跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴堅戊
研究生(外文):Jian-Wu Lai
論文名稱:波浪於粗粒徑斜坡底床傳遞之試驗與數值研究
論文名稱(外文):Experimental and numerical studies on wave propagation over coarse grained sloping beach
指導教授:許泰文許泰文引用關係
指導教授(外文):Tai-Wen Hsu
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:161
中文關鍵詞:粗粒徑斜坡底床紊流質點影像測速儀數位影像處理孔隙透水介質波浪變形
外文關鍵詞:wave transformationporous permeable mediumDigital Image Processturbulence characteristicsParticle Image Velocimetrycoarse grained sloping beach
相關次數:
  • 被引用被引用:19
  • 點閱點閱:525
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在探討波浪於粗粒徑孔隙斜坡底床傳遞的水動力及紊流特性。本文分別以水工模型試驗及數值模擬進行,並進行波、流場與紊流等物理現象時空分佈之特性分析。在試驗部份,以質點影像測速儀 (Particle Image Velocimetry, PIV) 配合空間幾何崁入,將11 個局部重疊的觀測視窗 (Field of Views, FOVs) 之流速資訊合併,建立斜坡上完整之流速時空變化量測方法。此外波浪傳遞之自由液面之時空變化,經由波動水槽側壁拍攝之連續波浪影像,以數位影像處理 (Digital Image Process, DIP) 技術,透過影像幾何校正、影像合併、影像重建、影像增顯與邊緣偵測等步驟萃取波浪於粗粒徑斜坡底床傳遞時之波浪變形時空資訊。試驗在自由液面與流速皆採用非侵入式量測方法,可獲得完整之波流時空分佈變化特性,並進而求取平均流速、渦度場、紊流動能及紊流動能消散等試驗資料,達到量測波浪通過孔隙斜坡底床全尺度波流場。
在數值模擬方面,以 Navier-Stokes 方程式為架構之 FLOW-3D 計算軟體,分別以孔隙體模式 (Porous Body Model, PBM) 以及三維直接解析兩種方式進行模擬,並且將模擬結果之水位與流速資訊與水工模型試驗所得結果進行比較,藉以了解兩種方法在模擬波浪在粗粒徑孔隙斜坡上傳遞之差異。結果顯示三維直接解析較孔隙體模式能完整描述流速受孔隙體阻擋所產生的蜿蜒特性,且在碎波帶至沖刷帶間亦較孔隙體模式有較合理的振幅及相位解析結果。
本文同時以 FLOW-3D 計算不透水和孔隙底床之波浪變形、流場及紊流特性,並比較兩者之差異性。結果顯示,孔隙底床對波浪發生碎波之型態產生影響,使原本不透水底床所發生之捲波 (plunging) 碎波之舌狀前緣較變得不顯著,而較近似潰波(collaping) 之碎波型態,此孔隙底床造成的碎波型態改變,使得原本因捲波而產生的
迴流減弱消失。此外波浪因孔隙層之摩擦及滲透作用而使波能消,在碎波帶與沖刷帶之間波能消散、流場及紊流特性有很大的差異,於該區間內粗粒徑孔隙斜坡上代表波形振動下限之下包絡線,其振幅相較於不透水底床明顯而快速地減少,相對而言代表上振幅範圍之上包絡線則並未因為底床透水型態不同有顯著差異,而呈現較為緩慢減少。
In this paper, the hydrodynamics and turbulence for wave propagating over coarse grained sloping beach is investigated using both experimental and numerical model.
The coarse grained sloping beach was placed over a 1:5 inclined bottom with two layers of spherical balls. Measurements on temporal and spatial variations of physical quantities such as wave profiles, current fields and turbulence were conducted in the wave flume. The particle image velocimetry (PIV) and digital image process (DIP) techniques are employed to detect the flow field and free surface configuration at both inside and outside regions on the sloping bed. Eleven fields of views (FOVs) were integrated to explore the entire evolutions for waves propagating from the surf zone to the swash zone. In addition, a high resolution Charge Coupled Device (CCD) Camera was used to grasp the images of wave profile. Subsequent digital image processing (DIP) techniques consisting of the image enhancement, coordinate transformation, edge detection and sub-pixel concept for higher resolution were developed to resolve the image and achieve a complete water surface evolutions. In the experimental study, the PIV and DIP techniques provide a possibility for measuring a full scale temporal and spatial variation of the wave profiles and velocity field. Furthermore, the FLOW-3D modeling based on the Navier-Stokes equations was adopted for the simulation of waves traveling over the sloping bed. The porous body model and direct three-dimensional simulations were employed for the calculation of wave profile and velocity field. Numerical results were favorably compared with experiments.
The compare results show that the direct three-dimensional simulations method provides accurate predictions in the all wave propagation regions. The wave and velocity profile are resolved more completed as well as in the not only from outer to the inner porous layer, but also in the surf zone and swash zone. Experimental results show that the process of the turbulence characteristics of the maximum turbulent kinetic energy, turbulent kinetic energy dissipation rate and turbulence intensity take place in the region between the toe of breaker and surface of porous layer.
Flow 3D modeling is implemented to compute wave transformation, flow velocity and turbulent. Their differences were compared for the cases of waves propagating over porous and impermeable bed. The results show that the breaker type is significantly influenced by the porous coarse grained bottom. A plunging breaker becomes a collapsing breaker due to the additional resistance and friction of discrete grains within the porous medium. The front of water bore is stopped at the breaking point and ceases to move forward. Therefore, no significant retuned flow occurs in the surf zone.
摘要 I
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 前人研究 4
1-3 研究目的 18
1-4 本文組織 19
第二章 數值模式 21
2-1 FLOW-3D簡介 21
2-2 基本控制方程式 23
2-3 數值方法與邊界條件 35
2-4 格網獨立測試與模擬合理性 45
第三章 試驗設計與方法 53
3-1 試驗水槽與模型佈置 53
3-2 質點影像流速(PIV)量測系統 60
3-3 影像波浪量測系統 70
3-4 試驗系統驗證 77
第四章 模式驗證 83
4-1 粗粒徑斜坡底床之試驗結果 83
4-2 粗粒徑斜坡底床之孔隙介質模式(PBM)模擬驗證 101
4-3 三維粗粒徑斜坡底床之直接解析模擬驗證 106
4-4 小結 111
第五章 三維數值模擬結果與討論 113
5-1 波浪傳遞變形之比較與討論 113
5-2 流場特性之比較與討論 123
5-3 紊流特性討論 130
第六章 結論與建議 145
6-1 結論 145
6-2 建議 147
參考文獻 149
1.Adrian R. J. and C. S. Yao, 1985. Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials, Appl. Optics, Vol. 24, pp. 44–52.
2.Antohe, B. V., and J. L. Lage, 1997. A general two–equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transfer, Vol. 40, pp. 3013–3024.
3.Battjes, J. A., 1974. Surf similarity. Proc.14th Conf. Coastal Eng., pp. 466–480.
4.Beavers, G. S., and D. D. Joesph, 1967. Boundary conditions at a naturally permeable wall. J. Fluid Mech., Vol. 30(1), pp. 197–207.
5.Beavers, G. S., E. M. Sparrow, and R. A. Magnuson, 1970. Parallel flow in a channel and a bounding porous medium. J. Basic Engrg., Vol. 92, pp. 843–848.
6.Bradford, S. F., 2000. Numerical simulation of surf zone dynamics. J. Waterw. Port, Coast. Ocean Eng., Vol. 126, No.1, pp. 1–13.
7.Brinkmann, H. C., 1947. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., Vol. A1, pp. 27–34.
8.Carmen P. C., 1937. Fluid through granular beds. Trans. Inst. Chem. Eng., vol. 15, pp. 150–156.
9.Chan, E. C., F. S. Lien, and M. M. Yavonovich, 2000, Numerical Study of Forced Flow in a Back–Step Channel Through Porous Layer, Proc. of 34th ASME–National Heat Transfer Conference (on CD–ROM), ASME–HTD–1463CD, Paper NHTC2000–12118, ISBN:0–7918–1997–3, Pittsburgh, Pennsylvania, August 20–22.
10.Chang, K. A. and P. L.-F. Liu, 1999. Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Phys. Fluids, Vol. 11, pp. 3390–3400.
11.Choi, C. Y. and S. J. Kim, 1994. Modeling of boundary conditions at the soil and water interface. Proc., ASAE Int. Winter Meeting, Am. Soc. Agric. Engrs., St. Joseph. Mich.
12.Choi, C. Y. and P. M. Waller, 1997. Momentum transport mechanism for water flow over porous media. J. Env. Engrg., Vol. 123, No. 8, pp. 792–799.
13.Christensen, E.D. and R. Deigaard, 2001. Large eddy simulation of breaking waves. Coastal Eng., Vol. 42, pp. 53-86.
14.Dalrymple, M., 1991. Against reconstruction in ellipsis. Technical Report SSL–91–114, Xerox.
15.Dancey, C. L., M. Balakrishnan, P. Diplas, and A. N. Papanicolaou, 2000. The spatial inhomogeneity of turbulence above a fully rough, packed bed in open channel flow. Exp. Fluids, Vol. 29, No. 5, pp. 402–410.
16.Dattatri, J., H. Raman, and N. Jothishankar, 1978. Performance characteristic of submerged breakwaters. Proc.16th Conf. Coastal Eng., Hamburg, ASCE, pp.2153–2171.
17.de Lemos, M. J. S. and M. H. J. Pedras, 2000. Simulation of turbulent flow through hybrid porous medium–clear fluid domains. Proc. ASME Heat Transfer Div. Vol. 5. pp. 113–122.
18.de Lemos, M. J. S., 2005. Turbulent kinetic energy distribution across the interface between a porous medium and a clear region. Int. Commun. Heat Mass Transf., Vol. 32, No. 1–2, pp. 107–1 15.
19.Flow Science, 2008, User manual of FLOW–3D version 9., Flow Science, 739p.
20.Forchheimer, P., 1901. Wasser bewegung durch bodem, Z. Ver. Deutsch, Vol. 45, pp.1782-1788., Germany.
21.Fu, W. S. and S. F. Chen, 2002. A numerical study of heat transfer of a porous block with the random porosity model in a channel flow. Heat and Mass Transf., Vol. 38, No. 7–8, pp. 695–704.
22.George, W. K. and Hussein, H. J., 1991. Locally axisymmetric turbulence. J. Fluid Mech., Vol. 54, No. 12, pp. 914–929.
23.Getachew, D., W. J. Minkowycz, and J. L. Lage, 2000. A modified form of the k-ε model for turbulent flow of an incompressible fluid in porous media. Int. J. Heat Mass Transfer, Vol. 43, pp. 2909–2915.
24.Golshani, A., N. Mizutani, and D. S. Hur, 2003. Three -dimensional analysis of nonlinear interaction between water waves and vertical Permeable breakwater. Coastal Engineering Journal, Vol. 45, No. 1, pp. 1–28.
25.Grant, I. 1997. Particle image velocimetry: A review. Proc. of the institution of Mechanical Engineers Part C : Journal of Mechanical Engineering Science, Vol. 211, No. 1, pp. 55–76.
26.Gratton, L., V. S. Travkin, and I. Catton, 1994. Numerical solution of turbulent heat and mass transfer in a stratified geostatistical porous layer for high permeability media. ASME Proc. HTD–Vol. 41, pp. 1–14.
27.Gu, Z., Wang, H., 1991. Gravity waves over porous bottoms. Coast .Eng., Vol. 15, pp. 497– 524.
28.Grue, J., P. L.-F. Liu, and G. K. Pedersen, 2003. PIV and water waves. Advances in Coast. and Ocean Eng., Vol. 9, World Scientific, 339p.
29.Gupte, S. K. and S. G. Advani, 1997. Flow near the permeable boundary of a porous medium: An experimental investigation using LDA. Exp. Fluids, Vol. 22, No. 5, pp. 408–422.
30.Harlow, F. H. and Welch J. E., 1965. Numerical calculation of time–dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, Vol. 8, pp. 2182–2189.
31.Hazen A, 1911. Discussion of “Dams on sand foundations” by A.C. Koenig. Transactions ASCE, Vol. 73, pp. 199.
32.Hino, T., H. Miyata and H. Kajitani, 1983. A numerical solution method for nonlinear shallow water. J. Society of Naval Architects of Jpn., Vol. 153, pp. 1–12.
33.Hirt, C. W. and B. D. Nichols, 1981. Volume of fluid method for the dynamics of free boundaries. J. Comput. Phys., Vol. 39, pp. 201–225.
34.Hsu, C. T. and P. Cheng, 1990. Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, Vol. 33, No. 8, pp. 1587–1597.
35.Hur, D. S., 2000. Breaking of multi-directional random waves over a submerged breakwater and wave forces on a structure on it. Ph.D dissertation, Nagoya University, 177p.
36.Iwasaki, T. and A. Numata, 1970. Experimental studies on wave transmission of a permeable breakwater constructed by artificial blocks. Coast. Eng. Jpn., Vol. 13, pp.25–29.
37.James, D. F., and A. M. Davis, 2001. Flow at the interface of a model fibrous porous medium. J. Fluid Mech., Vol. 426, pp. 47–72.
38.Kawasaki, K., 1998. Fundamental study on wave breaking and deformation process due to submerged structure. Ph.D dissertation, Nagoya University, 186p.
39.Kobayashi, N., 1986. Closure to riprap stability under wave action. J. Wtrwy Port Coast. Ocean Engng, Vol. 112, pp. 673–681.
40.Kozeny J., 1927. Uber kapillare Leitung des Wassers in Boden. S. B. Akad. Wiss. Wien Math. Naturwiss, vol. 136; pp. 271–306.
41.Krumbein W. C. and G. D. Monk, 1942. Permeability as a function of the size parameters of unconsolidated sand. Trans of Am. Inst. of Mining and Metallurgical Eng., vol. 73, pp. 199.
42.Kuwahara, F. and A. Nakayama, 1998. Numerical modeling of non-Darcy convective flow in a porous medium. Proc. 11th Int. Heat Transf. Conf., Kyongyu, Korea, pp.23-28.
43.Kuwahara, F., Y. Kameyama, S. Yamashita, and A. Nakayama, 1998. Numerical modeling of turbulent flow in porous media using a spatially periodic array. J. Porous Media, Vol. 1, pp. 47–55.
44.Kuznetsov, A. V., 1997. Influence of the stress jump condition at the porous-medium clear–fluid interface on a flow at a porous wall. Int. Commun. Heat Mass Transf., Vol. 24, No. 3, pp. 401–417.
45.Lage, J. L., 1998. The fundamental theory of flow through permeable media from Darcy to turbulence. Transport Phenomena in Porous Media, D. B. Ingham and I. Pop, eds., Elsevier Science, ISBN: 0–08–042843–6, pp.446.
46.Lee, K. and J. R. Howell, 1987. Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field. Proc. ASME–JSME Thermal Eng. Joint Conf., Vol. 2, pp. 377–386.
47.Lemos, C. M., 1992. A simple numerical technique for turbulent flows with free surfaces. International J. Numerical Methods in Fluids, Vol. 15, pp. 127–146.
48.Lin, P. and P. L.-F. Liu, 1998a. A numerical study of breaking waves in the surf zone. J. Fluid Mech., Vol. 359, pp. 239–264.
49.Lin, P. and P. L.-F. Liu, 1998b. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone,” J. Geophys. Research, Vol. 103, pp. 15677-15694.
50.Liu, P. L.–F., P. Lin, K. A. Chang, and T. Sakakiyama, 1999. Numerical modeling of wave interaction with porous structures. J. Waterw. Port, Coast. Ocean Eng., Vol. 125, pp. 322–330.
51.Lopez de San Roma´n–Blanco, B., , T. T. Coates, P. Holmes, A. J. Chadwick, A. Bradbury, T. E. Baldock, Adria´n Pedrozo–Acun˜a, J. Lawrence and Joachim Gruぴne f, 2006. Large scale experiments on gravel and mixed beaches: Experimental procedure, data documentation and initial results. Coastal Eng., Vol. 53, pp. 349–362.
52.Losada, I. J., M. A. Losada, and F. L. Martin, 1995, Experimental study of wave–induced flow in a porous structure. Coastal Eng., Vol. 26, pp. 77–98.
53.Losada I. J., R. Silva, M. A. Losada, 1996. Interaction of non–breaking directional random waves with submerged breakwaters, Coastal Eng., Vol. 28, pp. 249–266.
54.Losada I. J., R. Silva, M. A. Losada, 1998. Wave–induced mean flows in vertical rubble mound structures, Coastal Eng., Vol. 35, pp. 251–281.
55.Lundgern, T. S., 1972, Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech., Vol. 51(1), pp. 273–299.
56.Madsen, K. L., 1974. Effect of chlorhexidene mouthrinse and periodontal treatment upon bacteremia produced by oral hygiene procedures. Scand. J. Dnt. Res., Vol. 82, pp. 1–7.
57.Mason, T., 1997. Hydrodynamics and sediment transport on a macro–tidal, mixed (sand and shingle) beach. Ph.D dissertation, University of Southampton.
58.Massarotti, N., P. Nithiarasu, and A. Carotenuto, 2003. Microscopic and macroscopic approach for natural convection in enclosures filled with fluid saturated porous medium. Int. J. Num. Meth. Heat Fluid Flow, Vol. 13, No. 7, pp. 862–886.
59.Masuoka, T. and Y. Takatsu, 1996. Turbulence model for flow through porous media. Int. J. Heat Mass Transfer, Vol. 39, pp. 2803–2809.
60.Mendez F., I. J. Losada and M. A. Losada, 2001. Wave-induced mean magnitudes in permeable submerged breakwaters. J. Waterw. Port, Coast. Ocean Eng., Vol. 127, pp. 1–9.
61.Miglio, E., A. Quarteroni, and F. Saleri, 2003. Coupling of free surface and groundwater flows. Comput. Fluids, Vol. 32, pp. 73–83.
62.Miyata, H., 1986. Finite–difference simulation of breaking waves. J. Comput. Phys., Vol. 65, pp. 179–214.
63.Mizutani, N., Maeda, K., Mostafa, A. M. and McDougal, W. G., 1996. Estimation of resistance coefficients and numerical analysis of non–linear interaction between wave and permeable submerged breakwater, Proc. of Coastal Eng., JSCE, Vol. 43, pp. 131–135 (in Japanese).
64.Muir Wood, A. M., 1969. Coastal hydraulics, London, England: Mac Millon.
65.Nakayama, A. and F. Kuwahara, 1999. A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Eng., Vol. 121, pp. 427–433.
66.Neale, G. and W. Nader, 1974. Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engrg., Vol. 52, pp. 475– 478.
67.Ochoa–Tapia, J. A. and S. Whitaker, 1995a. Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: Theoretical development. Int. J. Heat Mass Transfer, Vol. 38, pp. 2635–2646.
68.Ochoa–Tapia, J. A. and S. Whitaker, 1995b. Momentum transfer at the boundary between a porous medium and a homogeneous fluid II: Comparison with experiment. Int. J. Heat Mass Transfer, Vol. 38, pp. 2647–2655.
69.Ochoa–Tapia, J. A. and S. Whitaker, 1998. Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects, J. Porous Media, Vol. 1, pp. 201–217.
70.Packwood A. P. and D. H. Peregrine, 1980. The propagation of solitary waves and bores over a porous bed. Coastal Eng., vol. 3, pp. 221–242.
71.Patankar, S. V., 1980. Numerical heat transfer and fluid flow, Hemisphere, Washington, D.C.
72.Pedras, M. H. J. and M. J. S. de Lemos, 1999. On volume and time averaging of transport equations for turbulent flow in porous media,’’ Proc. of 3rd ASME/JSME Joint Fluids Engineering Conference (on CD–ROM), ASMEFED–248, Paper FEDSM99–7273, ISBN 0–7918–1961–2, San Francisco, California, July 18–23.
73.Pedras, M. H. J. and M. J. S. de Lemos, 2000. On the definition of turbulent kinetic energy for flow in porous media. Int. Commun. Heat and Mass Transf., Vol. 27, No. 2, pp. 211–220
74.Pedras, M. H. J. and M. J. S. de Lemos, 2001a. Simulation of turbulent flow in porous media using a spatially periodic array and a low Re two–equation closure. Numer. Heat Transf., A Appl., Vol. 39, No. 1, pp. 35–59.
75.Pedras, M. H. J. and M. J. S. de Lemos, 2001b. On the mathematical description and simulation of turbulent flow in a porous medium formed by an array of elliptic rods. J. Fluids Eng., Vol. 123, No. 4, pp. 941–947.
76.Prasad A.K., R. J. Adrian, C. C. Landreth and P. W. Offutt, 1992. Effect of resolution on the speed and accuracy of particle image velocimetry interrogation, Exp. Fluids, Vol. 13, pp. 105–116.
77.Prinos, P., D. Sofialidis, and E. Keramaris, 2003. Turbulent flow over and within a porous bed. J. of Hydraulic Engrg., Vol. 129, No. 9, pp. 720–733.
78.Putnam, J. A., 1949. Loss of wave energy due to percolation in a permeable sea bottom. Trans. Am. Geophys. Union, Vol. 30, pp. 349–356.
79.Reid, R. O. and K. Kajiura, 1957. On the damping of gravity waves over a permeable sea bed. Trans. Am. Geophys. Union, Vol. 38, pp. 362–666.
80.Rocamora, Jr., F. D. and M. J. S. de Lemos, 2000a. Heat transfer in suddenly expanded flow in a channel with porous inserts. Proc. of IMECE2000–ASME–Intern. Mech. Eng. Congr., ASME–HTD–366–5, pp. 191–195.
81.Rocamora, Jr., F. D., and M. J. S. de Lemos, 2000b. Prediction of velocity and temperature profiles for hybrid porous medium–clean fluid domains. Proc. Of CONEM2000–National Mechanical Engineering Congress (on CD–ROM), Natal, Rio Grande do Norte, Brazil, pp. 7–11.
82.Rodi, W., 1980. Turbulence Models and Their Application in Hydraulics - A State of the Art Review. International Association of Hydraulic Research publication, 104p.
83.Raffel, M., C. Willert, S. Wereley and J. Kompenhans, 2007. Particle image velocimetry : A practical guide. 2nd ed., Springer.
84.Rojanakamthorn, J., M. Isobe and A. Watanabe, 1989. A mathematical model of wave transformation over a submerged breakwater. Coast. Eng. Jpn., Vol. 32, No. 2, pp. 209–234
85.Sakakiyama, T., R. Kajima and N. Abe, 1991. Numerical simulation of wave motion in and near breakwaters, Proc. of 38th Japanese Conference on Coastal Eng., JSCE, pp. 545–550.
86.Sakakiyama, T. and R Kajima, 1992. Numerical simulation of nonlinear wave interacting with permeable breakwaters, Proc.23th Conf. Coastal Eng., ASCE, pp. 1517–1530.
87.Shimizu, Y., T. Tsujimoto and H. Nakagawa, 1990. Experimental and Macroscopic modeling of flow in highly porous medium under free–surface flow. J. of Hydroscience and Hydraulic Engrg., Vol. 8, No. 1, pp. 69–78.
88.Shojaee Fard M. H. and F. A. Boyaghchi, 2007. Studies of the Influence of Various Blade Outlet Angles in a Centrifugal Pump when Handling Viscous Fluids. American J. of Applied Sciences, Vol 4, Issue 9, pp. 718–724.
89.Silva, R. A. and M. J. S. de lemos, 2003a. Numerical Analysis of the Stress Jump Interface Condition for Laminar Flow over a Porous Layer. Numer. Heat Transf., A Appl., Vol. 43, No. 6, pp. 603–617.
90.Silva, R. A. and M. J. S. de lemos, 2003b. Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transfer, Vol. 46, pp. 5113–5121.
91.Sollitt, C. K. and R. H. Cross, 1972 , Wave Transmission Through Permeable Breakwaters, Proc. 13th Inter. Conf. on Coastal Eng., ASCE, pp.1827–1846
92.Svendsen, I. A. , 1987. Analysis of surf zone turbulence. J. Geophys. Research, Vol. 92(C5), pp. 5115-5124.
93.Takatsu, Y. and T. Masuoka, 1998. Turbulent phenomena in flow through porous media. J. Porous Media, Vol. 3, pp. 243–251.
94.Travkin, V. S. and I. Catton, 1992. Models of turbulent thermal diffusivity and transfer coefficients for a regular packed bed of spheres. Proc. 28th National Heat Transfer Conference, San Diego, C–4, ASME–HTD–193, 15–23.
95.Travkin, V.S., I. Catton and L. Gratton, 1993. Single phase turbulent transport in prescribed non–isotropic and stochastic porous media. Heat Transfer in Porous Media, ASME HTD–240, pp. 43–48.
96.Travkin, V. S. and I. Catton, 1995. A two temperature model for turbulent flow and heat transfer in a porous layer. ASME J. Fluids Eng., Vol. 117, pp. 181–188.
97.Travkin, V. S. and I. Catton, 1998. Porous media transport descriptions–non–local, linear, and non–linear against effective thermal/fluid properties. Adv. Colloid Interface Sci., Vol. 76–77, pp. 389–443.
98.Travkin, V. S., I. Catton, and L. Gratton, 1993. Single–phase turbulent transport in prescribed non–isotropic and stochastic porous media. Heat Transfer in Porous Media, ASME–HTD–240, 43–48.
99.Travkin, V. S., K. Hu, and I. Catton, 1999. Turbulent kinetic energy and dissipation rate equation models for momentum transport in porous media. Proc. 3rd ASME/JSME Joint Fluids Engineering Conference (on CD–ROM), Paper FEDSM99–7275, San Francisco, California, 18–23 July.
100.Tsai, C. P., H. B. Chen, and F. C. Lee, 2006. Wave transformation over submerged permeable breakwater on porous bottom. Ocean Eng., Vol. 33, pp. 1623–1643.
101.van der Meer, J. W., 1988. Rock slopes and gravel beaches under wave attack. Ph.D dissertation, Delft University of Technology, 152p.
102.Vafai, K. and C. L. Tien, 1981. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transfer, Vol. 24, pp. 195–203.
103.Vafai, K. and R. Thiyagaraja, 1987. Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transfer, Vol. 30, pp.1391–1405.
104.Vafai, K., and S. J. Kim, 1989. Forced convection in a channel filled with a porous medium: An exact solution. ASME J. Heat Transfer, Vol. 111, pp. 1103–1106.
105.Vafai, K. and S. J. Kim, 1990. Analysis of surface enhancement by a porous substrate. ASME J. Heat Transfer, Vol. 112, pp. 700–706.
106.Van Gent, M.R.A., 1995 a. Wave interaction with permeable coastal structures. Delft University of Technology, Delft, The Netherlands.
107.Van Gent, M.R.A., 1995 b. Porous flow through rubble–mound material. J. Waterw. Port, Coast. Ocean Eng., Vol. 121, pp. 176–181.
108.Wang, Y. and C. Su, 1993. “Computation of wave breaking on sloping beach by VOF method. Proc. 3rd International Offshore and Polar Engineering Conference, Singapore, pp. 96–101.
109.Wang, D.C. and A. Khalili, 2003. Flow visualization and quantitative measurements inside porous media by particle image velocimetry, Proc. of SPIE, Vol. 5058, pp. 232–239.
110.Wang, H. and E. S. Takle, 1995. Boundary–layer flow and turbulence near porous obstacles. Boundary–Layer Meteorology, Vol. 74, pp. 73–88.
111.Watanabe, Y. and H. Saeki, 1999. Three –dimensional large eddy simulation of breaking wave, Coastal Eng., Vol. 41, pp. 281–301.
112.Whitaker, S., 1961. Diffusion and dispersion in porous media. AIChE J., Vol. 13, pp. 420–427.
113.Wurjanto, A. and N. Kobayashi, 1993. Irregular wave reflection and run–up on rough permeable slopes. J. Waterw. Port, Coast. Ocean Eng., ASCE, Vol. 119, pp. 537–557
114.Zhao, Q., S. Armfield, and K. Tanimoto, 2004. Numerical simulation of breaking waves by a multi–scale turbulence model. Coastal Eng., Vol. 51, pp.53–80.
115.黃材成、林怡成,1997,「透水式潛堤波浪特性之實驗研究」,中華民國第十九屆海洋工程研討會論文集,台中,第 220頁–227 頁。
116.藍元志,2001,「波浪與可透水彈性體互相作用之分析」,國立成功大學水利及海洋工程研究所博士論文。
117.吳榮峰,2002,「大尺度質點影像量測法之應用–分析水面流場」,國立成功大學水利及海洋工程研究所碩士論文。
118.許泰文,2003,「近岸水動力學」,中國土木水利工程學會。
119.張興漢,2004,「波浪與近岸潛沒透水結構物之交互作用」,國立成功大學水利及海洋工程研究所博士論文。
120.謝志敏,2004,「應用RANS模擬波浪通過潛堤和沙漣流場」,國立成功大學水利及海洋工程研究所博士論文。
121.詹勳全,2005,「水流通過多孔介質二維水理模式開發與應用」,國立成功大學水利及海洋工程研究所博士論文。
122.郭晉安、賴堅戊、簡仲和、郭金棟,2005,「均勻顆粒底床地形演變與波浪最大溯上之研究」,第十五屆台灣水利工程研討會論文集,桃園,K22頁–K28頁。
123.簡仲和、郭金棟、郭晉安、賴堅戊,2005,「台東海岸復育研究計畫(1/2)」,財團法人成大水利海洋研究發展文教基金會、經濟部水利署第八河川局。
124.賴堅戊、郭金棟、簡仲和、許泰文、邱繼賢,2006,「台東礫石海岸變遷及其海灘斷面型態探討」,第二十八屆台灣海洋工程研討會論文集,高雄,603頁–608頁。
125.簡仲和、郭金棟、郭晉安、賴堅戊等,2006,「台東海岸復育研究計畫(2/2)」,財團法人成大水利海洋研究發展文教基金會、經濟部水利署第八河川局
126.丁肇隆、林銘崇、李芳承,2007,「波浪通過透水潛堤產生高階諧和波之流場特性研究」,第29屆海洋工程研討會論文集,第337頁–342頁。
127.賴堅戊、許泰文、林士翔、水谷法美、李光浩,2008,「波浪於粗粒徑斜坡底床上傳遞之波流特性」,第卅屆海洋工程研討會論文集,台南,第271頁–276頁。
128.江藤剛治、竹原幸生、橫山雄一、井田康夫,1996,「水流ソ可視化ズ必要ス�k連技術ソ開�飽苳餼姥膃X�萱}折率整合�蒂h波長計測-」,日本土木���挼蚺撊陛A No. 533/II–34,第 87頁–106 頁。(日文)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top