1.Adrian R. J. and C. S. Yao, 1985. Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials, Appl. Optics, Vol. 24, pp. 44–52.
2.Antohe, B. V., and J. L. Lage, 1997. A general two–equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transfer, Vol. 40, pp. 3013–3024.
3.Battjes, J. A., 1974. Surf similarity. Proc.14th Conf. Coastal Eng., pp. 466–480.
4.Beavers, G. S., and D. D. Joesph, 1967. Boundary conditions at a naturally permeable wall. J. Fluid Mech., Vol. 30(1), pp. 197–207.
5.Beavers, G. S., E. M. Sparrow, and R. A. Magnuson, 1970. Parallel flow in a channel and a bounding porous medium. J. Basic Engrg., Vol. 92, pp. 843–848.
6.Bradford, S. F., 2000. Numerical simulation of surf zone dynamics. J. Waterw. Port, Coast. Ocean Eng., Vol. 126, No.1, pp. 1–13.
7.Brinkmann, H. C., 1947. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., Vol. A1, pp. 27–34.
8.Carmen P. C., 1937. Fluid through granular beds. Trans. Inst. Chem. Eng., vol. 15, pp. 150–156.
9.Chan, E. C., F. S. Lien, and M. M. Yavonovich, 2000, Numerical Study of Forced Flow in a Back–Step Channel Through Porous Layer, Proc. of 34th ASME–National Heat Transfer Conference (on CD–ROM), ASME–HTD–1463CD, Paper NHTC2000–12118, ISBN:0–7918–1997–3, Pittsburgh, Pennsylvania, August 20–22.
10.Chang, K. A. and P. L.-F. Liu, 1999. Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Phys. Fluids, Vol. 11, pp. 3390–3400.
11.Choi, C. Y. and S. J. Kim, 1994. Modeling of boundary conditions at the soil and water interface. Proc., ASAE Int. Winter Meeting, Am. Soc. Agric. Engrs., St. Joseph. Mich.
12.Choi, C. Y. and P. M. Waller, 1997. Momentum transport mechanism for water flow over porous media. J. Env. Engrg., Vol. 123, No. 8, pp. 792–799.
13.Christensen, E.D. and R. Deigaard, 2001. Large eddy simulation of breaking waves. Coastal Eng., Vol. 42, pp. 53-86.
14.Dalrymple, M., 1991. Against reconstruction in ellipsis. Technical Report SSL–91–114, Xerox.
15.Dancey, C. L., M. Balakrishnan, P. Diplas, and A. N. Papanicolaou, 2000. The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow. Exp. Fluids, Vol. 29, No. 5, pp. 402–410.
16.Dattatri, J., H. Raman, and N. Jothishankar, 1978. Performance characteristic of submerged breakwaters. Proc.16th Conf. Coastal Eng., Hamburg, ASCE, pp.2153–2171.
17.de Lemos, M. J. S. and M. H. J. Pedras, 2000. Simulation of turbulent flow through hybrid porous medium–clear fluid domains. Proc. ASME Heat Transfer Div. Vol. 5. pp. 113–122.
18.de Lemos, M. J. S., 2005. Turbulent kinetic energy distribution across the interface between a porous medium and a clear region. Int. Commun. Heat Mass Transf., Vol. 32, No. 1–2, pp. 107–1 15.
19.Flow Science, 2008, User manual of FLOW–3D version 9., Flow Science, 739p.
20.Forchheimer, P., 1901. Wasser bewegung durch bodem, Z. Ver. Deutsch, Vol. 45, pp.1782-1788., Germany.
21.Fu, W. S. and S. F. Chen, 2002. A numerical study of heat transfer of a porous block with the random porosity model in a channel flow. Heat and Mass Transf., Vol. 38, No. 7–8, pp. 695–704.
22.George, W. K. and Hussein, H. J., 1991. Locally axisymmetric turbulence. J. Fluid Mech., Vol. 54, No. 12, pp. 914–929.
23.Getachew, D., W. J. Minkowycz, and J. L. Lage, 2000. A modified form of the k-ε model for turbulent flow of an incompressible fluid in porous media. Int. J. Heat Mass Transfer, Vol. 43, pp. 2909–2915.
24.Golshani, A., N. Mizutani, and D. S. Hur, 2003. Three -dimensional analysis of nonlinear interaction between water waves and vertical Permeable breakwater. Coastal Engineering Journal, Vol. 45, No. 1, pp. 1–28.
25.Grant, I. 1997. Particle image velocimetry: A review. Proc. of the institution of Mechanical Engineers Part C : Journal of Mechanical Engineering Science, Vol. 211, No. 1, pp. 55–76.
26.Gratton, L., V. S. Travkin, and I. Catton, 1994. Numerical solution of turbulent heat and mass transfer in a stratified geostatistical porous layer for high permeability media. ASME Proc. HTD–Vol. 41, pp. 1–14.
27.Gu, Z., Wang, H., 1991. Gravity waves over porous bottoms. Coast .Eng., Vol. 15, pp. 497– 524.
28.Grue, J., P. L.-F. Liu, and G. K. Pedersen, 2003. PIV and water waves. Advances in Coast. and Ocean Eng., Vol. 9, World Scientific, 339p.
29.Gupte, S. K. and S. G. Advani, 1997. Flow near the permeable boundary of a porous medium: An experimental investigation using LDA. Exp. Fluids, Vol. 22, No. 5, pp. 408–422.
30.Harlow, F. H. and Welch J. E., 1965. Numerical calculation of time–dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, Vol. 8, pp. 2182–2189.
31.Hazen A, 1911. Discussion of “Dams on sand foundations” by A.C. Koenig. Transactions ASCE, Vol. 73, pp. 199.
32.Hino, T., H. Miyata and H. Kajitani, 1983. A numerical solution method for nonlinear shallow water. J. Society of Naval Architects of Jpn., Vol. 153, pp. 1–12.
33.Hirt, C. W. and B. D. Nichols, 1981. Volume of fluid method for the dynamics of free boundaries. J. Comput. Phys., Vol. 39, pp. 201–225.
34.Hsu, C. T. and P. Cheng, 1990. Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, Vol. 33, No. 8, pp. 1587–1597.
35.Hur, D. S., 2000. Breaking of multi-directional random waves over a submerged breakwater and wave forces on a structure on it. Ph.D dissertation, Nagoya University, 177p.
36.Iwasaki, T. and A. Numata, 1970. Experimental studies on wave transmission of a permeable breakwater constructed by artificial blocks. Coast. Eng. Jpn., Vol. 13, pp.25–29.
37.James, D. F., and A. M. Davis, 2001. Flow at the interface of a model fibrous porous medium. J. Fluid Mech., Vol. 426, pp. 47–72.
38.Kawasaki, K., 1998. Fundamental study on wave breaking and deformation process due to submerged structure. Ph.D dissertation, Nagoya University, 186p.
39.Kobayashi, N., 1986. Closure to riprap stability under wave action. J. Wtrwy Port Coast. Ocean Engng, Vol. 112, pp. 673–681.
40.Kozeny J., 1927. Uber kapillare Leitung des Wassers in Boden. S. B. Akad. Wiss. Wien Math. Naturwiss, vol. 136; pp. 271–306.
41.Krumbein W. C. and G. D. Monk, 1942. Permeability as a function of the size parameters of unconsolidated sand. Trans of Am. Inst. of Mining and Metallurgical Eng., vol. 73, pp. 199.
42.Kuwahara, F. and A. Nakayama, 1998. Numerical modeling of non-Darcy convective flow in a porous medium. Proc. 11th Int. Heat Transf. Conf., Kyongyu, Korea, pp.23-28.
43.Kuwahara, F., Y. Kameyama, S. Yamashita, and A. Nakayama, 1998. Numerical modeling of turbulent flow in porous media using a spatially periodic array. J. Porous Media, Vol. 1, pp. 47–55.
44.Kuznetsov, A. V., 1997. Influence of the stress jump condition at the porous-medium clear–fluid interface on a flow at a porous wall. Int. Commun. Heat Mass Transf., Vol. 24, No. 3, pp. 401–417.
45.Lage, J. L., 1998. The fundamental theory of flow through permeable media from Darcy to turbulence. Transport Phenomena in Porous Media, D. B. Ingham and I. Pop, eds., Elsevier Science, ISBN: 0–08–042843–6, pp.446.
46.Lee, K. and J. R. Howell, 1987. Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field. Proc. ASME–JSME Thermal Eng. Joint Conf., Vol. 2, pp. 377–386.
47.Lemos, C. M., 1992. A simple numerical technique for turbulent flows with free surfaces. International J. Numerical Methods in Fluids, Vol. 15, pp. 127–146.
48.Lin, P. and P. L.-F. Liu, 1998a. A numerical study of breaking waves in the surf zone. J. Fluid Mech., Vol. 359, pp. 239–264.
49.Lin, P. and P. L.-F. Liu, 1998b. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone,” J. Geophys. Research, Vol. 103, pp. 15677-15694.
50.Liu, P. L.–F., P. Lin, K. A. Chang, and T. Sakakiyama, 1999. Numerical modeling of wave interaction with porous structures. J. Waterw. Port, Coast. Ocean Eng., Vol. 125, pp. 322–330.
51.Lopez de San Roma´n–Blanco, B., , T. T. Coates, P. Holmes, A. J. Chadwick, A. Bradbury, T. E. Baldock, Adria´n Pedrozo–Acun˜a, J. Lawrence and Joachim Gruぴne f, 2006. Large scale experiments on gravel and mixed beaches: Experimental procedure, data documentation and initial results. Coastal Eng., Vol. 53, pp. 349–362.
52.Losada, I. J., M. A. Losada, and F. L. Martin, 1995, Experimental study of wave–induced flow in a porous structure. Coastal Eng., Vol. 26, pp. 77–98.
53.Losada I. J., R. Silva, M. A. Losada, 1996. Interaction of non–breaking directional random waves with submerged breakwaters, Coastal Eng., Vol. 28, pp. 249–266.
54.Losada I. J., R. Silva, M. A. Losada, 1998. Wave–induced mean flows in vertical rubble mound structures, Coastal Eng., Vol. 35, pp. 251–281.
55.Lundgern, T. S., 1972, Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech., Vol. 51(1), pp. 273–299.
56.Madsen, K. L., 1974. Effect of chlorhexidene mouthrinse and periodontal treatment upon bacteremia produced by oral hygiene procedures. Scand. J. Dnt. Res., Vol. 82, pp. 1–7.
57.Mason, T., 1997. Hydrodynamics and sediment transport on a macro–tidal, mixed (sand and shingle) beach. Ph.D dissertation, University of Southampton.
58.Massarotti, N., P. Nithiarasu, and A. Carotenuto, 2003. Microscopic and macroscopic approach for natural convection in enclosures filled with fluid saturated porous medium. Int. J. Num. Meth. Heat Fluid Flow, Vol. 13, No. 7, pp. 862–886.
59.Masuoka, T. and Y. Takatsu, 1996. Turbulence model for flow through porous media. Int. J. Heat Mass Transfer, Vol. 39, pp. 2803–2809.
60.Mendez F., I. J. Losada and M. A. Losada, 2001. Wave-induced mean magnitudes in permeable submerged breakwaters. J. Waterw. Port, Coast. Ocean Eng., Vol. 127, pp. 1–9.
61.Miglio, E., A. Quarteroni, and F. Saleri, 2003. Coupling of free surface and groundwater flows. Comput. Fluids, Vol. 32, pp. 73–83.
62.Miyata, H., 1986. Finite–difference simulation of breaking waves. J. Comput. Phys., Vol. 65, pp. 179–214.
63.Mizutani, N., Maeda, K., Mostafa, A. M. and McDougal, W. G., 1996. Estimation of resistance coefficients and numerical analysis of non–linear interaction between wave and permeable submerged breakwater, Proc. of Coastal Eng., JSCE, Vol. 43, pp. 131–135 (in Japanese).
64.Muir Wood, A. M., 1969. Coastal hydraulics, London, England: Mac Millon.
65.Nakayama, A. and F. Kuwahara, 1999. A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Eng., Vol. 121, pp. 427–433.
66.Neale, G. and W. Nader, 1974. Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engrg., Vol. 52, pp. 475– 478.
67.Ochoa–Tapia, J. A. and S. Whitaker, 1995a. Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: Theoretical development. Int. J. Heat Mass Transfer, Vol. 38, pp. 2635–2646.
68.Ochoa–Tapia, J. A. and S. Whitaker, 1995b. Momentum transfer at the boundary between a porous medium and a homogeneous fluid II: Comparison with experiment. Int. J. Heat Mass Transfer, Vol. 38, pp. 2647–2655.
69.Ochoa–Tapia, J. A. and S. Whitaker, 1998. Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects, J. Porous Media, Vol. 1, pp. 201–217.
70.Packwood A. P. and D. H. Peregrine, 1980. The propagation of solitary waves and bores over a porous bed. Coastal Eng., vol. 3, pp. 221–242.
71.Patankar, S. V., 1980. Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C.
72.Pedras, M. H. J. and M. J. S. de Lemos, 1999. On volume and time averaging of transport equations for turbulent flow in porous media,’’ Proc. of 3rd ASME/JSME Joint Fluids Engineering Conference (on CD–ROM), ASMEFED–248, Paper FEDSM99–7273, ISBN 0–7918–1961–2, San Francisco, California, July 18–23.
73.Pedras, M. H. J. and M. J. S. de Lemos, 2000. On the definition of turbulent kinetic energy for flow in porous media. Int. Commun. Heat and Mass Transf., Vol. 27, No. 2, pp. 211–220
74.Pedras, M. H. J. and M. J. S. de Lemos, 2001a. Simulation of turbulent flow in porous media using a spatially periodic array and a low Re two–equation closure. Numer. Heat Transf., A Appl., Vol. 39, No. 1, pp. 35–59.
75.Pedras, M. H. J. and M. J. S. de Lemos, 2001b. On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptic rods. J. Fluids Eng., Vol. 123, No. 4, pp. 941–947.
76.Prasad A.K., R. J. Adrian, C. C. Landreth and P. W. Offutt, 1992. Effect of resolution on the speed and accuracy of particle image velocimetry interrogation, Exp. Fluids, Vol. 13, pp. 105–116.
77.Prinos, P., D. Sofialidis, and E. Keramaris, 2003. Turbulent flow over and within a porous bed. J. of Hydraulic Engrg., Vol. 129, No. 9, pp. 720–733.
78.Putnam, J. A., 1949. Loss of wave energy due to percolation in a permeable sea bottom. Trans. Am. Geophys. Union, Vol. 30, pp. 349–356.
79.Reid, R. O. and K. Kajiura, 1957. On the damping of gravity waves over a permeable sea bed. Trans. Am. Geophys. Union, Vol. 38, pp. 362–666.
80.Rocamora, Jr., F. D. and M. J. S. de Lemos, 2000a. Heat transfer in suddenly expanded flow in a channel with porous inserts. Proc. of IMECE2000–ASME–Intern. Mech. Eng. Congr., ASME–HTD–366–5, pp. 191–195.
81.Rocamora, Jr., F. D., and M. J. S. de Lemos, 2000b. Prediction of velocity and temperature profiles for hybrid porous medium–clean fluid domains. Proc. Of CONEM2000–National Mechanical Engineering Congress (on CD–ROM), Natal, Rio Grande do Norte, Brazil, pp. 7–11.
82.Rodi, W., 1980. Turbulence Models and Their Application in Hydraulics - A State of the Art Review. International Association of Hydraulic Research publication, 104p.
83.Raffel, M., C. Willert, S. Wereley and J. Kompenhans, 2007. Particle image velocimetry : A practical guide. 2nd ed., Springer.
84.Rojanakamthorn, J., M. Isobe and A. Watanabe, 1989. A mathematical model of wave transformation over a submerged breakwater. Coast. Eng. Jpn., Vol. 32, No. 2, pp. 209–234
85.Sakakiyama, T., R. Kajima and N. Abe, 1991. Numerical simulation of wave motion in and near breakwaters, Proc. of 38th Japanese Conference on Coastal Eng., JSCE, pp. 545–550.
86.Sakakiyama, T. and R Kajima, 1992. Numerical simulation of nonlinear wave interacting with permeable breakwaters, Proc.23th Conf. Coastal Eng., ASCE, pp. 1517–1530.
87.Shimizu, Y., T. Tsujimoto and H. Nakagawa, 1990. Experimental and Macroscopic modeling of flow in highly porous medium under free–surface flow. J. of Hydroscience and Hydraulic Engrg., Vol. 8, No. 1, pp. 69–78.
88.Shojaee Fard M. H. and F. A. Boyaghchi, 2007. Studies of the Influence of Various Blade Outlet Angles in a Centrifugal Pump when Handling Viscous Fluids. American J. of Applied Sciences, Vol 4, Issue 9, pp. 718–724.
89.Silva, R. A. and M. J. S. de lemos, 2003a. Numerical Analysis of the Stress Jump Interface Condition for Laminar Flow over a Porous Layer. Numer. Heat Transf., A Appl., Vol. 43, No. 6, pp. 603–617.
90.Silva, R. A. and M. J. S. de lemos, 2003b. Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transfer, Vol. 46, pp. 5113–5121.
91.Sollitt, C. K. and R. H. Cross, 1972 , Wave Transmission Through Permeable Breakwaters, Proc. 13th Inter. Conf. on Coastal Eng., ASCE, pp.1827–1846
92.Svendsen, I. A. , 1987. Analysis of surf zone turbulence. J. Geophys. Research, Vol. 92(C5), pp. 5115-5124.
93.Takatsu, Y. and T. Masuoka, 1998. Turbulent phenomena in flow through porous media. J. Porous Media, Vol. 3, pp. 243–251.
94.Travkin, V. S. and I. Catton, 1992. Models of turbulent thermal diffusivity and transfer coefficients for a regular packed bed of spheres. Proc. 28th National Heat Transfer Conference, San Diego, C–4, ASME–HTD–193, 15–23.
95.Travkin, V.S., I. Catton and L. Gratton, 1993. Single phase turbulent transport in prescribed non–isotropic and stochastic porous media. Heat Transfer in Porous Media, ASME HTD–240, pp. 43–48.
96.Travkin, V. S. and I. Catton, 1995. A two temperature model for turbulent flow and heat transfer in a porous layer. ASME J. Fluids Eng., Vol. 117, pp. 181–188.
97.Travkin, V. S. and I. Catton, 1998. Porous media transport descriptions–non–local, linear, and non–linear against effective thermal/fluid properties. Adv. Colloid Interface Sci., Vol. 76–77, pp. 389–443.
98.Travkin, V. S., I. Catton, and L. Gratton, 1993. Single–phase turbulent transport in prescribed non–isotropic and stochastic porous media. Heat Transfer in Porous Media, ASME–HTD–240, 43–48.
99.Travkin, V. S., K. Hu, and I. Catton, 1999. Turbulent kinetic energy and dissipation rate equation models for momentum transport in porous media. Proc. 3rd ASME/JSME Joint Fluids Engineering Conference (on CD–ROM), Paper FEDSM99–7275, San Francisco, California, 18–23 July.
100.Tsai, C. P., H. B. Chen, and F. C. Lee, 2006. Wave transformation over submerged permeable breakwater on porous bottom. Ocean Eng., Vol. 33, pp. 1623–1643.
101.van der Meer, J. W., 1988. Rock slopes and gravel beaches under wave attack. Ph.D dissertation, Delft University of Technology, 152p.
102.Vafai, K. and C. L. Tien, 1981. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transfer, Vol. 24, pp. 195–203.
103.Vafai, K. and R. Thiyagaraja, 1987. Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transfer, Vol. 30, pp.1391–1405.
104.Vafai, K., and S. J. Kim, 1989. Forced convection in a channel filled with a porous medium: An exact solution. ASME J. Heat Transfer, Vol. 111, pp. 1103–1106.
105.Vafai, K. and S. J. Kim, 1990. Analysis of surface enhancement by a porous substrate. ASME J. Heat Transfer, Vol. 112, pp. 700–706.
106.Van Gent, M.R.A., 1995 a. Wave interaction with permeable coastal structures. Delft University of Technology, Delft, The Netherlands.
107.Van Gent, M.R.A., 1995 b. Porous flow through rubble–mound material. J. Waterw. Port, Coast. Ocean Eng., Vol. 121, pp. 176–181.
108.Wang, Y. and C. Su, 1993. “Computation of wave breaking on sloping beach by VOF method. Proc. 3rd International Offshore and Polar Engineering Conference, Singapore, pp. 96–101.
109.Wang, D.C. and A. Khalili, 2003. Flow visualization and quantitative measurements inside porous media by particle image velocimetry, Proc. of SPIE, Vol. 5058, pp. 232–239.
110.Wang, H. and E. S. Takle, 1995. Boundary–layer flow and turbulence near porous obstacles. Boundary–Layer Meteorology, Vol. 74, pp. 73–88.
111.Watanabe, Y. and H. Saeki, 1999. Three –dimensional large eddy simulation of breaking wave, Coastal Eng., Vol. 41, pp. 281–301.
112.Whitaker, S., 1961. Diffusion and dispersion in porous media. AIChE J., Vol. 13, pp. 420–427.
113.Wurjanto, A. and N. Kobayashi, 1993. Irregular wave reflection and run–up on rough permeable slopes. J. Waterw. Port, Coast. Ocean Eng., ASCE, Vol. 119, pp. 537–557
114.Zhao, Q., S. Armfield, and K. Tanimoto, 2004. Numerical simulation of breaking waves by a multi–scale turbulence model. Coastal Eng., Vol. 51, pp.53–80.
115.黃材成、林怡成,1997,「透水式潛堤波浪特性之實驗研究」,中華民國第十九屆海洋工程研討會論文集,台中,第 220頁–227 頁。
116.藍元志,2001,「波浪與可透水彈性體互相作用之分析」,國立成功大學水利及海洋工程研究所博士論文。117.吳榮峰,2002,「大尺度質點影像量測法之應用–分析水面流場」,國立成功大學水利及海洋工程研究所碩士論文。118.許泰文,2003,「近岸水動力學」,中國土木水利工程學會。
119.張興漢,2004,「波浪與近岸潛沒透水結構物之交互作用」,國立成功大學水利及海洋工程研究所博士論文。120.謝志敏,2004,「應用RANS模擬波浪通過潛堤和沙漣流場」,國立成功大學水利及海洋工程研究所博士論文。121.詹勳全,2005,「水流通過多孔介質二維水理模式開發與應用」,國立成功大學水利及海洋工程研究所博士論文。122.郭晉安、賴堅戊、簡仲和、郭金棟,2005,「均勻顆粒底床地形演變與波浪最大溯上之研究」,第十五屆台灣水利工程研討會論文集,桃園,K22頁–K28頁。
123.簡仲和、郭金棟、郭晉安、賴堅戊,2005,「台東海岸復育研究計畫(1/2)」,財團法人成大水利海洋研究發展文教基金會、經濟部水利署第八河川局。
124.賴堅戊、郭金棟、簡仲和、許泰文、邱繼賢,2006,「台東礫石海岸變遷及其海灘斷面型態探討」,第二十八屆台灣海洋工程研討會論文集,高雄,603頁–608頁。
125.簡仲和、郭金棟、郭晉安、賴堅戊等,2006,「台東海岸復育研究計畫(2/2)」,財團法人成大水利海洋研究發展文教基金會、經濟部水利署第八河川局
126.丁肇隆、林銘崇、李芳承,2007,「波浪通過透水潛堤產生高階諧和波之流場特性研究」,第29屆海洋工程研討會論文集,第337頁–342頁。127.賴堅戊、許泰文、林士翔、水谷法美、李光浩,2008,「波浪於粗粒徑斜坡底床上傳遞之波流特性」,第卅屆海洋工程研討會論文集,台南,第271頁–276頁。
128.江藤剛治、竹原幸生、橫山雄一、井田康夫,1996,「水流ソ可視化ズ必要ス�k連技術ソ開�飽苳餼姥膃X�萱}折率整合�蒂h波長計測-」,日本土木���挼蚺撊陛A No. 533/II–34,第 87頁–106 頁。(日文)