of plain glass, advancing contact angle around 170 o, and contact angle hysteresis around 10 o can be realized by depositing the body layers with mixed 22/7 nm colloidal silica nanoparticle solution with volume ratios of 1:4, 1:5, and 1:6. In the second part of this work, the ensuing transparent and superhydrophobic thin film that was fabricated with volume ratio of 1:4 was chosen for further study of surface patterning. By tuning power and scanning speed of the laser inscriber and
number of scanning, superhydrophilic patterns of dot arrays with minimum 100 μm dot diameter, canals with minimum
100 μm width, and areas of different shapes with 2 mm characteristic length were successfully inscribed by using stainless steel photomask on the superhydrophobic background. In the third part of this work, the nanoparticulate thin film, which was fabricated with volume ratio of 1:4, without silanization was chosen for further study of surface gradients. By controlling the concentration and advancing speed of alkylsilanes solution over the surface of the nanoparticulate thin film, superhydrophobic-superhydrophilic gradient surfaces were successfully created.
摘 要 I
ABSTRACT III
致 謝 V
目 錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 4
2.1 超疏水表面-蓮花效應 4
2.2 超疏水理論 7
2.2-1 楊氏(Yang)方程式 8
2.2-2溫佐(Wenzel)方程式 8
2.2-3卡西-巴斯特(Cassie and Baxter)方程式 9
2.3 抗反射光學原理 10
2.3.1 破壞性干涉機制 11
2.3.2 漸變折射率機制 12
2.3.3 抗反射膜之製備 13
2.4抗反射超疏水表面 15
2.5表面疏水改質 18
2.6 超疏水/超親水:表面圖案化(patterning) 20
2.7 超疏水 – 超親水:表面梯度化(gradient) 26
第三章 實驗 33
3.1 藥品 33
3.2 儀器設備及裝置 35
3.2.1 浸鍍機(機械手臂) 35
3.2.2超音波洗淨機 36
3.2.3 雷射光散射法粒徑測定儀 36
3.2.4 掃瞄式電子顯微鏡 37
3.2.5 動態接觸角分析儀 38
3.2.6 靜態接觸角測量儀 40
3.2.7 紫外光-可見光光譜儀 40
3.2.8 高溫爐 41
3.2.9 Mili-Q超純水系統 42
3.2.10 CO2 Laser 雕刻機 42
3.3 實驗方法 43
3.3.1玻璃基板的前置清洗流程 43
3.3.2 聚電解質溶液的配製 43
3.3.2.1 SiO2粒子溶液配製 44
3.3.2.2多層膜之製備:靜電逐層組裝技術 44
3.3.3 SiO2奈米粒子薄膜鍛燒 46
3.3.4 SiO2奈米粒子薄膜的疏水改質 46
3.3.5 SiO2奈米粒子薄膜表面圖案化製備 47
3.3.6 SiO2奈米粒子薄膜表面梯度化製備 48
第四章 結果與討論 50
4.1 透明超親水/超疏水SiO2奈米粒子薄膜 50
4.1-1疏水改質前本體層SiO2奈米粒子以不同混合體積比例對二氧化矽奈米粒子薄膜穿透度與潤濕性之分析 50
4.1-2疏水改質後本體層SiO2奈米粒子以不同混合體積比例對二氧化矽奈米粒子薄膜穿透度與潤濕性之分析 54
4.1-3有無上表層對SiO2奈米粒子薄膜穿透度與潤濕性之分析影響 71
4.1-4單一尺寸與雙尺寸的SiO2奈米粒子薄膜之特性比較 74
4.1-5 SiO2奈米粒子薄膜之最適化組裝條件 75
4.2 SiO2奈米粒子薄膜的表面圖案化 75
4.2-1 點、線、面的超疏水/超親水圖案化表面 77
4.2-2 圖案化表面潤濕性分析 81
4.2-3 圖案化表面的潤濕性反差(wettability contrast) 82
4.3 梯度化表面 83
4.3-1 不同液面上升速率對潤濕性梯度的影響 83
4.3-2 不同矽烷濃度對潤濕性梯度的影響 85
4.3-3 超疏水-超親水梯度化表面 86
第五章 結論與建議 89
5.1 結論 89
5.2 建議 90
參考文獻 91
附錄 99
濕式(聚電解質溶液)法製備超親水╱超疏水表面圖案化 99
自述 105
Barthlott, W., Neinhuis, C., “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, 202, 1-8, 1997.
Blossey, R., “Self-cleaning Surfaces – Virtual Realities,” Nature Materials, 2, 301-306, 2003.
Bravo, J., Zhai L., Wu, Z., Cohen, R. E., Rubner, M. F., “Transparent Superhydrophobic Films Based on Silica Nanoparticles,” Langmuir, 23, 7293-7298, 2007.
Cassie, A.B.D., Baxter, S., “Wettability of porous surfaces,” Trans. Faraday Soc, 40, 546-551, 1944
Chaudhury, M. K. and Whitesides G. M., “How to Make Water Run Uphill,” Science, 256, 1539-1541, 1992.
Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., McCarthy, T. J., “Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, 15, 3395-3399, 1999.
Chen, D., “Anti-refection (AR) coatings made by sol-gel processes: A
review,” Solar Energy Materials & Solar Cells, 68 ,313-316 , 2001.
Chen, L. J., Tsai, Y. H., Liu, C. S., Chiou, D. R., Yeh, M. C., “Effect of Water Content in Solvent on the Critical Temperature in the Formation of Self-assembled Hexadecyltrichlorosilane Monolayers on Mica,” Chem. Phys. Lett., 346, 241-245, 2001.
Drelich, J.; Miller, J. D.; Kumar, A.; Whitesides, G. M., “Wetting Characteristics of Liquid Drops at Heterogeneous Surfaces,” Colloids Surf. A., 93, 1-13, 1994.
Feng, X., Jiang, L., “Design and Creation of Superwetting/Aniwetting Surfaces, ” Adv. Master., 18, 3063-3078, 2006.
Fujishima, A., Rao, T.N., Tryk, D.A., “Titanium Dioxide Photocatalysis,” J. Photochemi. Photobiol. C: Photochemi. Reviews, 1, 1–21, 2000.
Fujishima, A., Zhang, X., “Titanium Dioxide Photocatalysis: Present Situation and Future Approaches,” C. R. Chimie, 9, 750–760, 2006.
Gau, H.; Herminghaus, S., Lenz, P., Lipowsky, R., “Liquid Morphologies on Structured Surfaces: From Microchannels to Microchips,” Science, 283, 46-48, 1999.
Gu, Z.-Z.; Fujishima, A.; Sato, O., “Patterning of a Colloidal Crystal Film on a Modified Hydrophilic and Hydrophobic Surface,” Angew. Chem. Int. Ed., 41, 2067-2070, 2002.
Han, J. T., Kim, S., Karim, A., “UVO-Tunable Superhydrophobic to Superhydrophilic Wetting Transition on Biomimetic Nanostructured SurfacesLangmuir,” Langmuir, 23, 2608–2614, 2007.
Hashimoto, K., Irie, H., Fujishima, A., “TiO2 Photocatalysis: A Historical Overview and Future Prospects” Japanese J. Applied Physics, 44, 8269–8285, 2005 .
Hiller, J., Mendelsohn, J.D. and Rubner, M.F., “Reversibly erasable nano-porous anti-reflection coatings from polyelectrolyte multilayers,” NatureMaterials, 1, 59-63, 2002.
Hsu, C.-H., Chen, C., Folch, A., “ Microcanals for Micropipette Access to Single Cells in Microfluidic Environments,” Lab Chip, 4, 420-424, 2004.
Ishihara, Y., Hirai, T., Sakurai, C., Koyanagi, T., Nishida, H. and Komatsu, M., “Applications of the particle ordering technique for conductive antireflection films,” Thin Solid Films, 411, 11, 50-55, 2002.
Ito, Y., Nogawa, M.,” Preparation of a protein micro-array using a photo-reactive polymer for a cell-adhesion assay,” Biomaterials, 4, 3021-3026, 2003
Jesionowski, T., Krysztafkiewicz, A., “Influence of Silane Coupling Agents on Surface Properties of Precipitated Silicas,” Appl. Surf. Sci., 172, 18-32, 2001.
Kim, H., Kreller, C. R., Tran, K. A., Sisodiya, V., Angelos, S., Wallraff, G., Swason, S., Miller, R. D., “Nanoporous Thin Films with Hydrophilicity-Contrasted Patterns,” Chem. Mater., 16, 4267-4272, 2004.
Lam, P., Wynne, K. J., Wnek, G. E., “Surface-Tension-Confined Microfluidics,” Langmuir, 18, 948-951, 2002.
Lim H. S., Han J. T., Kwak D., Jin M., Cho K., “ Photoreversibly Switchable Superhydrophobic Surface with Erasable and Rewritable Pattern,”J. Am. Chem. Soc., 128, 14458 – 14459, 2006.
Lopez, G. P., Biebuyck, H. A., Frisbie, C. D., Whitesides, G. M., “Imaging of Features on Surfaces by Condensation Figures,” Science, 260, 647-649, 1993.
MacBeath, D.; Schreiber, S. L., “Printing Proteins as Microarrays for High-Throughput Function Determination,” Science, 289, 1760-1762, 2000
Macleod, H.A.,Thin-Film Optical Filters, 2nd ed., McGrew-Hill, New York, 1986.
Marmur, A., “The Lotus Effect: Superhydrophobicity and Metastability,” Langmuir, 20, 3517-3519, 2004.
McGovern, M. E., Kallury, K. M. R., Thompson, M., “Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,” Langmuir, 10, 3607-3614, 1994.
Morgenthaler, S., Zink. C., Spencer. N.D., “Surface-Chemical and -Morphological Gradients,” Soft Matter, 4, 419-434, 2008.
Nakae, H., Inui, R., Hirata, Y., Saito, H., “Effects of Surface Roughness on Wettability,” Acta. Mater., 46, 2313-2318, 1998.
Neinhuis, C., Barthlott, W., “Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces,” Ann. Botany, 79, 667-677, 1997.
Niemeyer, C. M., Blohm, D., “ DNA Microarrays,” Angew. Chem. Int. Ed., 38, 2865-2869, 1999.
Nishimoto, S., Kubo, A., Nohara, K., Zhang, X., Taneichi, N., Okui, T., Liu, Z., Nakata, K., Sakai, H., Murakami, T., Abe, M., Komine, T., Fujishima, A., “TiO2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing,” Applied Surface Science, 255, 6221– 6225, 2009.
Oner, D., McCarthy, T. J., “Ultrahydrophobic Surfaces - Effects of Topography Length Scales on Wettability,” Langmuir, 16, 7777-7782, 2000.
Orner, B. P., Derda, R., Lewis, R. L., Thomson, J. A., Kiessling, L. L.,” Arrays for the Combinatorial Exploration of Cell Adhesion, ” J. Am. Chem. Soc., 126, 10808-10809, 2004.
Parker R, Lawrence C. R., “Water Capture by A Desert Beetle,” Nature, 414, 33-34, 2001.
Parkin, I.P., Palgrave, R.G., “ Self-Cleaning Coatings, ” J. Mater. Chem., 15, 1689-1695, 2005.
Plueddeman, E. P., “Silane Coupling Agents” Plenum Press: New York, 1991.
Pirrung, M. C., “How to Make a DNA Chip,” Angew. Chem. Int. Ed., 41, 1276-1289, 2002.
Roach, P., Shirtcliffe, N.J., Newton, M.I., “ Progress in Superhydrophobic Surface Development, ” Soft Matter, 4, 224-240, 2008.
Ruardy, T. G., Schakenraad, J. M., Mei, H. C., Busscher, H. J., “Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena,” Surf. Sci. Rep., 29, 3–30, 1997.
Seemann, R., Brinkmann, M., Kramer, E. J., Lange, F. F., Lipowsky, R., “Wetting Morphologies at Microstructured Surfaces,” PNAS, 102, 1848-1852, 2005.
Shiu, J. Y., Kuo, C. W., Chen, P., Mou, C. Y., “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography,” Chem. Mater., 16, 561-564, 2004.
Sun, T., Wang, G.; Liu, H., Feng, L., Jiang, L., Zhu, D., “Control over the Wettability of an Aligned Carbon Nanotube Film,” J. Am. Chem. Soc., 125, 14996-14997, 2003.
Tadanaga K., Morinaga J., Matsuda A., Minami T.,
“Superhydrophobic-Superhydrophilic Micropatterning on FlowerlikeAlumina Coating Film by the Sol-Gel Method,” Chem. Mater, 12, 590 – 592, 2000.
Vallant, T., Kattner, J., Brunner, H., Hoffmann, H., “Investigation of the Formation and Structure of Self-Assembled Alkylsiloxane Monolayers on Silicon Using in Situ Attenuated Total Reflection Infrared Spectroscopy,” Langmuir, 15, 5339-5346, 1999.
Vansant, E. F., Van Der Voort, P., Vrancken, K. C., “Characterization and Chemical Modification of the Silica Surface,” Elsevier: Amsterdam, 1995.
Walheim, S., Sch�矚fer, E., Mlynek, J. and Steiner, U., “Nanophase-separated polymer films as high-performance antireflection coatings,” Science, 22, 283, 520-522, 1999.
Wenzel, R. N., “Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng. Chem., 28, 988-994, 1936.
Xu, Q. F., Wang, J. N., Smithc, I. H., Sanderson, K. D., “Superhydrophobic and transparent coatings based on removable polymeric spheres,” J. Mater. Chem., 19, 655–660, 2009.
Yoldas, B.E., “Investigations of porous oxides as an antireflective coating for glass surfaces,” Applied Optics, 19, 9, 1425-1429, 1980.
Yoldas, B.E. and Partlow. D.P., “Wide spectrum antireflective coating for fused silica and other glasses,” Applied Optics, 23, 9, 1418-1424, 1984.
Yu, X., Wang, Z. Q., Jiang, Y. G., Zhang, X., “Surface Gradient Material: From Superhydrophobicity to Superhydrophilicity,” Langmuir, 22, 4483–4486, 2006.
Zhang, X. T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., Fujishima, A., “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater., 17, 696-700, 2005.
Zhai, L., Berg M., Cebeci F.C., Kim Y., Milwid J. M., Rubner M.F., Cohen R.E., “Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle,” Nano Lett., 6, 1213-1217, 2006.
李正中,「薄膜光學與鍍膜技術」第二版,藝軒圖書出版社,台北市
, 2001.
王武敬,『光學機能性奈米高分子材料於平面顯示器抗反射光學塗裝
之應用』,化工資訊與商情 第33期,54-62, 2006.
劉博滔,「奈米二氧化矽製備多孔性低折射率塗層之膠體行為」化工,
53, 4, 44-48, 2006.
張鑑祥, 楊毓民, “分子層級的薄膜表面型態控制-逐層組裝技術,” 化工技術, 12, 9,135-144, 2004.
張貴錢, “有機高分子與矽氧烷化合物製備超疏水及高透光性薄膜之研究,” 國立中央大學化學工程與材料工程所博士論文, 2006.
張德威,”抗反射及親疏水效應和一維奈米玻璃結構之互動分析與驗證,”臺灣大學工程科學及海洋工程學研究所碩士論文,2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top