跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝明霖
研究生(外文):Ming-Lin Shieh
論文名稱:遙測技術應用於懸浮泥砂濃度定量估算之研究
論文名稱(外文):Application of remote sensing technique on estimating suspended sediment concentration
指導教授:謝正倫謝正倫引用關係劉正千劉正千引用關係
指導教授(外文):Chjeng-Lun ShiehCheng-Chien Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:153
中文關鍵詞:泥砂指數吸收係數粒徑特性波長懸浮泥砂濃度遙測
外文關鍵詞:suspended sediment concentration (SSC)suitable wavelengthsizespecific absorption coefficientremote sensingsuspended sediment index (SSI)
相關次數:
  • 被引用被引用:3
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
遙測方法具有近即時、大範圍及長時間監測等優點,改善傳統方法的缺點,提升對於水中泥砂時空分佈監測及含砂濃度推估之能力。所謂的水色(water color)是指水體在可見光及近紅外光波段的反射光譜所組成,隨著水體組成物質及含量所產生不同的顏色變化,正如肉眼所見的顏色差異一般。唯目前針對懸浮泥砂的光譜特性尚未完全掌握,因此在估算的精確度上仍有突破的空間,本研究希望藉由商用輻射傳輸模式-HYDROLIGHT模擬、現場光譜採樣與水槽試驗三個方向探討懸浮泥砂的光學特性,包括泥砂種類、濃度及粒徑大小等三個最大的影響因素。
研究首先透過HYDROLIGHT輻射傳輸模式的模擬,根據模擬的條件設定探討懸浮泥砂在「環境組成」及「泥砂種類」等兩大因素下之懸浮泥砂光譜反射率,利用遙測反射率第一峰值特性訂定不同懸浮泥砂種類之遙測定量特性波長。在可見光的範圍內,可以將光譜波長鎖定在600-700nm區間,以本研究之選定之懸浮泥砂種類為例,各特性波長分別如下:紅色黏土(650nm)、棕壤土(675nm)、黃色黏土(700nm)及鈣質砂土(600nm)。
利用遙測技術進行懸浮泥砂濃度的定量方法,由於懸浮泥砂固有光學特性的資料有限,透過理論解析的方法還有待後續持續研究,因此目前多採用經驗或半經驗的統計方法進行定量分析。本研究修訂目前最常使用的「遙測泥砂指數」,針對水庫及河川等兩種內陸常見之水域以現地水樣之高光譜的峰值波長取代衛星波段,達到不錯的定量分析結果。

透過輻射傳輸的模擬及現場水域的高光譜遙測定量分析,針對懸浮泥砂的遙測定量分析獲得初步的瞭解,然而無論是遙測光學技術還是目前常用的光學式懸浮泥砂量測技術都具備一個共同的缺點-粒徑影響,因此,針對懸浮泥砂顆粒粒徑進行室內水槽光學實驗。
根據實驗結果顯示,透過生光模式理論的比吸收係數概念,懸浮泥砂的比吸收係數與可見光光譜波長成指數衰減關係。進一步探討比吸收係數特性與泥砂顆粒粒徑的關係發現,無論單一泥砂種類或是現場混合泥砂,懸浮泥砂之比吸收係數與泥砂顆粒粒徑成「反比」關係,而且相同泥砂顆粒粒徑下,不同水域之現場混合泥砂,其比吸收係數特性亦有所差異。
根據目前的研究結果,可以將懸浮泥砂遙測定量分析分成二個階段,第一階段是短期應用,可以應用衛星進行大規模水域整體濃度的分佈概況或利用高光譜儀結合遙測泥砂指數的定量分析方式提高單點濃度估算的精確度;第二階段則是有待後續研究的持續進行,在粒徑及種類等影響因素的固有光學特性資料庫建立完全後,則可以透過理論解析的方式直接進行外顯光學特性及水中組成成分的相互推算。
Information of the concentration of suspended sediments in waters is necessary for the researchers and environmental management staff. Estimation of suspended sediment concentration (SSC) in large areas of water using in situ sampling is time-consuming, expensive, inaccurate, and does not include all water areas.
Hydrologic optics is the foundation of remote sensing of water color, which retrieves the information of water constituents from the optical measurements of surface reflectance. Review of literatures, the wavelength of each scholar used in the quantitative analysis of the SSC is not consistent; it is difficult to be applied on different regions. In this research study, three methods, model simulation, in situ measurement and experimental approaches are used to analyze the optical influence factors which included sediment types, concentrations and sizes.
The simulated schemes attempt to explore the corresponding wavelength at each reflectance peak value of various sediment concentration waters and sediment types. In the results, the SSC of water more than 400 mg/L had a suitable wavelength for the quantitatively by remote sensing reflectance, such as 650nm for red clay, 675nm for brown earth, and 600nm for calcareous sand. Based on the above results, following researches try to classify SSCs and establish semi-empirical relationships between reflectance peak values and SSCs.
This research study applies Ocean Optics USB2000 spectroscope to measure remote sensing reflectance ; and analyze water SSC in Tseng-Wen Reservoir and Kao-Ping Intercept Weir of South Taiwan. Base on the relationships between water suspended sediment concentrations and remote sensing reflectance derive a semi-empirical model was developed and applied on measuring SSC in inland water. Linear regression analyses showed the best fit for the relationship between SSC and suspended sediment index (SSI) was linear and exponential for Tseng-wen Reservoir and Kao-ping Intercept Weir, respectively. The coefficients of determination are both the same values of 0.83.
According to simulated results from HYDROLIGHT, the model is validated; therefore, it could be applied in the nearby water areas of the Kao-Ping Intercept Weir. We modified the algorithms established by Tassan (1994) that using SeaWiFS data for retrieval of SSCs. Two types of sediment- “Red Clay” and “Brown earth” were used to establish relationships between SSC and SSI with R2 equals 0.80 and 0.82. In general, the suitable wavelength of different sediment types could be used for SSC estimation.
The size of suspended sediment in the inland waters is an important factor for optical monitoring method. A water tank was used for all experiments, and the inner surface was painted black in order to minimize the extraneous reflectance of the light. After collecting the absorption coefficient data of different sediment sizes by using the AC-S instrument. Mie theory was used toanalyze the specific absorption coefficient of different sediment sizes. The result shows an inverse relationship between specific absorption coefficient and sediment size. Therefore, this relationship could be applied to single type and field mixture sediments such as standard sand and Kao-Ping River sediment.
Although this study had established several suspended sediment quantification methods; however, it is suggested that more effort is needed for following study about the mixture sizes and different sediment types.
章節目錄
中文摘要………………………………………………………… I
Abstract…………………………………………………… III
誌謝................................................... V
章節目錄………………………………………………………… VII
圖目錄…………………………………………………………… X
表目錄…………………………………………………………… XIV
英文縮寫符號表......................................... XV

第一章、研究緣起與目的
1-1 研究背景………………………………………………… 1
1-2 研究目的………………………………………………… 5
1-3 論文架構………………………………………………… 6
第二章、懸浮泥砂測定方法之回顧
2-1 傳統取樣量測方法……………………………………… 9
2-2 間接儀器量測方法……………………………………… 11
2-3 遙測光學定量方法……………………………………… 20
2-3-1 衛星遙測定量方法………………………………… 23
2-3-2 手持式高光譜遙測定量方法……………………… 35
2-3-3 懸浮泥砂固有光學特性探討……………………… 39
第三章、水色遙測之研究方法
3-1 水色光學理論…………………………………………… 43
3-1-1 水體組成要素……………………………………… 44
3-1-2 固有光學性質……………………………………… 44
3-1-3 外顯光學性質……………………………………… 48
3-1-4 生光模式…………………………………………… 52
3-1-5 輻射傳輸模式……………………………………… 55

3-1-6 常見光學遙測平台………………………………… 57
3-2 輻射傳輸模式模擬……………………………………… 59
3-2-1輻射傳輸模式及HYDROLIGHT模式簡介…………… 59
3-2-2 模擬規劃…………………………………………… 61
3-3 現場高光譜遙測………………………………………… 65
3-3-1 手持式高光譜輻射儀及操作概述………………… 65
3-3-2 水體懸浮泥砂濃度測定方法……………………… 67
3-3-3 遙測懸浮泥砂指數定量分析……………………… 68
3-4 室內水槽光學特性實驗………………………………… 70
3-4-1 實驗水槽設計……………………………………… 70
3-4-2 實驗光學儀器介紹………………………………… 74
3-4-3 實驗設計…………………………………………… 76
3-4-4 實驗步驟及數據處理……………………………… 78
第四章、研究成果
4-1 懸浮泥砂遙測反射率特徵波長………………………… 81
4-1-1 不同環境因素影響………………………………… 81
4-1-2 不同懸浮泥砂種類的特性………………………… 86
4-1-3 小結………………………………………………… 92
4-2 手持式高光譜遙測定量分析…………………………… 93
4-2-1 研究區域…………………………………………… 93
4-2-2 懸浮泥砂光譜特性分析…………………………… 96
4-2-3 懸浮泥砂遙測定量關係式的建立………………… 102
4-2-4 小結………………………………………………… 104
4-3 懸浮泥砂光譜吸收係數分析…………………………… 105
4-3-1 光譜吸收係數特性分析…………………………… 105
4-3-2 比吸收係數特性分析……………………………… 109
4-3-3 比吸收係數衰減曲線的建立……………………… 116
4-3-4 比吸收係數與粒徑關係分析……………………… 122
4-3-5 小結………………………………………………… 125
4-4 結合泥砂特性之遙測定量方法建立與應用…………… 126
4-4-1 半經驗遙測定量方法建立………………………… 126
4-4-2 結合泥砂特性之遙測定量方法應用……………… 128
4-4-3 懸浮泥砂遙測定量後續研究規劃………………… 133
第五章、結論與建議
5-1 研究結論………………………………………………… 137
5-2 建議……………………………………………………… 140
參考文獻 142
附錄 附-1
1.王心源、李文達、嚴小華、陸應城、周鑫、李祥、夏林益、唐曉光、梅長青,「基於Landsat TM/ETM 數據提取巢湖懸浮泥砂相對濃度的信息與空間分布變化」,湖泊科學,19(3):255-260,(2007)。
2.李四海、惲才興,「河口表層懸浮泥沙氣象衛星遙感定量模式研究」,遙感學報,5(2):154~160,(2001)。
3.李四海、唐軍武、惲才興,「河口懸浮泥砂濃度SeaWiFS遙感定量模式研究」,海洋學報,24(2):51-58,,(2002)。
4.李雲梅、黃家柱、陸皖寧、石浚哲,「基於分析模型的太湖懸浮物濃度遙感監測」,海洋與湖沼,37(2):171-177,(2006)。
5.汪小欽、王欽敏、鄔群勇,「遙感在懸浮物質濃度提取中的應用-以福建閩江口為例」,遙感學報,7(1):54~57,(2003)。
6.林志平、鍾志忠、張育嘉、楊錦釧、葉克家、洪銘堅、曾君敏,「高泥砂濃度觀測:時域反射技術」。
7.馬榮華、唐軍武,「湖泊水色遙感參數獲取與算法分析」,水科學進展,17(5):720-726,(2006)。
8.財團法人成大水利海洋研究發展文教基金會,「中區水資源營運管理計畫-集集攔河堰清淤及排砂操作之研究」,經濟部水利署中區水資源局,(2005)。
9.國立成功大學環境研究中心,「曾文、牡丹、高屏溪、甲仙攔河堰水質檢驗分析計畫」,經濟部水利署南區水資源局,(2006)。
10.國立成功大學環境研究中心,「曾文、牡丹、高屏溪、甲仙攔河堰水質檢驗分析計畫」,經濟部水利署南區水資源局,(2007)。
11.許盈松、蔡俊峰、魏綺瑪、黃宏莆,「水庫泥砂濁度與濃度率定關係研究-以石門水庫為例」,農業工程學報,53(1):62-71,(2007)。
12.莊世仁,「運用蒙地卡羅光束追蹤技術模擬水槽中的輻射傳輸過程」,成功大學地球科學研究所碩士論文,(2008)。
13.陳濤、李武、吳初曙,「懸浮泥砂濃度與光譜反射率峰值波長紅秒的相關關係」,海洋學報,16(1):38-43,(1994)。
14.馮輝,「懸浮泥砂濃度遙感定量模式」,遙感信息,2:16-19,(1987)。
15.傅克忖、荒川久幸,「懸沙水體不同波段反射比的分布特性及懸沙量估算實驗研究」,海洋學報,21(3):134~140,(1999)。
16.童慶禧、張兵、鄭蘭芬,「高光譜遙感的多學科應用」,電子工業出版社,北京,(2006)。
17.雷廷武、趙軍、袁建平、王輝、劉清坤,「利用 射線透射法測量徑流含沙量及算法」,農業工程學報,18(1):18-21,(2002)。
18.樂華福、林壽仁、趙太初、陳立娣,「近海II類海水反射率與表面懸浮泥砂相關性的研究」,國土資源遙感,(2000)。
19.黎夏,「懸浮泥砂遙感定量統一模式及其在珠江口的應用」,環境遙感,7(2):106-113,(1992)。
20.劉正千、張智華、許華宇、譚子健、溫清光,「應用ISIS高頻譜光學遙測影像於曾文水庫之水質監測」,科儀新知,161:29-42,(2007)。
21.賴伯勳,「颱風對石門水庫之濁度影響及因應對策」,經濟部水利署北區水資源局,(2006)。
22.錢寧、萬兆惠,「泥砂運動力學」,科學出版社,中國,(1991)。
23.韓震、惲才興、蔣雪中,「懸浮泥沙反射光譜實驗研究」,水利學報,12:118~121,(2003)。
24.環保署環檢所河川、湖泊及水庫水質採樣通則(NIEA W104.51C)。
25.環保署環檢所水質檢測方法總則 (NIEA W102.51C)。
26.環保署環檢所水中總溶解固體及懸浮固體檢測方法-103 ~105 乾燥 (NIEA W210.57A)。
27.Ahn, Y. H., “Optical properties of biogenous and mineral particles present in the ocean. Application: inversion of reflectance,” Paris-VI university(1990).
28.Agrawal, Y. C., and H. C. Pottsmith. “Laser diffraction particle sizing in STRESS,” Continental Shelf Res., 14(10/11), 1101-1121(1994).
29.Admirral, D.M. and M.H. Garcia, “Laboratory measurement of suspended sediment concentration using an Acoustic Concentration Profiler(ACP),” Experiments in Fluids, 28:116~127(2000).
30.Arst, H., “Optical properties and remote sensing of multicomponental water bodies,” Jointly published with Praxis Publishing, UK (2003).
31.Antonelli, C., F. Eyrolle, B. Rolland, M. Provansal, and F. Sabatier, “Suspended sediment and fluxes during the exceptional December 2003 flood in the Rhone River, southeast france,” Geomorphology, 95:350:360 (2008).
32.Bosman, J.J., Van der Velden ETJM, C.H. Hulsbergen, “Sediment concentration measurement by transverse suction,” Coastal Engineering, 11:353~370 (1987).
33.Barale, V., and P. M. Schlittenhardt, “Ocean color: theory and applications in a decade of CZCS experience,” Kluwer Academic, Dordrecht: 367pp. (1993).
34.Black, K. P., and M. A. Rosenberg, “Suspended sand measurements in a turbulent environment: Field comparison of optical and pump sampling techniques.” Coast. Engrg., 24:137-150 (1994).
35.Buiteveld, H., et al., “Optical properties of pure water,” paper presented at Ocean Optics XII, SPIE, Bergen, Norway (1994).
36.Bukata, R. P., J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters, CRC Press (1995).
37.Binding C. E., D. G. Bowers, and E. G. Mitchelson-Jacob, ,“An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” International Journal of Remote Sensing, 24(19): 3791~3906 (2003).
38.Bowers, D. G., and C. E. Binding, “The optical properties of mineral suspended particles: A review and synthesis,” Estuarine, Coastal and Shelf Science, 67:219-230 (2006).
39.Bowers, D. G., C. E. Binding, and K. M. Ellis, “Satellite remote sensing of the geographical distribution of suspended particle size in an energetic shelf sea,” Estuarine, Coastal and Shelf Science, 73:457-466 (2007).
40.Binding, C. E., J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sensing of Environment, 112:1702-1711 (2008).
41.Chen, Z., J. D. Hansom, and P. J. Curran, “The form of the relationship between suspended sediment concentration and spectral reflectance: its implication for the use of Daedalus 1268 data,” International Journal of Remote Sensing, 12(1): 215~222 (1991).
42.Chen, Z., P. J. Curran, and J. D. Hansom, “Derivative reflectance spectroscopy to estimate suspended sediment concentration,” Remote Sensing of Environment, 40:67~77 (1992).
43.Cipollini, P., G. Corsini, M. Diani and R. Grasso, “Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks,” IEEE Transactions on Geoscience and Remote Sensing, 39(7):1508~1524 (2001).
44.Chen, T., P. Li, L. Zhang, and L. Shi, “Estimating suspended sediment concentration in Yangtze River from Landsat-TM image,”MIPPR 2005: SAR and Multispectral Image Processing (2005).
45.Chang, G. C., A. H. Barnard, S. McLean, P. J. Eali, C. Moore, J. R. V. Zaneveld, T. D. Dickey, and A. Hanson, “In situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing,” Applied Optics, 45(15):3593-3604 (2006).
46.Chen, Z., C. Hu, and M. K. Frank ,“Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sensing of Environment, 109:207-220 (2007).
47.Doxaran, D., J-M Froidefond, S. Lavender, and P. Castaing ,“Spectral signature of highly turbid waters Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sensing of Environment, 81: 149~161 (2002).
48.Doxaran, D., J-M Froidefond, S. Lavender, and P. Castaing,“Remote-sensing reflectance of turbid sediment-dominated water. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratio.” Applied Optics, 42(15): 2623-2634 (2003).
49.Deng, M. and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” International Journal of Remote Sensing, 24(3): 519~534 (2003).
50.Downing, J., “Twenty-five years with OBS sensor: The good, the bad, and the ugly,” Continental Shelf Research, 26:2299~2318 (2006).
51.Doxaran, D., N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Applied Optics, 45(10):2310-2324 (2006).
52.Doxaran, D., M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Optics express, 15(20):12834-12849 (2007).
53.Froidefond, J. M., P. Castaing, J. M. Jouanneau, and A. Dinet, “ Method for quantification of suspended sediments from AVHRR NOAA-11 satellite data,” International Journal of Remote Sensing , Vol. 14, No. 5, pp. 885-894 (1993).
54.Fry, R. M. P. a. E. S., “Absorption spectrum (380-700 nm) of pure water. II. Intergration cavity measurements,” Applied Optics, 36(33): 8710~8723 (1997).
55.Fournier, G. R. J., Miroslaw, “Computer based underwater imaging analysis,” Proceedings of SPIE - The International Society for Optical Engineering, 3761: 62~70 (1999).
56.Fugate, D.C., C.T. Friendrichs, “Determining concentration and all velocity of estuarine particle populations using ADV, OBS and LISST, ” Continental Shelf Research, 22:1867~1886 (2002).
57.Gordon, H.R, “Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations,” Applied Optics, 15(8):1974~1979 (1976).
58.Gregg, W. W., and K. L. Carder, “A Simple Spectral Solar Irradiance Model for Cloudless Maritime Atmospheres,” Limnology and Oceanography, 35(8):1657~1675 (1990).
59.Gin, K. Y.-H., Koh, S. T., and Lin, I.-I., “Spectral irradiance profiles of suspended marine clay for the estimation of suspended sediment concentration in troical waters.” International Journal of Remote Sensing, 24(16):3235~3245 (2003).
60.Green, R. E., R. W. Gould Jr., and D. S. Ko, “Statistical models for sediment/detritus and dissolved absorption coefficients in coastal waters of the northern Gulf of Mexico,” Continental Shelf Research, 28:1273-1285 (2008).
61.Han, L., and D. C. Rundquist, “The response of both surface reflectance and the underwater light field to various levels of suspended sediments - Preliminary results,” Photogrammetric Engineering and Remote Sensing,60(12):1463~1471 (1994).
62.Hatcher, A. P., J. G. Hill, and P. Macpherson, “Spectral optical backscatter of sand in suspension: effects of particle size, composition and colour,” Marine Geology, 168(1-4):115~128 (2000).
63.Hoitink, A.J.F. and P. Hoekstra, “Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment,” Coastal Engineering, 52:103~118 (2005).
64.Ha, H.K., W.Y. Hsu, J.P.Y. Maa, Y.Y. Shao, and C.W. Holland, “Using ADV backscatter strength for measuring suspened cohesive sediment concentration,” Continental Shelf Research, 29:1310~1316 (2009).
65.Islam, M. R., Y. Yamaguchi, and K. Ogawa, “Suspended sediment in the Ganges and Brahmaputra River in Bangladesh: observation from TM and AVHRR data,” Hydrological Process, 15:493~509 (2001).
66.Julian, J. P., M. W. Doyle, S. M. Powers, E. H. Stanley, and J. A. Riggsbee, “Optical water quality in rivers,” Water Resources Research, 44:W10411 (2008).
67.Law, D. J., A. J. Bale, and S. E. Jones, “Adaptation of focused beam reflectance measurement to in-situ particle sizing in estuaries and coastal waters.” Marine Geology, Amsterdam, 140(1-2): 47-59 (1997).
68.Li, Y., W. Huang, and M. Fang, “An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data,” Continental Shelf Research, 18:487~500 (1998).
69.Loisel, H., and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnology and Oceanography, 43(5):847~858 (1998).
70.Liu, C. C., K. L. Carder, R. L. Miller, and J. E. Ivey , “Fast and accurate model of underwater scalar irradiance,” Applied Optics, 41(24):4962~4984 (2002).
71.Lee, Z.P., “Models, parameters , and approaches that used to generate wide range of absorption and backscattering spectra,” Retrieved from: http://www .ioccg.org/groups/lee_data.pdf (2003).
72.Liu, C.C., J. Woods, “Prediction of ocean colour: Monte-Carlo simulation applied to a virtual ecosystem based on the Lagrangian Ensemble method,” International Journal of Remote Sensing, 25(5):921~936 (2004).
73.Lillesand, T. M., R. W. Kiefer, and J. W. Chipman, “Remote sensing and image interpretation,” John Wiley & Sons, 763pp (2004).
74.Li, X., T. Lai, W. Wang, Q. Xu, and J. Zhao,“Capacitance sensors for measuring suspended sediment concentration,” CATENA, 60:227~237 (2005).
75.Liu, C.C., R.L. Miller, K.L. Carder, Z.P. Lee, E.J. D. Sa and J.E. Ivey, “Estimating the underwater light field from remote sensing of ocean color,” Journal of Oceanography, 62(3):235~248 (2006).
76.Liu, C.C., J. G. Liu, C. W. Lin, A. M. Wu, S. H. Liu, and C. L. Shieh,“Image processing of FORMOSAT-2 data for monitoring South Asia tsunami. ” International Journal of Remote Sensing, 28(13):3093~3111 (2007).
77.Loisel, H., X. Meriaux, J. F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnology and Oceanography, 52(2):739-752 (2007).
78.Liu, C.C., C.L. Shieh, C.A. Wu and M.L. Shieh, “Change detection of gravel mining on riverbeds from the multi-temporal and high-spatil-resolution Formosat-2 imagery,” River Research and Applications (2008).
79.McHenry, J. R., N. L. Coleman, J. C. Wills, C. E. Murphree, G. C. Bolton, O. W. Sansom, and A. C. Gill, “Performance of nuclear-sediment concentration gauges.” Proc., Isotopes in Hydrology SYmp., International Atomic Energy Agency, Vienna, 207-225 (1967).
80.Mertes, L. A. K., M. O. Smith, and J. B. Adams, “Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat images,” Remote Sensing of Environment, 43:281~301 (1993).
81.Mobley, C. D., B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields” Applied Optics, 32(36): 7484-7504 (1993).
82.Mobley, C. D., Light and Water – Radiative Transfer in Waters, Academic Press, pp.60-142, San Diego (1994).
83.Mobley, C.D., “Estimation of the remote-sensing reflectance from above-surface measurement,” Applied Optics, 38:7442~7455 (1999).
84.Mobley, C.D. and L.K. Sundman, “HYDROLIGHT 4.2 Technical Documentation,” Sequoia Scientific, Inc. (2001).
85.Mobley, C.D. and L.K. Sundman, “HYDROLIGHT 4.2 Users’ Guide,” Sequoia Scientific, Inc. (2001).
86.Mueller, J. L., Fargion, G.S. and McClain, C. R., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation.,Revision 4, NASA/TM- 2003- 211621 (2003).
87.Miller, R. L., and B. A. McKee, “Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sensing of Environment, 93:259~266 (2004).
88.Mckee, D., and A. Cumningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and sedwater constituents” Estuarine, Coastal and Shelf Science, 68:305-316 (2006).
89.Martinez, C., G.R. Hancock, and J.D. Kalma, “Compareison of fallout radionclide (caesium-137) and modeling approaches for the assessment of soil erosion rates for an uncultivated site in south-eastern Australia,” Geoderma, 151:128~140 (2009).
90.Nelson, M. E., and P. C. Benedict, “Measurement and analysis of suspended-sediment loads in streams,” Trans. ASCE, 116:891-918 (1950).
91.Novo, E. M. M., C. A. Steffen, and C. Z. F. Braga, “Results of laboratory experiment relating spectral reflectance to total suspended solids,” Remote Sensing of Environment, Vol. 36, pp.67-72 (1991).
92.Nellis, M. D., J. A. Harrington Jr., and J. Wu, “Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993,” Geomorphology, 21:281~293 (1998).
93.Odermatt, D., T. Heege, J. Nieke, M. Kneubuhler, and K. Itten, “Water quality monitoring for lake constance with a physically based algorithm for MERIS data,”Sensors, 8:4582-4599 (2008).
94.Petzold, T. J., “Volume Scattering Functions for Selected Ocean Waters, “ Light in the Sea, 152–174 (1977).
95.Prieur, L., and S. Sathyendranath, “An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials,” Limnology and Oceanography, 26(4): 671~688 (1981).
96.Phillips, J. M., and D. E. Walling, “An assessment of the effect of sample collection, storage and resuspension on the representativeness of measurements of the effective particle size distribution of fluvial suspended sediment,” Water Research, 29(11):298 (1995a).
97.Phillips, J. M., and D. E. Walling, “Measurement in situ of the effective particle-size characteristics of fluvial suspended sediment by means of a field-portable laser backscatter probe: Some preliminary results,” Marine Freshwater Res., 46:349-357 (1995b).
98.Porto, P., D.E. Walling, and V. Ferro, “Validating the use of caesium-137 measurement to estimate soil erosion rates in a small drainage basin in Calabria, Southern Italy,” Journal of Hydrology, 248:93~108 (2001).
99.Peng, F., S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Applied Optics, 46(26):6577-6594 (2007).
100.Reddy, M. A., “Remote sensing for mapping of suspended sediments in Krishna Bay Estuary, Andhra pradesh, India,” International Journal of Remote Sensing, 14(11): 2215-2221 (1993).
101.Ritchie, J. C., and C. M. Cooper, “ Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data,” International Journal of Remote Sensing, 9(3):379~388 (1988).
102.Richard C., L. Robin McCocks, and Ian R. Plimer, Encyclopedia of Geology, Oxford: Elsevier Limited (2005).
103.Stumpf, R. P., and J. R. Pennock, “Calibration of a general optical equation for remote sensing of suspended sediment in a moderatelyturbid turbid estuary,” Journal of Geophysical Research, 94(C10): 14363~14371 (1989).
104.Sutherland, T.F., P.M. Lane, C.L. Amos and J. Downing, “ The calibration of optical backscatter sensor for suspended sediment of varying darkness level,” Marine Geology, 162:587~597 (2000).
105.Salinas, S. V., C. W. Chang, and S. C. Liew, “Multiparameter retrieval of water optical properties from above-water remote sensing reflectance using the simulated annealing algorithm,” Applied Optics, 46(14):2727-2742 (2007).
106.Stramski, S., M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnology and Oceanography, 52(6):2418-2433 (2007).
107.Snyder, W. A., R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamels, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Applied Optics, 47(5):666-677 (2008).
108.Stavn, R. H. and S. J. Richter, “Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters,” Applied Optics, 47(14):2660-2679 (2008).
109.Topp, G.C., J.L. Davis, and A.P. Annan, “Electromagnetic determination of soil water content and electrical conductivity measurement using time domain reflectometry,” Water Resource Research, 16:574~582 (1980).
110.Topp, G.C., M. yanuka, W.D. Zebchuk, and S. Zegelin, “Determination of electrical conductivity using time domain reflectometry: soil and water experiments in coaxial lines,” Water Resource Research, 24:945~952 (1988).
111.Thorne, P. D., C. E. Vincent, P. J. Hardcastle and N. Pearson, “Measuring suspended sediment concentrations using acoustic backscatter devices,” Marine Geol., Amsterdam, 98:7-16 (1991).
112.Tassan, S.,”Local algorithms using SeaWiFS data for retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters.” Applied Optics, 33(12): 2369-2378 (1994).
113.Thorne, P.D., D.M. Hanes, “A review of acoustic measurement of small-scale sediment processes,” Continental Shelf Research, 22:603~632 (2002).
114.Tzortziou, M., A. Subramaniam, J. R. Herman, C. L. Gallegos, P. J. Neale, and L. W. Harding Jr., “Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay,” Estuarine, Coastal and Shelf Science, 72:16-32 (2007).
115.Ustin, S. L., Manual of Remote Sensing, 3 ed., John Wiley & Sons, Hoboken NJ, pp. 768-770 (2004).
116.Williams, J., “Suspended Sediment Determination in Estuarine Waters from Photometer and Secchi Disc Measurements,” Available from the National Technical Information Service (1975).
117.Wren, D. G., B. D. Barkdoll, R. A. Kuhnle, and R. W. Derrow, “Field techniques for suspended-sedimet measurement,” Journal of Hydraulic Engineering, ASCE, 126(2):97-104 (2000).
118.Wren, D. G., Surrogate techniques for suspended-sediment measurement Reno., NV April 30- May 2 (2002).
119.Walling, D.E., Q. he, and P.A. Whelan, “Using measurements to validate the application of the AGNPS and ANSWERS erosion and sediment yield models in two small Devon catchments,” Soil and Tillage Research, 69:27~43 (2003).
120.Warrick, J. A., L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS, ”International Journal of Remote Sensing, 25(10):1995~2002(2004).
121.WETLabs, “Spectral Absorption and Attenuation Meter-ac-s User’s Guide,” WET Labs, Inc. (2006).
122.Wang, JianJun, XiXi Lu, and Yue Zhou,“Retrieval of suspended sediment concentration in the turbid water of the Upper Yangtze River using Landsat ETM+,”Chinese Science Bulletin, 52:273~280 (2007).
123.Whitmire, A. L., E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Optics express, 15(11):7019-7031 (2007).
124.Winter, C., M. Becker, V.B. Ernstsen, D. Hebbeln, A. Port, A. Bartholoma, B. Flemming, and M. Lunau, “In-situ observation of aggregate dynamics in a tidal channel using acoustics lader diffraction and optics, ” Journal of Coastal Research, 50:1173~1177 (2007).
125.Yang, X., “Manual on sediment management and measurement,” World meteorological organization- operational hydrology report No.47 (2003).
126.Zhang, H., C. Liu, B. He, M. Li, and Y. Yie, “Study on the quantitative model of suspended sediment from MODIS in the Yangtze River,” Geoinformatics 2008 and Joint conference on GIS and Built Environment: Monitoring and Assessment of Natural Resources and Environments (2008).
127.Zapata, F., “The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: recent advances and future developments,” Soil and Tillage Research, 69:3~13 (2002).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top