跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 10:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:席維倫
研究生(外文):Wirawan Ciptonugroho
論文名稱:矽奈米線之製備、表面修飾及光電化學應用
論文名稱(外文):Preparation, Surface Modification, and Photoelectrochemical Application of Silicon Nanowires
指導教授:陳東煌陳東煌引用關係
指導教授(外文):Dong-Hwang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:73
中文關鍵詞:光化學電池鉑奈米粒子矽奈米線無電鍍金屬沉積
外文關鍵詞:photoelectrochemical cells.silicon nanowireselectroless metal depositionplatinum nanoparticle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
本論文係在矽晶圓(100)晶面上以無電鍍金屬沉積法於硝酸銀與氫氟酸混合溶液中成長單晶結構之矽奈米線,其奈米線陣列形態可由掃描式電子顯微鏡(SEM)鑑定得知。從X射線繞射儀(XRD)的分析中可知在繞射角度700時出現一代表(004)方向之主要繞射峰,而從紫外光/可見光(UV/Vis)光譜儀分析顯示,若將矽晶圓浸沒在硝酸銀與氫氟酸混合溶液中至少30分鐘,可得到少於10%以下之反射率。
接著將製備好之矽奈米線進行表面改質,利用乙二醇還原及無電鍍法將鉑奈米粒子披覆在矽奈米線表面,沉積良好且均勻分散於矽奈米線表面上,粒徑約5.99 2.295nm。從高解析穿透式電子顯微鏡(TEM)分析中可知,1.388 Å的晶格常數符合鉑奈米粒子之(220)晶面,能量散佈分析儀(EDS)的結果也證明鉑奈米粒子確實存在於其中。相較之下,以乙二醇為溶劑的乙二醇還原及電鍍法只有少部分的鉑奈米粒子披覆於矽奈米線表面。在光電化學電池的應用上,將97.1 mW/cm2(在400nm附近量測)的燈源照射在披覆鉑奈米粒子之矽奈米線的光電極上,可發現改質後之矽奈米線的光電極,較未改質者有較好的光電流提升現象,隨後的實驗結果皆顯示披覆鉑奈米粒子者有最佳之電流表現。
Single crystalline silicon nanowires have been synthesized using electroless metal deposition method on a p-type silicon wafer (100) in AgNO3/HF solutions. The orthogonal structure has been confirmed by SEM. XRD analysis exhibits one highly dominant peak at 700 which is belong to (004) silicon plane. UV-VIS spectra show the reflectance of light is significantly reduced to less than 10% for at least 30 minute immersion time. Surface modification of silicon nanowires with platinum nanoparticles has also been carried out by ethylene glycol reduction and electroless plating method. The platinum nanoparticles deposit very well and uniformly dispersed on silicon nanowires for the electroless plating method at which the particle size is 5.99 nm in average and 2.295 nm of standard deviation. From HRTEM image, 1.388 Å of lattice spacing has been obtained which is in the accordance with platinum (220) plane. EDX spectra also corroborate the presence of platinum nanoparticles. In contraty, only a few platinum nanoparticles remain on silicon nanowires surface by ethylene glycol method and electroless deposition in which ethylene glycol was employed as solvent. Photoelectrochemical measurement was carried out to examine the effect of platinum-modified silicon nanowires by irradiating the samples using 97.1 mW/cm2 of light power (measured at 400 nm). The nanowires structure has the greater photocurrent compared to the unmodified planar silicon. Subsequently, platinum-modified silicon nanowires perform the highest photocurrent over all tested sample.
ABSTRACT i
CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES ix
ACKNOWLEDGEMENT x

Chapter 1 INTRODUCTION 1
1.1 Brief Introduction 1
1.2 Backgrounds 4
1.2.2 Silicon Nanowires (SiNWs) 8
1.2.3 Photoelectrochemistry 15
1.2.4 Surface modification of silicon nanowires and its applications in photoelectrochemical cells 20
1.3 Research Motivation 28

Chapter 2 EXPERIMENT DETAILS 30
2.1 Materials and Chemicals 30
2.2 Procedures 30
2.2.1 Cleaning Steps 30
2.2.2 Silicon Nanowires Formation 31
2.2.3 Deposition of platinum nanoparticles onto silicon surface 32
2.2.3.1 Reduction method assisted by ethylene glycol (EG) 32
2.2.3.2 Pretreatment method 33
2.2.4 Photoelectrode Preparation 34
2.3 Characterization and measurements. 35
2.3.1 X-Ray Diffraction 35
2.3.2 Scanning Electron Microscopy 35
2.3.3 Transmission Electron Microscopy 35
2.3.4 UV-VIS Absorption Spectra 36
2.3.5 Photoelectrochemical Measurement 36

Chapter 3 RESULTS and DISCUSSION 37
3.1 Silicon Nanowires Formation 37
3.1.1 The dependence of HF concentration 37
3.1.2 The time dependence 39
3.1.3 X-Ray Diffraction (XRD) Analysis 42
3.1.4 UV-VIS Spectra 44
3.2 Surface Modification of Silicon Nanowires 45
3.2.1 Ethylene Glycol Method 46
3.2.1.1 Ethylene Glycol Method with Sodium Dodecyl Sulfate (C12H25OSO3Na) 46
3.2.1.2 Ethylene Glycol Method with Sodium Acetate (C2H3O2Na) 49
3.2.2 Pretreatment Steps in Electroless Plating 53
3.2.2.1 Water as solvent 53
3.2.2.1 Ethylene Glycol as solvent 57
3.3 Photoelctrochemical Properties 61

Chapter 4 CONCLUSION 69
REFERENCES 70
CURICULUM VITAE 76
[1]E. Selli, G. L. Chiarello, E. Quartarone, P. Mustarelli, I. Rossetti, and L. Forni, "A photocatalytic water splitting device for separate hydrogen and oxygen evolution", Chemical Communications, 5022 (2007).
[2]J. Maiolo, B. Kayes, M. Filler, M. Putnam, M. Kelzenberg, H. Atwater, and N. Lewis, "High aspect ratio silicon wire array photoelectrochemical cells", Journal of the American Chemical Society, 129, 12346 (2007).
[3]M. Gratzel, "Photoelectrochemical cells", Nature, 414, 338 (2001).
[4]M. Z. Jacobson, "Review of solutions to global warming, air pollution, and energy security", Energy & Environmental Science, 2, 148 (2009).
[5]B. Kayes, H. Atwater, and N. Lewis, "Comparison of the device physics principles of planar and radial pn junction nanorod solar cells", Journal of Applied Physics, 97, 114302 (2005).
[6]E. Dalchiele, F. Mart璯, D. Leinen, R. Marotti, and J. Ramos-Barrado, "Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells", Journal of the Electrochemical Society, 156, K77 (2009).
[7]K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, "Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays", Angewandte Chemie(International ed. Print), 44, 2737 (2005).
[8]M. Szklarczyk and J. Bockris, "Photoelectrocatalysis and electrocatalysis on p-silicon", The Journal of Physical Chemistry, 88, 1808 (1984).
[9]http://www.hardwarezone.com.sg/articles/view.php?id=1038&cid=15&pg=5.
[10]http://www.onyxcollection.com/new/silicone.html.
[11]www.hanaco.com/page3.htm.
[12]K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, "Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles", Advanced Functional Materials, 16, 387 (2006).
[13]C. F. Pan and J. Zhu, "The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires", Journal of Materials Chemistry, 19, 869 (2009).
[14]R. Wagner and W. Ellis, "Vapor-liquid-solid mechanism of single crystal growth", Applied Physics Letters, 4, 89 (1964).
[15]P. Gorostiza, R. D, J. Servat, F. Sanz, and J. Morante, "Atomic Force Microscopy Study of the Silicon Doping Influence on the First Stages of Platinum Electroless Deposition", Journal of the Electrochemical Society, 144, 909 (1997).
[16]D. Yu, C. Lee, I. Bello, X. Sun, Y. Tang, G. Zhou, Z. Bai, Z. Zhang, and S. Feng, "Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature", Solid State Communications, 105, 403 (1998).
[17]N. Wang, Y. Tang, Y. Zhang, C. Lee, and S. Lee, "Nucleation and growth of Si nanowires from silicon oxide", PHYSICAL REVIEW-SERIES B-, 58, 16 (1998).
[18]B. Marsen and K. Sattler, "Fullerene-structured nanowires of silicon", PHYSICAL REVIEW-SERIES B-, 60, 11593 (1999).
[19]T. Tsutsumi, K. Ishii, H. Hiroshima, S. Hazra, M. Yamanaka, I. Sakata, H. Taguchi, E. Suzuki, and K. Tomizawa, "Fabrication technology of a Si nanowire memory transistor using an inorganic electron beam resist process", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 18, 2640 (2000).
[20]M. Gotza, M. Dutoit, and M. Ilegems, "Fabrication and photoluminescence investigation of silicon nanowires on silicon-on-insulator material", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 16, 582 (1998).
[21]A. Bard, "Photoelectrochemistry", Science, 207, 139 (1980).
[22]K. Honda and A. Fujishima, "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37 (1972).
[23]www.solarisnano.com/solarenergi.php
[24]S. Sato and J. M. White, "Photo-decomposition of water over p-tio2 catalysts", Chemical Physics Letters, 72, 83 (1980).
[25]G. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, "Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au? TiO2 and Pt? TiO2", Journal of Photochemistry & Photobiology, A: Chemistry, 89, 177 (1995).
[26]R. M. Candea, M. Kastner, R. Goodman, and N. Hickok, "Photoelectrolysis of water - si in salt-water", Journal of Applied Physics, 47, 2724 (1976).
[27]R. Dominey, N. Lewis, J. Bruce, D. Bookbinder, and M. Wrighton, "Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes", Journal of the American Chemical Society, 104, 467 (1982).
[28]Y. Nakato, K. Ueda, H. Yano, and H. Tsubomura, "Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion", The Journal of Physical Chemistry, 92, 2316 (1988).
[29]S. Yae, R. Tsuda, T. Kai, K. Kikuchi, M. Uetsuji, T. Fujii, M. Fujitani, and Y. Nakato, "Efficient photoelectrochemical solar-cells equipped with an n-si electrode modified with colloidal platinum particles", Journal of the Electrochemical Society, 141, 3090 (1994).
[30]S. Yae, M. Kitagaki, T. Hagihara, Y. Miyoshi, H. Matsuda, B. Parkinson, and Y. Nakato, "Electrochemical deposition of fine Pt particles on n-Si electrodes for efficient photoelectrochemical solar cells", Electrochimica Acta, 47, 345 (2001).
[31]Y. Kawamura, T. Sakka, and Y. Ogata, "Photoassisted control of Pt electrodeposition on p-type Si", Journal of the Electrochemical Society, 152, C701 (2005).
[32]K. Peng, X. Wang, and S. Lee, "Silicon nanowire array photoelectrochemical solar cells", Applied Physics Letters, 92, 163103 (2008).
[33]B. H. Zhang, H. S. Wang, L. H. Lu, K. L. Ai, G. Zhang, and X. L. Cheng, "Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy", Advanced Functional Materials, 18, 2348 (2008).
[34]J. A. Martinez, N. Misra, Y. M. Wang, P. Stroeve, C. P. Grigoropoulos, and A. Noy, "Highly Efficient Biocompatible Single Silicon Nanowire Electrodes with Functional Biological Pore Channels", Nano Letters, 9, 1121 (2009).
[35]L. Wan, W. Gong, K. Jiang, H. Li, B. Tao, and J. Zhang, "Preparation and surface modification of silicon nanowires under normal conditions", Applied Surface Science, (2008).
[36]J. Turkevich, P. Stevenson, and J. Hillier, "A study of the nucleation and growth processes in the synthesis of colloidal gold", Discussions of the Faraday Society, 11, 55 (1951).
[37]N. Toshima and T. Yonezawa, "Bimetallic nanoparticles�novel materials for chemical and physical applications", New Journal of Chemistry, 22, 1179 (1998).
[38]L. Rampino and F. Nord, "Preparation of palladium and platinum synthetic high polymer catalysts and the relationship between particle size and rate of hydrogenation", Journal of the American Chemical Society, 63, 2745 (1941).
[39]Y. Wang, X. Xu, Z. Q. Tian, Y. Zong, H. M. Cheng, and C. J. Lin, "Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution", Chemistry-A European Journal, 12, 2542 (2006).
[40]S. Dag, O. Gulseren, T. Yildirim, and S. Ciraci, "Oxygenation of carbon nanotubes: Atomic structure, energetics, and electronic structure", Phys. Rev. B, 67, 10 (2003).
[41]E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci, "Systematic study of adsorption of single atoms on a carbon nanotube", Phys. Rev. B, 67, (2003).
[42]Y. Kobayashi, V. Salgueirino-Maceira, and L. Liz-Marzan, "Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating", Chem. Mater, 13, 1630 (2001).
[43]C. Chartier, S. Bastide, and C. L憝y-Cl幦ent, "Metal-assisted chemical etching of silicon in HF�H2O2", Electrochimica Acta, 53, 5509 (2008).
[44]T. Qiu, X. Wu, G. Siu, and P. Chu, "Intergrowth mechanism of silicon nanowires and silver dendrites", Journal of Electronic Materials, 35, 1879 (2006).
[45]S. Takabayashi, M. Ohashi, K. Mashima, Y. Liu, S. Yamazaki, and Y. Nakato, "Surface structures, photovoltages, and stability of n-Si(111) electrodes surface modified with metal nanodots and various organic groups", Langmuir, 21, 8832 (2005).
[46]K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, "Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle", Solar Energy Materials and Solar Cells, (2008).
[47]B. J. Hornstein and R. G. Finke, "Transition-metal nanocluster kinetic and mechanistic studies emphasizing nanocluster agglomeration: Demonstration of a kinetic method that allows monitoring of all three phases of nanocluster formation and aging (vol 16, pg 139, 2004)", Chem. Mat., 16, 3972 (2004).
[48]A. Survila and D. Brazinskiene, "Inhibition activity of ethyleneglycol and its oligomers on tin electrode", J. Solid State Electrochem., 11, 65 (2007).
[49]H. Kobayashi, A. Chigami, N. Takeda, and H. Tsubomura, "High Photovoltages Arising from n-silicon Methanol Junctions Studied by the Temperature-dependence of Open-circuit photovoltages", Journal of Electroanalytical Chemistry, 287, 239 (1990).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top