跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡金晏
研究生(外文):Chin-Yen Tsai
論文名稱:近岸碎波與波浪布拉格共振之流場數值模擬研究
論文名稱(外文):A Numerical Study on Flow Fields under Wave Breaking and Resonant Bragg Reflection
指導教授:許泰文許泰文引用關係
指導教授(外文):Tai-Wen Hsu
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:159
中文關鍵詞:碎波布拉格共振RANS模式紊流傳輸
外文關鍵詞:resonant Bragg reflectionRANS modelwave breakingturbulence transport
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本文以有限體積法求解RANS (Reynolds Averaged Navir-Stokes) 方程式,並結合k-ε紊流模式建立二維之RANS波浪流場數值模式。對於可能遭遇變化劇烈且快速之自由液面變動問題,採用VOF/PLIC (Volume Of Fluid with Piecewise Linear Interface Calculation) 同步追蹤自由液面變化情形,以使模式能夠應用於波浪碎波流場之模擬。在數值模式應用於所要探討的波浪碎波,與波浪通過系列潛堤發生布拉格共振之波浪結構物互制問題模擬前,文中先對RANS模式之適用性進行校核工作,結果顯示RANS模式對水位變化與流場分佈皆有合理之計算結果。
本文應用RANS模擬波浪通過沙洲型或平台式之海灘,從計算結果發現碎波後之波浪傳遞至水深不變或漸深段時,因碎波所產生的能量減衰情形逐漸減緩,波浪進而發生穩定的現象。對波浪於沙洲型或平台式斜坡上之碎波流場而言,第一次碎波時所衍生的渦流與各種紊流物理變量,在波浪能量減衰弱化的階段皆會很快的消散,此現象不同於過去對波浪於均勻斜坡上碎波後之研究成果,此外,本文計算結果顯示,波浪碎波後到穩定前波峰處的最大水平流速約為波速的60至70 %,進一步透過紊流傳輸收支平衡分析可發現,能量減衰弱化時紊流傳輸由紊流動能之對流效應主導,且無持續性的紊流生成效應。由於模式忽略了空氣捲入效應,故此處僅針對溢波型態之碎波進行模擬研究。
本文同時應用RANS模式模擬波浪通過系列潛堤發生之布拉格共振波流場,由水位變化的空間分佈可知,當布拉格共振發生時,系列潛堤後方的波能約僅為非共振時之一半。不同於非共振條件下之前進波流場,近共振條件下之流場呈現部份重複波的特性,其腹點 (anti-node) 的位置約在系列潛堤間隔處,而節點 (node) 則在潛堤向岸堤角上方,故潛堤附近形成一封閉獨立之局部環流流場,進而影響近共振時之渦流生成與消散機制,且系列潛堤後方之渦流強度僅為第一座潛堤處之三分之ㄧ。文中亦藉由數值模擬結果,探討近共振流場對系列潛堤穩定性之影響。
A 2-D numerical model was developed to simulate wave breaking and Bragg scattering of water waves. The model solves the Reynolds averaged Navier-Stokes (RANS) equations coupled with the k-ε turbulence closure model. To track free surface configurations, the VOF/PLIC is employed. Before applying the present model to the simulation of flow fields under wave breaking and resonant Bragg reflection, it is necessary to confirm the validity of the model. Based on comparisons between numerical and experimental results for the water elevations and the velocity components, the present RANS model is demonstrated to provide the satisfactory performance.
At the post-breaking stage on a composite sloping bottom, i.e. the barred or stepped beach profile, the energy dissipation may be followed by another occurrence of wave breaking if the local water depth increases or keeps constant. The numerical results show that the vorticity and the turbulent flow induced by breaking immediately dissipate during the stage of the decline of energy dissipation. These results are quite different from the previous study for wave breaking on a uniformly sloping bottom. It is interesting to note that the horizontal velocity in the stable wave front reaches 60 to 70 % of the local wave celerity. The analysis of turbulent budget also reveals that the turbulence advection dominates the turbulence transport mechanism at the stage of the decline of energy dissipation, while the turbulence production ceases. Since the model neglects the air entrainment, it is only applied to the simulation of spilling breaker.
For the simulation of flow field when waves propagate on a serial of artificial bars, the numerical result demonstrates that the amplitude of water elevation at the downstream of the serial bars for the near-resonant case is only half of that for non-resonant case. The simulated flow field under Bragg reflection appears to like the flow under the partial standing waves, unlike the flow of a progressive wave. Note that the antinodes are shown to be located in front of the leading bars and each interval between two bars, while the nodes are located above the leeside of bars. Therefore, the local flow field around each bar forms an independently closed circulation, and also results in a different mechanism of vortex generation and dissipation. It is also found that the calculated vortex intensity at the last bar is only one third of that at the leading bar for the near-resonant case. The stability of the artificial bars under the wave-structure interaction is also investigated with the simulated results.
摘要 I
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 XIII
符號說明 XV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 前人研究 2
1-3 本文組織 12
第二章 理論基礎 15
2-1 Reynolds Averaged Navier-Stokes (RANS) 方程式 17
2-2 k-ε紊流模式 19
2-3 起始條件與邊界條件 22
第三章 數值方法 31
3-1 數值離散 31
3-2 速度與壓力耦合求解 35
3-3 自由液面追跡-VOF/PLIC 38
3-4 模式計算流程 41
第四章 波浪於複式斜坡底床上之碎波 45
4-1 模式驗證 45
4-2 波浪變形與流場分佈 56
4-3 波浪穩定階段之紊流傳輸特性 69
第五章 波浪通過系列潛堤之布拉格共振 79
5-1 基本佈置 79
5-2 模式驗證 82
5-3 流場特性探討 104
5-4 布拉格共振對結構物影響 136
第六章 結論與建議 147
6-1 結論 147
6-2 建議 148
參考文獻 151
1. Amsdon, A.A. & Harlow, F.H. 1971 The SMAC method: a numerical technique for calculation incompressible fluid flows. Los Alamos National Laboratory, LA-4370.
2. Ashgriz, N. & Poo, J.Y. 1991 FLAIR, Flux line-segment model for advection and interface reconstruction. J. Comput. Phys. 93, 449-468.
3. Battjes, J.A. 1974 Surf similarity. Proc. 14th Int. Conf. Coast. Eng., pp. 466-480. ASCE.
4. Battjes, J.A. 1988 Surf-zone dynamics. Annu. Rev. Fluid Mech. 20, 257-293.
5. Beji, S. & Battjes, J.A. 1994 Numerical simulation of nonlinear wave propagation over a bar. Coast. Eng. 23, 1-16.
6. Boussinesq, J. 1877 Essai sur la th�聰rie des eaux courantes (Essay on the theory of water flow). M�聱oires pr�臃ent�臃 par divers savants �� l'Acad�聱ie des Sciences 23, 1-680.
7. Bradford, S.F. 2000 Numerical simulation of surf zone dynamics. J. Waterw. Port Coast. Ocean Eng. 126, 1-13.
8. Chan, R.K.C. & Street, R.L. 1970 A computer study of finite-amplitude water waves. J. Comput. Phys. 6, 68-94.
9. Chang, K.A., Hsu, T.J. & Liu, P.L.-F. 2001 Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves. Coast. Eng. 44, 13-36.
10. Chang, K.A., Hsu, T.J. & Liu, P.L.-F. 2005 Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part II. Cnoidal waves. Coast. Eng. 52, 257-283.
11. Chang, K.A. & Liu, P.L.-F. 1998 Velocity, acceleration and vorticity under a breaking wave. Phys. Fluids 10, 327-329.
12. Chen, C.J. & Jaw, S.Y. 1998 Fundamentals of Turbulence Modeling. Taylor and Francis.
13. Cheng, C.Y., Chen, Y.Y. & Chen, G.Y. 2007 A three-dimensional wave field over a bidirectionally periodic ripple bottom. Ocean Eng. 34, 303-319.
14. Davies, A.G. & Heathershaw, A.D. 1984 Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech. 144, 419-446.
15. Davies, A.G., Guazzelli, E. & Belzons, M. 1989 The propagation of long waves over an undulated bed. Phys. Fluids A 1, 1331-1340.
16. Enright, D., Fedkiw, R., Ferziger, J. & Mitchell, I. 2002 A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83-116.
17. Garzon, M., Adalsteinsson, D., Gray, L. & Sethian, J.A. 2003 Wave breaking over breaking beaches using a coupled boundary integral-level set method. Lawrence Berkley National Laboratory, LBNL-54480.
18. Grilli, S.T., Losada, M.A. & Martin, F. 1994 Shoaling of Solitary waves on plane beaches. J. Waterw. Port Coast. Ocean Eng. 120, 609-627.
19. Grilli, S.T., Guyenne, P. & Dias, F. 2001 A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids 35, 829-867.
20. Guazzelli, E., Rey, V. & Belzons, M. 1992 Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech. 245, 301-317.
21. Gueyffier, D., Li, J., Scardovelli, R. & Zaleski, S. 1999 Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152, 423-456.
22. Harlow, F.H. & Welch, J.E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182-2189.
23. Hirt, C.W., Nichols, B.D. & Romero, N.C. 1975 SOLA-a numerical solution algorithm for transient fluid flows. Los Alamos National Laboratory, LA-5852.
24. Hirt, C.W. & Nichols, B.D. 1981 Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201-225.
25. Horikawa, K. 1988 Nearshore Dynamics and Coastal Processes: Theory, Measurement and Prediction Models. Univ. of Tokyo Press.
26. Hsu, T.W., Chang, H.K. & Tsai, L.H. 2002 Bragg reflection of waves by different shapes of artificial bars. China Ocean Eng. 16, 343-358.
27. Hsu, T.W., Hsiao, S.C., Ou, S.H., Wang, S.K., Yang, B.D. & Chou, S.E. 2007 An application of Boussinesq equations to Bragg reflection of irregular waves. Ocean Eng. 34, 870-883.
28. Hsu, T.W., Hsieh, C.M. & Hwang, R.R. 2004 Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters. Coast. Eng. 51, 557-579.
29. Hsu, T.W., Tsai, L.H. & Huang, Y.T. 2003 Bragg scattering of water waves by doubly composite artificial bars. Coast. Eng. J. 45, 235-253.
30. Huang, C.J. & Dong, C.M. 1999 Wave deformation and vortex generation in water waves propagating over a submerged dike. Coast. Eng. 37, 123-148.
31. Huang, C.J. & Dong, C.M. 2001 On the interaction of a solitary wave and a submerged dike. Coast. Eng. 43, 265-286.
32. Huang, C.J. & Dong, C.M. 2002 Propagation of water waves over rigid rippled beds. J. Waterw. Port Coast. Ocean Eng. 128, 190-201.
33. Isobe, M., Nishimura, H. & Horikawa, K. 1978 Expressions of perturbation solutions for conservative waves by using wave height. Proc. 33th Annu. Conf. of JSCE, II, pp. 760-761. In Japanese.
34. Keulegan, G.H. 1948 Gradual damping of solitary waves. J. Res. Natl. Bur. Stand. 40, 478-498.
35. Kimmoun, O. & Branger, H. 2007 A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach. J. Fluid Mech. 588, 353-397.
36. Kirby, J.T. & Anton, J.P. 1990. Bragg reflection of waves by artificial bars. Proc. 22nd Int. Conf. Coast. Eng., pp. 757-768. ASCE.
37. Knott, G.F. & Mackley, M.R. 1980 On eddy motion near plates and ducts induced by water waves and periodic flows. Philos. Trans. R. Soc. Lond. A 294, 559-623.
38. Launder, B.E. & Spalding, D.B. 1974 The numerical calculation of turbulence flows. Comput. Meth. Appl. Mech. Eng. 3, 269-289.
39. Lee, J.J., Skjelbreia, E. & Raichlen, F. 1982 Measurement of velocities in solitary waves. J. Waterw. Port Coast. Ocean Eng. 108, 200-218.
40. Lemos, C.M. 1992 Wave Breaking. Springer-Verlag.
41. Li, J. 1995 Calcul d’interface affine par morceaux (piecewise linear interface calculation). CR Acad. Sci. Paris, S´er. IIb 320, 391-396.
42. Lin, C., Chang, S.C., Ho, C.T. & Chang, K.A. 2006 Laboratory observation of solitary wave propagating over a submerged rectangular dike. J. Eng. Mech. 132, 545-554.
43. Lin, P. & Liu, P.L.-F. 1998 A numerical study of breaking waves in the surf zone. J. Fluid Mech. 359, 239-264.
44. Liu, P.L.-F. 1999 Free surface tracking methods and their applications to wave hydrodynamics. In Advances in Coastal and Ocean Engineering 5, pp. 213-240. World Scientific.
45. Lo, D.C. & Young, D.L. 2006 Numerical simulation of solitary waves using velocity-vorticity formulation of Navier-Stokes equations. J. Eng. Mech. 132, 211-219.
46. Longuet-Higgins, M.S. & Stewart, R.W. 1964 Radiation stresses in water waves: a physical discussion, with applications. Deep-Sea Res. 11, 529-562.
47. Losada, M.A., Vidal, C. & Medina, R. 1989 Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophys. Res. 94, 557-566.
48. Lubin, P., Vincent, S., Abadie, S. & Caltagirone, J.-P. 2006 Three-dimensional Large Eddy Simulation of air entrainment under plunging breaking waves. Coast. Eng. 53, 631-655.
49. Madsen, O.S. & Mei, C.C. 1969 The transformation of a solitary wave over an uneven bottom. J. Fluid Mech. 39, 781-791.
50. Mei, C.C. 1983 The Applied Dynamics of Ocean Surface Waves. Wiley.
51. Mei, C.C. 1985 Resonant reflection of surface waves by periodic sand-bars. J. Fluid Mech. 152, 315-335.
52. Mei, C.C., Hara, T. & Naciri, M. 1988. Note on Bragg scatting of water waves by parallel bars on the seabed. J. Fluid Mech. 186, 147-162.
53. Miles, J.W. 1981. Oblique surface-wave diffraction by a cylindrical obstacle. Dyn. Atmos. Oceans 6, 121-123.
54. Mogi, A. 1963 On the shore types of the coasts of Japanese islands. Geogr. Review Japan 36, 245-266. In Japanese.
55. Nagayama, S. 1983 Study on the change of wave height and energy in the surf zone. Bachelor thesis, Yokohama National Univ. In Japanese.
56. Nichols, B.D. & Hirt, C.W. 1971 Improved free-surface boundary conditions for numerical incompressible flow calculations. J. Comput. Phys. 8, 434-448.
57. Noh, W.F. & Woodward, P.R. SLIC (Simple Line Interface Calculation). In Lecture Notes in Physics 59 (ed. A.I. van der Vooren & P.J. Zandbergen), pp. 330-340. Springer-Verlag.
58. Ohyama, T. & Nadaoka, K. 1992 Modeling the transformation of nonlinear waves passing over a submerged dike. Proc. 23rd Int. Conf. Coast. Eng., pp. 526-539. ASCE.
59. Ohyama, T. & Nadaoka, K. 1994 Transformation of a nonlinear waves train passing over a submerged shelf without breaking. Coast. Eng. 24, 1-12.
60. Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21, 251-269.
61. Osher, S.J. & Sethian J.A. 1988. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12-49.
62. Patankar, S.V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere.
63. Peregrine, D.H. 1983 Breaking waves on beaches. Annu. Rev. Fluid Mech. 15, 149-178.
64. Rey, V., Belzons, M. & Guazzelli, E. 1992 Propagation of surface gravity waves over a rectangular submerged bar. J. Fluid Mech. 235, 453-479.
65. Rey, V., Guazzelli, E. & Mei, C.C. 1996 Resonant reflection of surface gravity waves by one-dimensional doubly sinusoidal beds. Phys. Fluids 8, 1525-1530.
66. Rider, W.J. & Kothe, D.B. 1998 Reconstructing volume tracking. J. Comput. Phys. 141, 112-152.
67. Rodi, W. 1980 Turbulent models and their applications in hydraulics-a state of the art review. IAHR publication.
68. Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567-603.
69. Seabra-Santos, F.J., Renouard, D.P. & Temperville, A.M. 1987 Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176, 117-134.
70. Sethian J.A. 1996 Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Sciences. Cambridge Univ. Press.
71. Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99-164.
72. Sommerfeld, A. 1964 Mechanics of Deformation Bodies. Academic Press.
73. Sussman, M. 2003 A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187, 110-136.
74. Svendsen, I.A. & Putrevu, V. 1994 Nearshore mixing and dispersion. Proc. R. Soc. Lond. A 445, 561-576.
75. Tang, C.J. & Chang, J.H. 1998 Flow separation during solitary wave passing over submerged obstacle. J. Hydraul. Eng. 124, 742-749.
76. Ting, F.C.K. & Kim, Y.K. 1994 Vortex generation in water waves propagation over a submerged obstacle. Coast. Eng. 24, 23-49.
77. Ting, F.C.K. & Kirby, J.T. 1994 Observation of undertow and turbulence in a laboratory surf zone. Coast. Eng. 24, 51-80.
78. Ting, F.C.K. & Kirby, J.T. 1995 Dynamics of surf-zone turbulence in a strong plunging breaker. Coast. Eng. 24, 177-204.
79. Ting, F.C.K. & Kirby, J.T. 1996 Dynamics of surf-zone turbulence in a spilling breaker. Coast. Eng. 27, 131-160.
80. Ting, C.L., Lin, M.C. & Kuo, C.L. 2000 Bragg scattering of surface waves over permeable rippled beds with current. Phys. Fluids 12, 1382-1388.
81. Tseng, W.J., Chen, Y.Y. & Chen, G.Y. 2005 Nonlinear Lagrangian breaker characteristics for waves propagating normally toward a mild slope. China Ocean Eng. 19, 587-600.
82. Unverdi, S.O. & Tryggvason, G.T. 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25-37.
83. Wang, S.K., Hsu, T.W., Tsai, L.H. & Chen, S.H. 2006 An application of Miles’ theory to Bragg scattering of water waves by doubly composite artificial bars. Ocean Eng. 33, 331-349.
84. Watanabe, Y., Saeki, H. & Hosking, R.J. 2005 Three-dimensional vortex structures under breaking waves. J. Fluid Mech. 545, 291-328.
85. Whitham, G.B. 1974 Linear and Nonlinear Waves. Wiley.
86. Wiegel, R.L. 1964 Oceanographical Engineering. Prentice-Hall.
87. Zhao, Q., Armfield, S. & Tanimoto, K. 2004 Numerical simulation of breaking waves by a multi-scale turbulence model. Coast. Eng. 51, 53-80.
88. 吳盈志,1997,「波浪通過潛堤之渦流行為」,國立成功大學水利及海洋工程研究所碩士論文。
89. 林俊遠,1997,「應用質點等位函數法模擬波浪之碎波」,國立成功大學水利及海洋工程研究所博士論文。
90. 林建鋒,2006,「以PIV量測波浪通過系列潛堤之布拉格效應」,國立成功大學水利及海洋工程研究所碩士論文。
91. 陳陽益,1983,「波浪通用模式與最大波之解析」,國立成功大學水利及海洋工程研究所博士論文。
92. 陳陽益,1992,「規則前進重力波傳遞於波形底床上」,港灣技術,第七期,17-47頁。
93. 陳陽益、湯麟武,1990,「波形底床上規則前進重力波之解析」,第十二屆海洋工程研討會論文集,205-220頁。
94. 張憲國、許泰文、李逸信,1997,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,242-249頁。
95. 許泰文,2003,「近岸水動力學」,中國土木水利工程學會。
96. 許泰文、盧建林、廖建明、辛志勇,2000,「以FLDV量測波浪通過潛堤之流場」,2000兩岸港口及海岸開發研討會論文集,119-126頁。
97. 歐善惠、許泰文、游國周、廖建明,1998,「應用FLDV量測波浪通過潛提之渦流行為」,第二十屆海洋工程研討會論文集,249-256頁。
98. 盧建林,1999,「以FLDV量測波浪作用下潛堤附近之渦流特性」,國立成功大學水利及海洋工程研究所碩士論文。
99. 謝志敏,2004,「應用RANS模擬波浪通過潛堤和沙漣流場」,國立成功大學水利及海洋工程研究所博士論文。
100. 蘇怡中,1998,「自由液面表面波流場之數值方法發展與應用」,國立台灣大學造船及海洋工程研究所博士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top