跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃偉哲
研究生(外文):Wei-Che Huang
論文名稱:渠流通過透水構造物之流場及紊流特性研究
論文名稱(外文):Mean and Turbulence Characteristics of Open Channel Flow over Permeable Structure
指導教授:呂珍謀呂珍謀引用關係賴泉基賴泉基引用關係
指導教授(外文):Jan-Mou LeuChan-Ji Lai
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:166
中文關鍵詞:紊流特性透水構造物
外文關鍵詞:Permeable StructureTurbulence Characteristics
相關次數:
  • 被引用被引用:7
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
本研透過渠道試驗探討明渠流通過透水性結構物之流場及紊流特性,分別針對浸沒第二型流況與續列式結構物之流場進行試驗研究。浸沒第二型流況試驗以聲波都卜勒流速儀(ADV)量測透水性結構物(孔隙率 與 )及非透水性結構物(孔隙率 )附近之流場,依測得之流場資料分析流場的平均速度及紊流強度。多孔介質結構物具可透水的特性,造成結構物與水體交界面處有滑動速度存在,使得水體與多孔介質結構物交界處的流速梯度較非透水性結構物小,使多孔介質結構物頂部之流速剖面較固體結構物均勻。在紊流強度的分佈上,多孔介質結構物頂部流場之紊流強度比非透水結構物小;因多孔介質結構物下游的穿越流可降低結構物下游近底床處之垂向流速,使結構物下游垂向紊流強度有顯著降低的趨勢。此外,多孔介質結構物下游處的迴流區也因穿越流的存在而破壞消失。

在續列式多孔介質結構物之流場試驗研究上,則利用孔隙率 的透水性結構物以9倍結構物高為間距的設置方式於高水位的流況下進行量測試驗,分析流場中之平均流速、紊流強度、紊流動能及底床剪力係數分佈之情形,並與Cui(2003)以數值模擬連續式不透水結構物之結果比較。多孔介質結構物對流場造成之束縮效應較小故可降低流場整體之紊流強度,特別在結構物頂部與下游主迴流區域紊流強度降低的效果更為顯著約達20~38%。多孔介質結構物後方主迴流區則因受到穿越流推擠作用的影響,使得多孔介質結構物後方主迴流區較小且延後發生,其長度與高度分別約為2倍與0.5倍結構物高度。在結構物後方底床剪應力係數的分佈上,續列式孔隙結構物之底床剪應力係數明顯低於固體結構物,且底床剪應力係數之符號並不像固體結構物呈現多次正負轉換之情形,顯示續列式多孔介質結構物下游之流況較固體結構物均勻。
An experimental investigation was carried out in the open channel for the research in mean and turbulence characteristics of open channel flow over permeable structure. There were two subjects in the study: flow field characteristics of submerge flow type Ⅱ, and flow characteristics of series porous structures. Acoustic Doppler Velocimeter(ADV) was used to measured the flow velocity around the porous structures (porosity γ=0.475, 0.349) and solid structure (porosity γ=0). Porous structures were permeable, it made slip velocity exist on the interface between water and structure. Slip velocity made the velocity gradient on porous structure smaller than solid structure, and made the velocity profiles more uniform than solid structure. Regarding turbulence intensity, the turbulence intensity above porous structure was smaller than solid structure. Because the bleed flow can reduce the vertical velocity near the bed, it made the vertical turbulence intensity behind the structure decrease obviously. Furthermore, the recirculation region behind the structure disappeared due to exist of bleed flow.
Measurements of the mean and turbulence characteristics around series porous structures were carried out. The distance between two structures was 9 times the height of structure, and the porosity was 0.475. Discussion on mean velocity, turbulence intensity and near-bottom shear stress coefficient were proposed. The experimental data show that porous structure had less interfere with flow, and therefore reduce the turbulence intensity in recirculation region to 20~38%. When compared with solid structure, recirculation region was effect by bleed flow, the length and height of recirculation region were 2 and 0.5 times the height of structure. Near-bottom shear stress coefficient of series porous structures were smaller than solid structure, the results show that the flow field around series porous structures were more uniform than solid structure.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅷ
符號說明 ⅩⅢ
第一章 緒論 1
1-1 前言 1
1-2 前人研究 2
1-2-1水流通過孔隙介質之流場 5
1-2-2單階自由跌水 7
1-2-3水流通過續列式結構物之流場 10
1-3 研究目的 13
1-4 本文架構 14
第二章 理論基礎 15
2-1 紊流統計理論 16
2-1-1紊流的統計平均方法 16
2-1-2紊流統計量 17
2-2 紊流能譜 18
2-2-1 紊流特徵尺度 19
2-2-2 Kolmogorov假說 20
2-3 明渠紊流流速分佈 22
2-3-1 明渠平均流控制方程式 24
2-3-2 摩擦速度(Friction velocity) 25
2-4 透水底床之流速分佈 26
第三章 試驗設置與方法 31
3-1 試驗儀器與佈置 31
3-1-1 循環式玻璃水槽 31
3-1-2 側視型三維ADV流速儀 32
3-1-3 流速資料擷取與處理 36
3-1-4 多孔介質結構物模型設計 37
3-2 試驗條件 39
3-3 儀器率定 40
3-3-1 坡度檢定 40
3-3-2 流量率定 40
3-3-3 ADV流速儀資料雜訊處理 42
3-4 結構物位置之選定 45
3-5 試驗規劃與步驟 46
3-5-1 試驗方法 46
3-5-2 試驗規劃 46
3-5-3 試驗步驟 47
第四章 浸沒第二型流場試驗分析 49
4-1 浸沒第二型流場試驗 54
4-1-1 流場概況 54
4-2 流速分佈 57
4-2-1 固體結構物縱向平均流速分佈 57
4-2-2 多孔介質結構物縱向平均流速分佈 58
4-2-3 固體結構物垂向平均流速分佈 69
4-2-4 多孔介質結構物垂向平均流速分佈 70
4-3 紊流強度 70
4-3-1 固體結構物縱向紊流強度分佈 71
4-3-2 多孔介質結構物縱向紊流強度分佈 71
4-3-3 固體結構物垂向紊流強度分佈 72
4-3-4 多孔介質結構物垂向紊流強度分佈 73
4-4 比較與討論 98
4-4-1 平均流速 98
4-4-2 紊流強度 99
4-5 紊流頻譜 109
第五章 續列式透水結構物之流場分析 112
5-1 紊流通過續列式多孔介質結構物試驗 116
5-1-1 實驗佈置 116
5-1-2 實驗方法與步驟 117
5-1-3 流況重覆之檢定 117
5-2 結果分析與比較 124
5-2-1 縱向平均流速 124
5-2-2 垂向平均流速 125
5-3 紊流強度 126
5-3-1 縱向紊流強度 126
5-3-2 垂向紊流強度 127
5-4 紊流動能 127
5-5 比較與討論 141
5-5-1 迴流區 141
5-5-2 紊流強度 142
5-5-3 底床剪應力係數 143
第六章 結論與建議 149
6-1 結論 149
6-2 建議 150
參考文獻 151
附錄 163
自述 165
參考文獻
1.Agelinchaab, M., M. F. Tachie, and D. W. Ruth, Velocity measurement of flow through a model three-dimensional porous medium. Physics of Fluids, Vol. 18(1), pp.18-28, 2006.
2.Alazmi, B. and Vafai, K., Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Int. J. Heat Mass Transfer, Vol. 44, pp.1735-49, 2001.
3.Adrian, R. J. and C. S. Yao, Power spectra of fluid velocities measured by laser Doppler velocimetry. Experiments in Fluids, Vol. 5, pp.17-28, 1987.
4.Agelinchaab, M., M. F. Tachie, Open channel turbulent flow over hemispherical ribs. Int. J. Heat and Fluid Flow., Vol. 27, pp.1010-1027, 2006.
5.Alirzea, A., Helge, I. A., and Michael M., DNS of turbulent flow in a rod-roughened channel. Int. J. Heat and Fluid Flow, Vol. 25, pp.373-383, 2004.
6.Andre Robert, Characteristics of velocity profiles along riffle-pool sequences and estimates of bed shear stress. Geomorphology, Vol.19, pp.89-98, 1997.
7.Andrew McCoy, George Constantinescu, and Larry J. Weber, Numerical Investigation of Flow Hydrodynamics in a Channel with a Series of Groynes. Journal of Hydraulic Engineering, Vol.134 (2), pp.157-172, 2008.
8.Ansar, M., and Nakato, T., Experimental study of 3d pump-intake flows with and without cross flow. J. of Hydraul. Engrg., Vol. 127(10), pp.825-834, 2001.
9.Arun, K. S. Iyengar, Cesar Farell, Experimental issues in atmospheric boundary layer simulations: roughness length and integral scale determination. J. Wind Eng. Ind. Aerodyn, Vol. 89, pp.1059-1080, 2001.
10.Antonia, R. A., P. R. Spalart, and P. Mariani, Effect of suction on the near-wall anisotropy of a turbulent boundary layer. Phys. Fluids, Vol. 6(1), pp.430-432, 1994.
11.Bandyopadhyay, P. R., Rough-wall turbulent boundary layer in the transition regime. J. Fluid Mech., Vol. 180, pp.231-266, 1987.
12.Beavers, G. S., Sparrow, E. M., and Magnuson, R. A., Parallel flow in a channel and a bounding porous medium. J. Basic Engrg., Vol. 92, pp.843-848, 1970.
13.Bergstrom, D. J., N. A. Kotey, and M. F. Tachie, The Effects of Surface Roughness on the Mean Velocity Profile in a Turbulent Boundary Layer. Journal of Fluids Engineering, Vol. 124, pp.664-670, 2002.
14.Bradshaw P., and Wong F. Y. F., The reattachment and relaxation of a turbulent shear layer. J. Fluid Mech., Vol. 52, pp.113-135, 1972.
15.Breugem, W. P., and Boersma, B. J., Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Physics of fluids, Vol. 17(2), 025103-1~15, 2005.
16.Brinkmann, H. C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1, 27-34, 1947.
17.Cardoso, A. H., Graf, W. H., and Gust, G., Uniform flow in a smooth open channel. J. Hydraul. Res., Vol. 27(5), pp.603–616, 1989.
18.Carollo, F. G., Ferro, V., and Termini, D., Flow Velocity Measurements in Vegetated Channels. J. of Hydraul. Engrg., Vol. 128(7), pp.664-673, 2002.
19.Chan, H. C., J. M. Leu, C. J. Lai, and Yafei Jia, J. Hydraul. Eng., Vol. 133(6), pp.610-617, 2007.
20.Chen Xingwei, and Yee-Meng Chiew, Velocity Distribution of Turbulent Open-Channel Flow with Bed Suction. Journal of Hydraulic Engineering, Vol.130 (2), pp.140-148, 2004.
21.Chen Xingwei, and Yee-Meng Chiew, Response of velocity and turbulence to sudden change of bed roughness in open-channel flow, J. Hydraul. Eng., Vol. 129(1), pp.35-43, 2003.
22.Cheng, N. S., and Chiew, Y.-M. Modified logarithmic law for velocity distribution subjected to upward seepage, J. Hydraul. Eng., Vol. 124(12), pp.1235-1241, 1998.
23.Choi, C. Y., and Waller, P. M., Momentum transport mechanism for water flow over porous media. J. Env. Engrg., Vol. 123(8), pp.792-799, 1997.
24.Coleman S. E., V. I. Nikora, S. R. McLean, and E. Schlicke, Spatially Averaged Turbulent Flow over Square Ribs. Journal of Engineering Mechanics, Vol. 133(2), pp.194-204, 2007.
25.Coles, D., The law of the wake in turbulent boundary layer. J. Fluid Mech., Vol.1, pp.191–226, 1956.
26.Cui, J., V. C. Patel., and C. L. Lin, Large-eddy Simulation of Turbulent Flow in Channel with Rid Roughness. International Journal of Heat and Fluid Flow, Vol. 24(3), pp.372-388, 2003.
27.Dancey, C. L., Balakrishnan, M., Diplas, P., and Papanicolaou, A. N., The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow. Experiments in Fluids, Vol. 29(5), pp. 402-410, 2000.
28.de Lemos, M. J. S., and Pedras, M. H. J., Simulation of turbulent flow through hybrid porous medium-clear fluid domains. Proc. ASME Heat Transfer Div. Vol. 5, pp.113-122, 2000.
29.Djenidi, R., Elavarasan, R., Antonia, R. A., The turbulent boundary layer over transverse square cavities. J. Fluid Mech. Vol. 395, pp.271-294, 1999.
30.Eaton, J. K., and J. P. Johnston, A Review of Research on Subsonic Turbulent Flow Reattachment. AIAA Journal, Vol. 19, pp.1093-1100, 1981.
31.Finnigan, J. J., Turbulence in plant canopies. Annu. Rev. Fluid Mech., Vol. 32, pp.519-571, 2000.
32.Frederick, W. B., and J. Davis, Microflow Regimes and the Distribution of Macroinvertebrates around Stream Boulders. Freshwater Biology, Vol. 40, pp.77-86, 1998.
33.Gao, Y., and W. K. Chow, Numerical studies on air flow around a cube. J. Wind Engrg. Ind. Aerodynamics, Vol. 93(2), pp.115-135, 2005.
34.Gupte, S. K., and Advani, S. G., Flow near the permeable boundary of a porous medium: An experimental investigation using LDA. Experiments in Fluids, Vol. 22(5), pp.408-422, 1997.
35.Graf, W. H., and T. Song, Bed-shear stress in non-uniform and unsteady open-channel flows. Journal of hydraulic research, Vol. 33(5), pp.699-704, 1995.
36.Goring, Derek G., and Vladimir I. Nikora, Despiking Acoustic Doppler Velocimeter Data. J. Hydraul. Eng., Vol. 128(1), pp.117-126, 2002.
37.Hart, D. D.,B. D. Clark, and A. Jasentuliyana, Fine-scale field measurement of benthic flow environments inhabited by stream invertebrates. Limnol. Oceanogr., Vol. 41(2), pp.297-308, 1996.
38.Hoffman, J. A., and Mohammadi, K., Velocity profiles for turbulent boundary layers under freestream turbulence. J. Fluids Eng., Vol. 113(3), pp.399–404, 1991.
39.Hussein, H., and R. Martinuzzi, Energy balance for turbulent flow around a surface mounted cube placed in channel. Phys Fluids, Vol. 8(3), pp.764-780, 1996.
40.Javier Jimenez, Turbulent flow over rough wall. Annu. Rev. Fluid Mach., Vol.36, pp.173-196, 2004.
41.Kejun Yang, Shuyou Cao, and Donald W. Knight, Flow Patterns in Compound Channels with Vegetated Floodplains. Journal of hydraulic engineering, Vol. 133(2), pp.148-159, 2007.
42.Kim, J., Moin, P. & Moser, R. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. Vol.177, pp.133-166, 1987.
43.Kirkgoz, M. S., and Mehmet Ardichoglu., Velocity profiles of developing and developed open channel flow. Journal of hydraulic engineering, Vol. 123(12), pp.1099-1105, 1997.
44.Krogstad, P. K., R. A. Antonia, and L. W. B. Browne, Comparison between rough- and smooth-wall turbulent boundary layers. J. Fluid Mech., Vol. 245, pp.599-617, 1992.
45.Larichkin, V. V., and Yakovenko, S. N., Effect of boundary-layer thickness on the structure of a near-wall flow with a two-dimensional obstacle, J. Appl. Mech. Tech. Phys., Vol. 44(3), pp.365–372, 2003.
46.Le, H., Moin, P. & Kim, J., Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech., Vol.330, pp.349–374, 1997.
47.Lee, S. J., and C. W. Park, Surface Pressure Characteristics on a Triangular Prism Located behind a Porous Fence. Journal of Wind Engineering and Industrial Aerodynamics, Vol.80,pp.69-83, 1999.
48.Lee, S. J., and Hee-Chang Lim, A numerical study on ow around a triangular prism located behind a porous fence. Fluid Dynamics Research, Vol. 28, pp.209-221, 2001.
49.Leonardi, S., P. Orlandi, R. J. Smalley, L. Djenidi, and R. A. Antonia, Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech., Vol. 491, pp.229–238, 2003.
50.Lee, S. J., and H. B. Kim, Laboratory Measurements of Velocity and Turbulence Field behind Porous Fences. Journal of wind Engineering and Industrial Aerodynamics, Vol. 80,pp.311-326, 1999.
51.Li, B., Garga, av. K., and Davies, M. H., Relationships for non-Dracy flow in rockfill. J. Hydraul. Eng., Vol. 124(2), pp.206-212, 1998.
52.Lin, C., Hsieh, S. C., Kuo, K. J., and Chang, K. A., Reply to the Discussion : Experimental study on mean velocity characteristics of flow over vertical drop Journal of Hydraulic Research, Vol. 46(3), pp.425-428, 2008.
53.Liou, T.-M., Chang, Y., Hwang, D.-W., Experimental and computational study of turbulent flows in a channel with two pairs of turbulence promoters in tandem. Trans. ASME Vol. 112, pp.302–310, 1990.
54.Liou, T. M., Hwang, J-J., and Chen, S-H., Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall. Int. J. Heat Mass Transfer, Vol. 36, pp.507-517, 1993.
55.Liu, Y. Z., F. Ke, H. J. Sung, Unsteady separated and reattaching turbulent flow over a two-dimensional square rib. Journal of Fluids and Structures, Vol. 24, pp.366-381, 2008.
56.Lovera, F., Kennedy, J. F., Friction-Factors for Flat-Bed Flows in Sand Channels. ASCE, J. Hydraul. Div., Vol. 95(4), pp.1227-1234, 1969.
57.Maclean, A. G., and B. B. Willetts, Measurement of boundary shear stress in non-uniform open channel flow. Journal of Hydraulic Research, Vol. 24(1), pp.39-51, 1986.
58.Maclean, A. G., Open channel velocity profiles over a zone of rapid infiltration. Journal of Hydraulic Research, Vol. 29(11), pp.15-28, 1991.
59.Maeno, S., Michioku, K., Morinaga, S., and Kikuchi, K., Flow analysis around a rubble mound weir. 水工學論文集, Vol. 48, pp.829–834, 2004. (in Japanese)
60.Marco Ghisalberti, and Heidi Nepf, The Structure of the Shear Layer in Flows Over Rigid and Flexible Canopies. Environmental Fluid Mechanics, Vol. 277-301, 2006.
61.Mendoza, C., and Zhou, D., Effects of porous bed on turbulent stream flow above bed. J. Hydraulic Eng., Vol. 118(9), pp.1222-1240, 1992.
62.Michioku, K., S. Maeno, T. Furusawa, and M. Haneda, Discharge through a Permeable Rubble Mound Weir. Journal of Hydraulic Engineering, Vol. 131(1), pp.1-10, 2005.
63.Moore, W. L., Energy loss at the base of free overfall, Transactions, ASCE, 108, 1343-1360, 1943.
64.Nagano, Y., Hirofumi Hattori, and Tomoya Houra, DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. International Journal of Heat and Fluid Flow, Vol. 25, pp.1098–1111, 2004.
65.Nakayama, A., and Kuwahara, F., A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Eng., Vol. 121, pp. 393-403, 1999.
66.Nezu, I., Turbulent structure in open-channel flows. PhD thesis, Dept. of Civil Engineering, Kyoto Univ., Japan, 1977.
67.Nezu, I., and Nakagawa, H., Turbulence in open-channel flows. IAHR Monograph Series, A. A. Balkema, Rotterdam, 1993.
68.Nezu, I., and Rodi, W., Open-channel flow measurements with a Laser Doppler Anemometer. J. Hydraul. Eng., Vol. 112(5), pp.335–355, 1986.
69.Neale, G., and Nader, W., Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engrg, Vol. 52, pp.475–478, 1974.
70.Nepf, H. M., Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, Vol. 35(2), pp.479-489, 1999.
71.Nikora, V. I., and G. M. Smart., 1997. Turbulence characteristics of New Zealand gravel-bed rivers. Journal of Hydraulic Engineering, Vol. 123(9), pp.764-773.
72.Nikora, V., and Derek Goring, Flow turbulence over fixed and weakly mobile gravel beds. Journal of Hydraulic Engineering, Vol. 126(9), pp.679-690, 2000.
73.Ooi, A., G. Iaccarino, P. A. Durbin, and M. Behnia, Reynolds averaged simulation of flow and heat transfer in ribbed ducts. International Journal of Heat and Fluid Flow, Vol. 23, pp.750-757, 2002.
74.Perry, A. E., Schofield, W. H., and Jobert, P. N., Rough wall turbulent boundary layers. J. Fluid Mech., Vol. 37(2), pp.383-413, 1969.
75.Prinos, P., Sofialidis, D., and Keramaris, E., Turbulent flow over and within a porous bed. J. of Hydraul. Engrg. Vol. 129(9), pp.720-733, 2003.
76.Ram Balachandar, and V. C. Patel, Rough Wall Boundary Layer on Plates in Open Channels. J. of Hydraul. Engrg. Vol. 128(10), pp.947-951, 2002.
77.Rand, W., Flow geometry at straight drop spillways, Proceedings of the American Society of Civil Engineers. Vol. 81, pp.1-13, 1955.
78.Rashidi, M., and S. Banerjee., Turbulence structure in free-surface channel flows. Phys. Fluids, Vol. 31(9), pp.2491-2503, 1998.
79.Rajaratnam, N., and M. R. Chamani., Energy loss at drops. Jl of Hyd. Res., IAHR, Vol. 34(2), pp.273-278, 1996.
80.Robson, B. J., Chester, E. T., and Davis, J. A., Manipulating the intensity of near-bed turbulence in rivers: effects on benthic invertebrates. Freshwater Biology. Vol. 42, pp.645-653, 1999.
81.Ryu, D.N., D. H. Choi, and V. C. Patel, Analysis of turbulent flow in channels roughened by two-dimensional ribs and three-dimensional blocks. Part I: Resistance. International Journal of Heat and Fluid Flow, Vol. 28, pp.1098–1111, 2007.
82.Ryu, D.N., D. H. Choi, and V. C. Patel, Analysis of turbulent flow in channels roughened by two-dimensional ribs and three-dimensional blocks. Part II: Heat transfer. International Journal of Heat and Fluid Flow, Vol. 28, pp.1112-1124, 2007.
83.SAMAGA, B. R., K. G. RANGA RAJU, and R. J. GARDE, Velocity distribution in alluvial channel flow. Journal of Hydraulic Research, Vol. 24(4), pp.297-308, 1987.
84.Samani, H. M. V., Smani, J. M. V., and Shaiannejad, M., Reservoir routing using steady and unsteady flow through rockfill dams. J. Hydraul. Eng., Vol. 129(6), pp.448-454, 2003.
85.Shimizu, Y., Tsujimoto, T., and Nakagawa, H., Experimental and Macroscopic modeling of flow in highly porous medium under free-surface flow. J. of Hydroscience and Hydraulic. Engrg. Vol.8(1), pp.69-78, 1990.
86.Shiro Maeno, Kohji Michioku, Toshinori Ohnishi, and Satoru Morinaga, Hydraulic characteristics in a failure of a rubble mound weir. 應用力學論文集, Vol. 5, pp.657-664, 2002. (in Japanese)
87.Shuya Yoshioka, Shinnosuke Obi, and Shigeaki Masuda, Turbulence statistics of periodically perturbed separated flow over backward-facing step. International Journal of Heat and Fluid Flow, Vol. 22, pp.393-401, 2001.
88.Silva, R. A., and de lemos, M. J. S., Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transfer, Vol. 46, pp.5113-5121, 2003.
89.Smart, G. M., Turbulent velocity profiles and boundary shear in gravel bed rivers. Journal of Hydraulic Engineering, Vol. 125(2), pp.106-116, 1999.
90.Srikantaiah, D. V., and H. W. Coleman, Turbulence spectra from individual realization laser velocimetry data. Experiments in Fluids., Vol. 3, pp.35-44, 1985.
91.Schlichting, H., Boundary-Layer Theory, 7th edn. McGraw-Hill, 1979.
92.Stearns, F. P., A reason why the maximum velocity of water flowing in open channels is below the surface. Trans. Am. Soc. Civ Eng., Vol. 7, pp.331–338, 1883.
93.Tachie, M. F., M. Agelinchaab, and M. K. Shah, Turbulent flow over transverse ribs in open channel with converging side walls. International Journal of Heat and Fluid Flow, Vol. 28, pp.683-707, 2007.
94.Takatsu, Y., and Masuoka, T., Turbulent phenomena in flow through porous media. J. Porous Media, Vol. 3, pp.243-251, 1998.
95.Tracy, H. J., and Lester, C. M., Resistance coefficients and velocity distribution, smooth rectangular channel. U.S. Geological Survey (USGS) Water-supply paper 1592-A, USGS, Washington, D.C., A1–A18, 1961.
96.Vafai, K., and Kim, S. J., Analysis of surface enhancement by a porous substrate. ASME J. Heat Transfer, Vol. 112, pp.700–706, 1990.
97.Voulgaris, G., and Trowbridge, J. H., Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J. Atmos. Ocean. Technol., Vol. 15(1), pp.272–289, 1998.
98.Wang, J. J., and Shi-long Lan, and Guang Chen, Experimental study on the turbulent boundary layer flow over riblets surface. Fluid Dynamics Research, Vol.27, pp.217-229, 2000.
99.Wahidi, R., W. Chakroun, and S. Al-Fahed, Experimental Thermal and Fluid Science, Vol.30, pp.141-152, 2005.
100.Wang, H., and Takle, E. S., Boundary-layer flow and turbulence near porous obstacles. Boundary-Layer Meteorology, Vol. 74, pp.73–88, 1995.
101.Ward, J. C., Turbulent flow in porous media. J. Hydraul. Div., Am. Soc. Civ. Eng., Vol. 90(5), pp.1-12, 1964.
102.Win, S. J. Uijttewaal, Effects of Groyne Layout on the Flow in Groyne Fields: Laboratory Experiments. Journal of Hydraulic Engineering, Vol. 131(9), pp.782-791, 2005.
103.Wilson, J.D., Swaters, G.E., Ustina, F., A perturbation analysis of turbulent flow through a porous barrier. Q. J. R. Meteorol. Soc., Vol. 116, pp.989, 1990.
104.WU, S., and N. Rajaratnam, A simple method for measuring shear stress on rough boundaries. J. Hydraul. Res., Vol. 38(5), pp.399–400, 2001.
105.Yang, Shu-Qing, Soon-Keat Tan, and Siow-Yong Lim, Velocity Distribution and Dip-Phenomenon in Smooth Uniform Open Channel Flows. Journal of Hydraulic Engineering, Vol. 130(12), pp.1179-1186, 2004.
106.Yang, Shu-Qing, and Alex T. C., Turbulence structures in non-uniform flows. Advances in Water Resources, Vol. 31, pp.1344-1351, 2008.
107.Zagni, A. F. E., Smith, K. V. H., Channel Flow over Permeable Beds of Graded Spheres. ASCE, J. of the Hydraulics Division, Vol. 102(2), pp.207-222, 1976.
108.Zippe, H. J., and Graf, W. H., Turbulent boundary-layer flow over permeable and nonpermeable rough surfaces. J. Hydraul. Res., Vol. 21(1), pp.51–65, 1983.
109.Zhou, Donghuo, and Cesar Mendoza, Flow Through Porous Bed of Turbulent Stream. Journal of Engineering Mechanics, Vol. 119(2), pp.365-383, 1993.
110.李明靜,「河川表面流速與流量非接觸式量測方法之發展及應用」,國立成功大學水利及海洋工程學系博士論文,2003。
111.翁榮豐,「明渠後陷階梯流之紊流流場研究」,國立成功大學水利及海洋工程學系碩士論文,1992。
112.孫洪福,「單階自由跌水流場特性之實驗探討」,國立中興大學土木工程研究所碩士論文,1998。
113.陳國棠,「卵石及其構造物之物理性質探討」,中華大學土木工程學系碩士論文,2003。
114.陳鴻鈞,「通過多孔介質底床完全發展紊流分佈特性之研究」,國立成功大學水利及海洋工程學系碩士論文,2006。
115.黃偉哲,「水流通過透水式橋墩保護工之流況分析」,國立成功大學水利及海洋工程學系碩士論文,2001。
116.黃文彥,「單階自由跌水之速度場量測與分析」,國立中興大學土木工程研究所碩士論文,1999。
117.董志昌,「水流通過橋墩保護工之流況比較分析」,國立成功大學水利及海洋工程學系碩士論文,2002。
118.楊志偉,「透水結構物附近及其內部流場特性分析」,國立成功大學水利及海洋工程學系碩士論文,2006。
119.詹勳全,「水流通過多孔介質二維水理模式開發與應用」,國立成功大學水利及海洋工程學系博士論文,2006。
120.顏志偉,「複雜自由液面紊流之模擬與分析」,國立成功大學水利及海洋工程學系博士論文,1995。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top