跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭晉安
研究生(外文):Chin-an Kuo
論文名稱:波浪水槽數位影像水位監測分析技術及應用研究
論文名稱(外文):Digital image technique and data application on monitoring water surface in wave flume
指導教授:黃煌煇黃煌煇引用關係
指導教授(外文):Hwung-hweng Hwung
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:267
中文關鍵詞:俯視攝影波浪水位影像偵測波浪入反射分離
外文關鍵詞:detection of water surfaceseparation of incident and reflected wavesoverhead capture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本文應用CCD (Charge Coupled Device) 數位攝影機以俯視攝影方式,在戶外不透明斷面波浪水槽且無任何人為光源條件下,拍攝一系列波浪實驗影像,再依據數位影像處理技術,偵測、分析波浪連續水位變化資料,探討不同俯視攝影角度對波浪水位偵測影響,提出改善大角度俯視攝影時,波浪影像偵測之演算法,並提出多部攝影機之影像併合方法。同時,利用分析波浪連續水位變化資料,進行波浪入反射分離技術發展及波浪進一步分析之應用。
依據不同俯視攝影角度與波浪水位偵測方法對波浪水位偵測影響之分析結果顯示,於波浪剖面影像偵測方面,在俯視攝影角度小於30°時,以門檻法(TM)和本文所提hyperbolic tangent函數擬合法(HTF)之波浪水位偵測結果相當,但當俯視攝影角度提升至60°時,HTF演算法於波浪水位偵測結果明顯優於傳統門檻法。根據兩波浪水位影像偵測方法分析資料,相對於容量式波高計量測者之水位均方根誤差相對波高比值(RMSE/Ho)資料顯示,門檻法波浪水位分析資料相對於容量式波高計之RMSE/Ho,大致隨攝影俯視角度之增加漸增,其中在俯視角度15度增加至45度時,RMSE/Ho由2.8%逐漸遞增至4.8%,但俯視角度增至60度時,RMSE/Ho劇增至7%。另以hyperbolic tangent函數擬合法分析者,其RMSE/Ho與攝影俯視角度關係,大致與門檻法者相仿,但其RMSE/Ho卻較門檻法小。另在波浪週期比較方面,兩波浪水位影像偵測方法所分析的資料與容量式波高計所量測者接近,且其平均偏差量均相當小,約小於2.5%。
由影像併合技術探討結果,在兩影像重疊區之併合影像分析水位變化疊合情形頗為一致,整體之水位運動呈現連續剖面,而各CCD攝影機及併合影像所分析得之水位歷程、波高、週期資料與波高計所記錄者亦相當吻合,其水位、波高之平均偏差量約與波高計之非線性誤差相近,週期之平均偏差約為影像攫取時間間隔的一半,顯見以影像併合技術應用於擴增波浪水槽之觀測範圍具有相當的實用性。
依本文方式所進行之入反射波分離分析結果,於不同水深處之所分離之入反射波浪及各階波浪時序列,大致與Baldock和Simmonds(1999)所提斜坡上波浪入反射分離方法之比較分析結果相近。另由於本文所提之波浪入反射分離方法,係將組成之波浪水位時間歷程圖,視成一個二維空間水位影像,利用影像能譜轉換觀念,以傅立葉轉換方法將該二維空間水位影像轉化為波數頻率譜,可分析二維空間水位影像中包括之各階波浪或不規則波之能量與分佈情形,再依逆傅立葉轉換方法,分離兩組不同方向之波浪水位歷程資料,另分析方法不需輸入水深條件即可進行分析,於實際應用上更具實用性。
In this study, a series of experiments in an opaque and outdoor wave flume without the contrived illumination by CCD (Charge Coupled Device) camera, were carried out to investigate the influence of varied angles of overhead posture on wave measurement, the improvement algorithm of wave detection for the large angles of overhead posture, and image mosaicking technique. Additionally, the detected wave profile data were applied to investigate the separation of incident and reflected waves in wave flumes with an arbitrary 2D bathymetry and the extensible analysis by applying the separated incident waves.
As to the influence of varied angles of overhead posture on wave measurement and the algorithm of wave detection, both the threshold method (TM) and the hyperbolic tangent function (HTF) have good results of wave profile image on small overhead posture angles, up to 30°. When the overhead posture angle is larger, such as 60°, the detected results of the HTF algorithm are better than those from the TM algorithm. The mean errors of wave period between the wave gauges and the CCD images captured by the different overhead posture angles were as small as 0.1 second. Since the pixel size increases with an increase of the overhead posture angle θ, dimensionless root mean square error (RMSE/Ho) of wave surface levels between the image detection by TM algorithm and the wave gauges increased from 2.8% to 4.8% as θ changed from 15° to 45°. When θ increased to 60°, ratio of RMSE/Ho increased to 7%. Ratio of RMSE/Ho of wave surface levels between the image detection by HTF algorithm, however, increased as the overhead posture angle increased, but the deviation was lower than that from the TM algorithm.
According to the discussion of image mosaicking technique, the wave profiles in the overlap view areas obtained from various camera images could present a good fit with each other in a minor deviation, and the mosaicked wave profile is relatively smooth. As to the time histogram of water surface in the overlapping view area, the data identified by each camera image and the mosaicked image were all well agreed with those obtained by wave gauges. It shows the proposed technique for mosaicking image in this study is feasible and applicable.
As to the separation of incident and reflected waves, the results show that the present method determined incident wave heights with various water depths that were close to those presented by Baldock and Simmonds (1999). The reflected wave heights were similar to those reported by Baldock and Simmonds (1999). Additionally, the development of the present method for separating incident and reflected waves in this study is assumed the time series of composite waves (timestack image) to be a 2-D spatial image. basing on the concept of k –σspectrum, the scatters of k -σspectrum in random waves would just be more continuous and wider than those in regular waves. Hence, the present method is applicable to the separation of incident and reflected waves in random waves. Additionally, the present method, does not require knowledge of water depth, making it more practical than existing methods.
Abstract I
Abstract in Chinese III
Acknowledgement in Chinese V
Table of Contents VI
List of Symbols IX
List of Tables XI
List of Figures XII
Chapter 1 Introduction 1
1.1 Motivation 1
1.1.1 Wave profile measurement 1
1.1.2 Incident and reflected wave 3
1.1.3 Identified wave data for extensible analysis 4
1.2 Literature review 4
1.2.1 Wave profile measurement 4
1.2.2 Separating incident and reflected wave 9
1.3 Outline of contents 10
Chapter 2 Digital image technique theory 13
2.1 Digital image transformation 13
2.2 Image enhancement 16
2.3 Camera calibration 22
2.4 Image reconstruction 27
2.5 Threshold method for water surface detection 29
Chapter 3 Experiment setup 33
3.1 Experimental setup 33
3.1.1 Wave measurement by image analysis with varying overhead camera posture angle (Exp. No. 1) 33
3.1.2 Image mosaicking technique and application of wave profile data (Exp. No. 2) 36
3.2 Experiment instrument 38
3.2.1 Experiment instrument 38
3.2.2 Instrument Calibration 41
3.3 Wave condition 46
3.4 Wave analysis 48
Chapter 4 Wave measurement by image analysis with varying overhead camera posture angle 49
4.1 Effect of varying overhead posture angle 50
4.2 Method for detecting water surface 54
4.3 Wave profiles analyzed by CCD images 62
4.4 Comparison between various methods and wave gauges 65
4.5 Summary 73
Chapter 5 Extension of monitoring region & image mosaicking technique 74
5.1 Image mosaicking 74
5.2 Sample results and discussion 78
5.3 Summary 83
Chapter 6 Application of wave profile data 84
6.1 Separating incident and reflected waves 84
6.1.1 Method for separating incident and reflected waves 86
6.1.2 Sample results and discussion 93
6.1.3 Summary 110
6.2 Extensible analysis by applying the separated incident waves 111
Chapter 7 Conclusions and future works 116
7.1 Conclusions 116
7.2 Future works 118
Reference 119
Appendix Thesis in Chinese 125
Vita 239
1.Aagaard T. and Holm J. (1989), “Digitization of wave run-up using video records”, Journal of Coastal Research, vol. 5, pp.547-551.
2.Abdel-Aziz Y. I. and Karara H. M. (1971), “Direct linear transformation from comparator coordinates into object space coordinates in close range photogrammetry”, in: Proc. of the ASP/UI Symposium, Close-Range Photogrammetry, pp. 1-18.
3.Bailey, D. G. and Shand, R. D.(1994) “Determining wave run-up using automated video analysis,” Proceedings of the 2nd New Zealand Conference on Image and Vision Computing, pp. 2.11.1-2.11.8.
4.Baldock T. E. and Simmonds D. J. (1999), “Separation of incident and reflected waves over sloping bathymetry”, Coastal Engineering, vol. 38, pp.167-176.
5.Benetazzo A. (2006), “Measurements of short water waves using stereo matched image sequences”, Coastal Engineering, vol. 53, pp. 1013-1032.
6.Bonmarin P. and Ramamonjiarisoa A. (1985), “Deformation to breaking of deep water gravity waves”, Experiments in Fluids, vol. 3, pp.11-16.
7.Bonmarin P., Rochefort R. and Bourguel M. (1989), “Surface wave profile measurement by image analysis”, Experiments in Fluids, vol. 7, pp.17-24.
8.Catálan P. A. and Haller M. C. (2008), “Remote sensing of breaking wave phase speeds with application to non-linear depth inversions”, Coastal Engineering, vol. 55, pp. 93-111.
9.Chang H. K. and Hsu T. W. (2003), “A two-point method for estimating wave reflection over a sloping beach”, Ocean Engineering, vol. 30, pp. 1833-1847.
10.Cox R. A. (1954), “A filter photometer for use at sea”, Journal Science Instrument, vol. 31, pp. 347-376.
11.Erikson L. H. and Hanson H. (2005), “A method to extract wave tank data using video imagery and its comparison to conventional data collection techniques”, Computers & Geosciences, vol. 31, pp. 371-384.
12.Frigaard P. and Brorsen M. (1995), “A time domain method for separating incident and reflected irregular waves”, Coastal Engineering, vol. 24, pp. 205-215.
13.Goda Y. and Suzuki Y. (1976), “Estimation of incident and reflected waves in random wave experiments”, in: Proc. 15th Int. Conf. on Coastal Eng., ASCE , pp. 828-845.
14.Gonzalez R. C, Woods R. E. (2003), “Digital image processing 2/e”, 培生教育出版。
15.Healy J. J. (1952), “Wave damping effect of beaches” in:Proc. Int. Hydraulics Convention, pp. 213-220.
16.Hilmer T. (2005), “Measuring breaking wave heights using video”, Master thesis, Department of Oceanography, Hawaii university.
17.Holland, K. T. and Holman, R. A. (1993) “The statistical distribution of swash maxima on natural beaches,” Journal of Geophysical Research, Vol.98, No.C6, pp. 10271-10278.
18.Holland, K. T., Raubenheimer, B., Guza, R. T. and Holman, R. A.(1995) “Runup kinematics on a natural beach,”. Journal of Geophysical Research, Vol. 100, pp.4985-4993.
19.Holland, K. T. and Holman, R. A. (1996) “Field observations of beach cusps and swash motions,” Marine Geology, Vol.134, pp. 77-93.
20.Holland K. T., Holman R. A., Lippmann T. C., Stanley J., Plant N. (1997), “Practical use of video imagery in nearshore oceanographic field studies”, IEEE Journal of Oceanic Engineering, vol. 22, pp. 81-92.
21.Holland K.T., Puleo J.A., and Kooney T.N. (2001), “Quantification of swash flows using video-based particle image velocimetry”, Coastal Engineering, vol. 44, pp. 65-77.
22.Holland T. K. (2001), “Application of the linear dispersion relation with respect to depth inversion and remotely sensed imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39 (11), pp. 2060–2071.
23.Holman R. A. and Guza R. T. (1984), “Measuring run-up on a natural beach”, Coastal Engineering, vol. 8, pp.129-140.
24.Holman R. A. (1991), “Video estimation of subaerial beach profiles,” Marine Geology, vol. 97, pp. 225–231.
25.Holman R.A. and Stanley J. (2007), “The history and technical capabilities of Argus,” Coastal Engineering, vol. 54 , pp. 477-491.
26.Huang K., Wu Z., and Wang Q. (2005), “Image enhancement based on the statistics of visual representation”, Image and Vision Computing, vol. 23, pp. 51-57.
27.Jessup A. T. and Phadnis K. R. (2005), “Measurement of the geometric and kinematic properties of microscale breaking waves from infrared imagery using a PIV algorithm”, Measurement Science and Technology, vol. 16, pp.1961-1969.
28.Kuo C. A., Chien C. H. and Lee M. C. (2005), “Wave profile measurement by the overlooking capture in wave flume”, in: PACON 2005, pp. 21-32.
29.Kuo C. A. and Chien C. H. (2007), “Extending of view range in wave flume by image merging technique”, in: Proc. 16th Conf. on Hydraulic Engineering, Taiwan, pp. 859-865. (In Chinese)
30.Kuo C. A., Han K. P. and Chien C. H. (2006), “Application of digital image processing to identify run-up water profile on seawall”, in: Proc. 28th Ocean Engineering Conference, Taiwan, pp. 521-526.(in Chinese)
31.Lee H. S. and Know S. H. (2003), “Wave profile measurement by wavelet transform”, Ocean Engineering, vol. 30, pp. 2313-2328.
32.Leu J. G. (2000), “Edge sharpening through ramp width reduction”, Image and Vision Computing, vol. 18, pp. 501-514.
33.Lin S. P. (2004), “Traditional, wavelet and active contour model in edge detection analysis of wave image”, Master thesis, Systems and Naval Mechatronic Engineering, National Cheng Kung University. (in Chinese)
34.Mansard E. P. D. and Funke E. R. (1980), “The measurement of incident and reflected spectra using a least squares method”, in: Proc. 16th Int. Conf. on Coastal Eng., ASCE, pp. 154-172.
35.Mironov A. S. and Dulov V. A. (2008), “Detection of wave breaking using sea surface video records”, Measurement Science and Technology, vol. 19. (doi:10.1088/0957-0233 /19/1/015405)
36.Mukto M. A., Atmane A. M. and Loewen M. R. (2007), “A particle-image based wave profile measurement technique”, Experiment in Fluids, vol. 42, pp. 131-142.
37.Otsu N. (1978), “A threshold selection method from gray level histogram”, IEEE Trans. on System, Man, and Cybernetics, vol. 8, pp. 62-66.
38.Siddiqui M. H. K., Loewen M. R., Richardson C., Asher W. E. and Jessup A. T. (2001), “Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves”, Physics of Fluids, vol. 13, pp. 1891-1903.
39.Stockdon H. F. and Holman R. A. (2000), “Estimation of wave phase speed and nearshore bathymetry from video imagery”, Journal of Geophysical Research, Vol. 105(C9), pp. 22,015-22,033.
40.Stockdon H. F., Holman R. A., Howd P. A., and Sallenger A. H. (2006), “Empirical parameterization of setup, swash, and runup”, Coastal Engineering, vol. 53, pp. 573-588.
41.Suh K. D., Park W. S. and Park B. S. (2001), “Separation of incident and reflected waves in wave-current flumes”, Coastal Engineering, vol. 43, pp. 149-159.
42.Tsai R. Y. (1987), “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-sheff TV cameras and lenses”, IEEE Journal of Robotics and Automation, vol. 3, pp. 323-344.
43.Wanek J. M. and Wu C. H. (2006), “Automated trinocular stereo imaging system for three-dimensional surface wave measurements”, Ocean Engineering, vol. 33, pp. 723-747.
44.Wu C. H (1999), “Laboratory measurements of three-dimensional breaking waves”, Ph.D. dissertation, Massachusetts Institute of Technology.
45.Yao A. and Wu C. H. (2005), “An automated image-based technique for tracking sequential surface wave profiles”, Ocean Engineering, vol. 32, pp.157-173.
46.Ye J., Fu G. K., and Poudel U. P. (2005), “High-accuracy edge detection with Blurred Edge Model”, Image and Vision Computing, vol. 23, pp. 453-467.
47.Zappa C. J., Banne M. L., Schultz H., Corrada-Emmanuel A., Wolff L. B. and Yalcin J. (2008), “Retrieval of short ocean wave slope using polarimetric imaging”, Measurement Science and Technology, vol. 19.(doi:10.1088/0957-0233 /19/5/055503)
48.Zarruk G. A. (2005), “Measurement of free surface deformation in PIV images”, Measurement Science and Technology, vol. 16, pp. 1970-1975.
49.Zhang Z. (2000), “A flexible new technique for camera calibration”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1330-1334.
50.陳雪子(2008),「可轉向控制攝影機在海岸影像研究之初步應用」,成功大學系統及船舶機電工程學系 碩士論文。
51.張智星 (2008),「Matlab 程式設計:入門篇」,鈦鍶科技。
52.張智星 (2008),「Matlab 程式設計:進階篇」,鈦鍶科技。
53.蕭毓宏、陳雪子、莊舜欽、黃明志(2008),「可轉向控制攝影機在海岸影像研究之初步應用」,第30屆海洋工程研討會,第745-750頁。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top