跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭振民
研究生(外文):Chen-Min Kuo
論文名稱:整合衛星遙測與無線化樹汁流觀測推估區域蒸發散
論文名稱(外文):Regional Evapotranspiration Estimations Using Satellite Remote Sensing and Wireless Sap Flow Measurements
指導教授:游保杉游保杉引用關係
指導教授(外文):Pao-Shan Yu
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:149
中文關鍵詞:樹汁流區域蒸發散衛星遙測無線觀測網路昇尺度
外文關鍵詞:regional evapotranspirationremote sensingscaling upwireless sensor networksap flow
相關次數:
  • 被引用被引用:1
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
蒸發散估算對於集水區的水文過程影響相當大,本研究探討兩種不同尺度的蒸發散量計算方法,首先利用衛星遙測的方式估算區域蒸發散量,再進行樹汁流觀測結果估算單點尺度的植物蒸發量,利用無線觀測網路與昇尺度的研究,將不同地點觀測的單點尺度蒸散量結合成為區域尺度的蒸散量再與遙測區域尺度蒸發散量進行整合。
遙測計算蒸發散的研究主要是利用MODIS衛星影像配合Penman-Monteith法與能量平衡法估算蒸發散量,首先針對衛星影像進行前處理作業,利用濾雲後的氣象站位置處的像元建立Penman-Monteith法、SEBAL法與S-SEBI法所需要的氣象因子回歸公式,可以直接根據衛星影像估算台灣西半部地區的蒸發散量。根據評鑑指標優選的結果,Penman-Monteith法與SEBAL法的結果較佳。
樹汁流觀測採用兩種觀測方法:熱比率式與熱消散式。根據不同的熱追蹤原理,本研究首先展示自製樹汁流觀測儀器的方法以解省大規模觀測作業的成本,此兩種觀測方法均能觀測植物的蒸發量,觀測結果顯示熱消散式觀測有較佳的時間精度且資料連續,熱比率式觀測雖然資料較為離散但是具有觀測夜間逆向樹汁流的能力。
整合單點尺度樹汁流與區域尺度遙測蒸發散量必須考慮到尺度放大的過程,首先將純林區分為數個小樣本區域並選擇樣本樹木進行樹汁流觀測,結合無線觀測網路來整合不同樣本樹的樹汁流觀測結果,即可將單點尺度的樹汁流轉換成樣本區的樹汁流,再整合所有樣本區成為整個林份的蒸散量,與遙測蒸發散量結合之後,將可以提供同時擁有空間與時間精度的區域蒸發散估算。
Evapotranspiration is a crucial factor of water budget. This study aimed to discuss the evapotranspiration from spatial and temporal scales. The application of satellite remote sensing is first introduced for regional evapotranspiration. Then, the sap flow measurement was used to evaluate the transpiration of the single tree. Finally, the scaling up approach and wireless sensor network technology are introduced to integrate the sap flow to regional scale and combine with remote sensing evapotranspiration.
The remote sensing approach aims to estimate evapotranspiration from the satellite directly. The variables of Penman-Monteith method and energy balance (SEBAL and S-SEBI) methods are provided by the MODIS satellite images. The image information and long-term average observations of the meteorological stations are selected to establish the regression functions of the variables. Thus, the evapotranspiration of each image pixel can be estimated directly from these variables. With validating to the pan evaporation, Penman-Monteith and SEBAL methods showed better estimations than S-SEBI method.
The sap flow measurement was introduced to represent the temporal scale of transpiration. Two sap flow methods, heat ratio method and thermal dissipation method, are used in this study. The sensor manufacture procedures were presented in this study to save the cost for field deployments. Both sensors showed similar diurnal results. The thermal dissipation method is able to show fine time resolution. However, the heat ratio method can present the inverse flow at night.
To consider the spatial and temporal resolution of the evapotranspiration estimates, the idea of using scaling up procedure and wireless sensor network technology were introduced. This scaling up approach should be carried out in the even-aged stand. The sap flow measurements of the sample trees will be collected by using wireless sensor network and scaled up to the stand transpiration through the leaf area. Thus, the stand transpiration and the remote sensing evapotranspiration can be integrated to the evapotranspiration that capable of both spatial and temporal resolutions.
Abstract i
摘要 iii
Acknowledgments vii
Table of Contents ix
List of Tables xi
List of Figures xiii

Chapter 1 Introduction
1.1 Motive and Subject Matter 1
1.2 Literature Review 4
1.2.1 Regional evapotranspiration estimation 4
1.2.2 Sap flow estimation 6
1.2.3 Wireless sensor network 10
1.2.4 Scaling up sap flow to stand transpiration 12
1.3 Overview of the Dissertation 15

Chapter 2 Methodologies and procedures
2.1 Regional evapotranspiration estimation with satellite images 19
2.2 Point evapotranspiration estimation from sap flow measurement 23
2.3 Wireless sensor network 28

Chapter 3 Study area and satellite image processing
3.1 Study area and data description 35
3.2 Satellite image processing 38
3.2.1 Image source 38
3.2.2 Image coordinate correction 41
3.2.3 Cloud filter 44

Chapter 4 Remote sensing evapotranspiration estimation with Penman-Monteith method and energy balance methods
4.1 Penman-Monteith method 49
4.2 SEBAL method 60
4.3 S-SEBI method 65
4.4 Regional evapotranspiration results 68

Chapter 5 Sap flow measurement
5.1 Thermal dissipation probe method measurement 83
5.2 Heat ratio method measurement 85
5.3 Stem heat balance method measurement 87
5.4 Sap flow sensor manufacture and deployment 89
5.5 Sap flow results comparison 98

Chapter 6 Integration of evapotranspiration estimations from different scales
6.1 From point to regional scale 103
6.2 Apply wireless sensor network to sap flow measurement 105
6.2.1 Sensor connection and circuit design 106
6.2.2 Trade-off between power consumption of WSN and the performance of sap flow measurement 110
6.2.3 Application for extending WSN power life time 126
6.3 Regional evapotranspiration comparison 129

Chapter 7 Conclusions
7.1 Concluding Remarks 133
7.2 Suggestions and Future Directions 135

References 139
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y. and Cayirci, E., 2002. Wireless sensor networks: a survey. Computer Networks-The International Journal of Computer and Telecommunications Networking, 38(4): 393-422.
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration- Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, 56.
Allen, S.J. and Grime, V.L., 1995. Measurements of transpiration from savannah shrubs using sap flow gauges. Agricultural and Forest Meteorology, 75(1-3): 23-41.
Ammari, H.M. and Das, S.K., 2008. A trade-off between energy and delay in data dissemination for wireless sensor networks using transmission range slicing. Computer Communications, 31(9): 1687-1704.
Anastasi, G., Falchi, A., Passarella, A., Conti, M. and Gregori, E., 2004. Performance measurements of motes sensor networks, Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems. ACM, Venice, Italy.
Ansley, R.J., Dugas, W.A., Heuer, M.L. and Trevino, B.A., 1994. Stem flow and porometer measurements of transpiration from honey mesquite (Prosopis glandulosa). Journal of Experimental Botany, 45(6): 847-856.
Baker, J.M and van Bavel, C.H.M., 1987. Measurement of mass flow of water in the stems of herbaceous plants. Plant, Cell and Environment, 10: 777-782.
Bastiaanssen, W.G.M., 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2): 87-100.
Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A. and Holtslag, A.A.M., 1998a. A remote sensing surface energy balance algorithm for land (SEBAL) - 1. Formulation. Journal of Hydrology, 213(1-4): 198-212.
Bastiaanssen, W.G.M. et al., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) - 2. Validation. Journal of Hydrology, 213(1-4): 213-229.
Beven, K., 1979. Sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 44(3-4): 169-190.
Bogena, H.R., Huisman, J.A., Oberdorster, C. and Vereecken, H., 2007. Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology, 344(1-2): 32-42.
Boni, G., Entekhabi, D. and Castelli, F., 2001. Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation. Water Resources Research, 37(6): 1713-1722.
Brutsaert, W. and Sugita, M., 1992. Application of self-preservation in the diurnal evolution of the surface-energy budget to determine daily evaporation. Journal Of Geophysical Research-Atmospheres, 97(D17): 18377-18382.
Burgess, S.S.O., Adams, M. A., Turner, N. C. ,Beverly, C. R., Ong, C. K. ,Khan, A. A. H. and Bleby, T. M., 2001. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(9): 589-598.
Burgess, S.S.O. and Dawson, T.E., 2008. Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: a caution. Plant and Soil, 305(1-2): 5-13.
Calder, I.R., 1992. Deuterium tracing for the estimation of transpiration from trees Part 2. Estimation of transpiration rates and transpiration parameters using a time-averaged deuterium tracing method. Journal of Hydrology, 130(1-4): 27-35.
Camilli, A., Cugnasca, C.E., Saraiva, A.M., Hirakawa, A.R. and Correa, P.L.P., 2007. From wireless sensors to field mapping: Anatomy of an application for precision agriculture. Computers and Electronics in Agriculture, 58(1): 25-36.
Cao, X.H., Chen, J.M., Zhang, Y. and Sun, Y.X., 2008. Development of an integrated wireless sensor network micro-environmental monitoring system. Isa Transactions, 47(3): 247-255.
Cardell-Oliver, R., Kranz, M., Smettem, K. and Mayer, K., 2005. A reactive soil moisture sensor network: Design and field evaluation. International Journal of Distributed Sensor Networks, 1(2): 149-162.
Čermák, J., Kučera, J. and Nadezhdina, N., 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees-Structure and Function, 18(5): 529-546.
Čermák, J., Kučera, J., Přikryl, V. and Dobravská, K., 1978. Estimation of seasonal and selected diurnal characteristics of transpiration flow rate and water consumption of tall trees in forest stands as main parameters of site water balance at the model watershed of Liběchovka (in Czech). Res. Rep. Inst. For. Ecol. for the Constr. Geol. Enterprise, Prague.
Chen, C.T. and Kan, C.E., 1997. Estimate of region-wide crop water requirements in Taiwan area. Journal of Chinese Agricultural Engineering, 43(4): 1-18.
Chen, P.Y., Srinivasan, R., Fedosejevs, G. and Narasimhan, B., 2002. An automated cloud detection method for daily NOAA-14 AVHRR data for Texas, USA. International Journal of Remote Sensing, 23(15): 2939-2950.
Cohen, Y., Fuchs, M., Falkenflug, V. and Moreshet, S., 1988. Calibrated heat pulse method for determining water uptake in cotton. Agronomy Journal, 80(3): 398-402.
Cohen, Y. and Li, Y., 1996. Validating sap flow measurement in field-grown sunflower and corn. Journal of Experimental Botany, 47(11): 1699-1707.
Crago, R.D., 1996. Conservation and variability of the evaporative fraction during the daytime. Journal of Hydrology, 180(1-4): 173-194.
Czajkowski, K.P., Goward, S.N., Shirey, D. and Walz, A., 2002. Thermal remote sensing of near-surface water vapor. Remote Sensing Of Environment, 79(2-3): 253-265.
Di Bella, C.M., Rebella, C.M. and Paruelo, J.M., 2000. Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina. International Journal of Remote Sensing, 21(4): 791-797.
Do, F. and Rocheteau, A., 2002a. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies. Tree Physiology, 22(9): 641-648.
Do, F. and Rocheteau, A., 2002b. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 2. Advantages and calibration of a noncontinuous heating system. Tree Physiology, 22(9): 649-654.
Dugas, W.A., Wallace, J.S., Allen, S.J. and Roberts, J.M., 1993. Heat balance, porometer, and deuterium estimates of transpiration from potted trees. Agricultural and Forest Meteorology, 64(1-2): 47-62.
Dye, P.J., Soko, S. and Poulter, A.G., 1996. Evaluation of the heat pulse velocity method for measuring sap flow in Pinus patula. Journal of Experimental Botany, 47(7): 975-981.
Farah, H.O. and Bastiaanssen, W.G.M., 2001. Impact of spatial variations of land surface parameters on regional evaporation: a case study with remote sensing data. Hydrological Processes, 15(9): 1585-1607.
Fernandez, J.E., Green, S.R., Caspari, H.W., Diaz-Espejo, A. and Cuevas, M.V., 2008. The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant and Soil, 305(1-2): 91-104.
Fernandez, J.E., Palomo, M. J.m Diaz-Espejo, A., Clothier, B. E., Green, S. R., Giron, I. F. and Moreno, F., 2001. Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress. Agricultural Water Management, 51(2): 99-123.
Fisher, J.B., Baldocchi, D.D., Misson, L., Dawson, T.E. and Goldstein, A.H., 2007. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 27: 597-610.
Ford, C.R., Hubbard, R.M., Kloeppel, B.D. and Vose, J.M., 2007. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agricultural and Forest Meteorology, 145(3-4): 176-185.
Granger, R.J., 1997. Comparison of surface and satellite-derived estimates of evapotranspiration using a feedback algorithm. Application of remote sensing in hydrology, Proceedings of the Third International Workshop, NHRI Symposium, 17: 71-81.
Granger, R.J., 2000. Satellite-derived estimates of evapotranspiration in the Gediz basin. Journal of Hydrology, 229(1-2): 70-76.
Granier, A., 1985. Une nouvelle méthode pour la mesure du flux de sève brute dans le. tronc des arbres. Annuales des Sciences Forestières, 42: 193-200.
Granier, A., Biron, P., Breda, N., Pontailler, J.-Y. and Saugier, B., 1996a. Transpiration of trees and forest stands: short and longterm monitoring using sapflow methods. Global Change Biology, 2: 265-274.
Granier, A., Biron, P., Kostner, B., Gay, L.W. and Najjar, G., 1996b. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine. Theoretical And Applied Climatology, 53(1-3): 115-122.
Granier, A. and Loustau, D., 1994. Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agricultural and Forest Meteorology, 71(1-2): 61-81.
Jang, W.S., Healy, W.M. and Skibniewski, M.J., 2008. Wireless sensor networks as part of a web-based building environmental monitoring system. Automation in Construction, 17(6): 729-736.
Jensen, M.E., Burman, R.D. and Allen, R.G., 1990. Evapotranspiration and irrigation water requirement. American Society of Civil Engineers, New York.
Jiang, L. and Islam, S., 2001. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resources Research, 37(2): 329-340.
Juarez, N.R.I., Goulden, M.L., Myneni, R.B., Fu, R., Bernardes, S. and Gao, H., 2008. An empirical approach to retrieving monthly evapotranspiration over Amazonia. International Journal of Remote Sensing, 29(24): 7045-7063.
Kan, C.E., Chen, C.T. and Chen, K.Y., 1996. Study on the suitability of consumptive use estimation methods for Taiwan area. Journal of Chinese Agricultural Engineering, 42(2): 8-19.
Kelliher, F.M., Kostner, B. M. M., Hollinger, D. Y., Byers, J. N., Hunt, J. E., McSeveny, T. M., Meserth, R., Weir, P. L. and Schulze, E. D., 1992. Evaporation, xylem sap flow, and tree transpiration in a New Zealand broad-leaved forest. Agricultural and Forest Meteorology, 62(1-2): 53-73.
Kite, G.W. and Droogers, P., 2000. Comparing evapotranspiration estimates from satellites, hydrological models and field data. Journal of Hydrology, 229(1-2): 3-18.
Kite, G.W. and Pietroniro, A., 1996. Remote sensing applications in hydrological modeling. Hydrological Sciences Journal, 41(4): 563-591.
Kumagai, T., Nagasawa, H., Mabuchi, T., Ohsaki, S., Kubota, K., Kogi, K., Utsumi, Y., Koga, S. and Otsuki, K., 2005. Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa. Forest Ecology and Management, 206(1-3): 191-195.
Kumagai, T., Tateishi, M., Shimizu, T. and Otsuki, K., 2008. Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology, 148(10): 1444-1455.
Kuo, C.M., Du, R.H., Lin, C.Y. and Yu, P.S., 2005. Using Penman-Monteith method to estimate potential evapotranspiration in Taiwan by using AVHRR and MODIS satellites remote sensing data. The 26th Asian Conference on Remote Sensing, Hanoi, Vietnam, 7-11 Nov 2005.
Kustas, W.P. and Norman, J.M., 1996. Use of remote sensing for evapotranspiration monitoring over land surface. Hydrological Science Journal, 41(4): 495-516.
Laymon, C., Quattrochi, D., Malek, E., Hipps, L., Boettinger, J. and McCurdy, G., 1998. Remotely-sensed regional-scale evapotranspiration of a semi-arid Great Basin desert and its relationship to geomorphology, soils, and vegetation. Geomorphology, 21(3-4): 329-349.
Li, Y., Fuchs, M., Cohen, S., Cohen, Y. and Wallach, R., 2002. Water uptake profile response of corn to soil moisture depletion. Plant Cell and Environment, 25(4): 491-500.
Liu, D.L., Li, J.Y. and Ma, D., 2008. Spatial variation pattern of Platycladus orientalis stem sap flow. Shengtaixue Zazhi, 27(8): 1262-1268.
Marc, V. and Robinson, M., 2004. Application of the deuterium tracing method for the estimation of tree sap flow and stand transpiration of a beech forest (Fagus silvatica L.) in a mountainous Mediterranean region. Journal of Hydrology, 285(1-4): 248-259.
Marshall, D.C., 1958. Measurements of sap flow in conifers by heat transport. Plant Physiology, 33(6): 385-396.
Menenti, M. and Choudhury, B.J., 1993. Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range. Proceedings of IAHS conference on Land Surface Processes, IAHS Publ., 212: 561-568.
Morais, R., Fernandes, M. A., Matos, S. G., Serodio, C., Ferreira, P. and Reis, M., 2008. A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and Electronics in Agriculture, 62(2): 94-106.
Nagler, P., Jetton, A., Fleming, J., Didan, K., Glenn, E., Erker, J., Morino, K., Milliken, J. and Gloss, S., 2007. Evapotranspiration in a cottonwood (Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods. Agricultural and Forest Meteorology, 144(1-2): 95-110.
Narasimhan, B., Srinivasan, R. and Whittaker, A.D., 2003. Estimation of potential evapotranspiration from NOAA AVHRR satellite. Applied Engineering in Agriculture, 19(3): 309-318.
Ochsner, T.E., Horton, R., Kluitenberg, G.J. and Wang, Q.J., 2005. Evaluation of the heat pulse ratio method for measuring soil water flux. Soil Science Society of America Journal, 69(3): 757-765.
Oishi, A.C., Oren, R. and Stoy, P.C., 2008. Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology, 148(11): 1719-1732.
Oliveira, R.S., Dawson, T.E., Burgess, S.S.O. and Nepstad, D.C., 2005. Hydraulic redistribution in three Amazonian trees. Oecologia, 145(3): 354-363.
Prata, A.J. and Platt, C.M.R., 1991. Land surface temperature measurements from the AVHRR. Proceeding of The 5th AVHRR Data Users' Meeting, Tromso, Norway: 433-438.
Regalado, C.M. and Ritter, A., 2007. An alternative method to estimate zero flow temperature differences for Granier's thermal dissipation technique. Tree Physiology, 27(8): 1093-1102.
Roerink, G.J., Su, Z. and Menenti, M., 2000. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth Part B-Hydrology Oceans and Atmosphere, 25(2): 147-157.
Ruiz-Garcia, L., Barreiro, P. and Robla, J.I., 2008. Performance of ZigBee-based wireless sensor nodes for real-time monitoring of fruit logistics. Journal of Food Engineering, 87(3): 405-415.
Sakuratani, T., 1981. A heat balance method for measuring water flux in the stem of intact plants. Journal of Agricultural Meteorology, 37: 9-17.
Sakuratani, T., Aoe, T. and Higuchi, H., 1999. Reverse flow in roots of Sesbania rostrata measured using the constant power heat balance method. Plant Cell and Environment, 22(9): 1153-1160.
Saunders, R.W. and Kriebel, K.T., 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data. International Journal of Remote Sensing, 9(1): 123-150.
Schaeffer, S.M., Williams, D.G. and Goodrich, D.C., 2000. Transpiration of cottonwood/willow forest estimated from sap flux. Agricultural and Forest Meteorology, 105(1-3): 257-270.
Schulze, E.-D. and Hall, A., 1982. Stomatal Responses, water loss, and CO2 assimilation rates of plants in contrasting envorinments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of Plant Physiology, 12B: 181-230.
Shuttleworth, W.J., Gurney, R.J., Hsu, A.Y. and Ormsby, J.P., 1989. FIFE: the variation in energy partitioning at surface flux sites, remote sensing and large scale global processes. Proceedings of the Baltimore Symposium IAHS publication no. 186, IAHS Press, Oxfordshire: 67-74.
Smith, D.M. and Allen, S.J., 1996. Measurement of sap flow in plant stems. Journal of Experimental Botany, 47(12): 1833-1844.
Soegaard, H. and Boegh, E., 1995. Estimation of evapotranspiration from a millet crop in the Sahel combining sap flow, leaf area index and eddy correlation technique. Journal of Hydrology, 166(3-4): 265-282.
Steinberg, S.L., van Bavel, C.H.M., and McFarland, M.J., 1989. A gauge to measure mass flow rate of sap in stems and trunks of woody plants. Journal of the American Society for Horticultural Science, 114: 466-472.
Steinberg, S.L., McFarland, M.J. and Worthington, J.W., 1990a. Comparison of trunk and branch sap flow with canopy transpiration in Pecan. Journal of Experimental Botany, 41(6): 653-659.
Steinberg, S.L., van Bavel, C.H.M. and McFarland, M.J., 1990b. Improved sap flow gauge for woody and herbaceous plants. Agronomy Journal, 82: 851-854.
Su, Z., Menenti, M. and Hurk, B.J.J.M.v.d., 1999. Large area case study with SEBAL:Europe with AVHRR data, Mesoscale climate hydrology:the contribution of the new observing systems, Report USP-2, Winand Staring Centre for Integrated Land, Soil and Water Research. Wageningen University and Research Centre, Wageningen, Netherlands: 63-77.
Suri, A., Iyengar, S.S. and Cho, E.C., 2006. Ecoinformatics using wireless sensor networks: An overview. Ecological Informatics, 1(3): 287-293.
Swanson, R.H., 1994. Significant historical developments in thermal methods for measuring sap flow in trees. Agricultural and Forest Meteorology, 72(1-2): 113-132.
Takagi, K., Harazono, Y., Noguchi, S. Miyata, A., Mano, M. and Komine, M., 2006. Evaluation of the transpiration rate of lotus using the stem heat-balance method. Aquatic Botany, 85(2): 129-136.
Trambouze, W. and Voltz, M., 2001. Measurement and modelling of the transpiration of a Mediterranean vineyard. Agricultural and Forest Meteorology, 107(2): 153-166.
Turner, J., Marshall, G.J. and Ladkin, R.S., 2001. An operational, real-time cloud detection scheme for use in the Antarctic based on AVHRR data. International Journal of Remote Sensing, 22(15): 3027-3046.
Vellidis, G., Tucker, M., Perry, C., Wen, C. and Bednarz, C., 2008. A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture, 61(1): 44-50.
Vertessy, R.A., Benyon, R.G., O’Sullivan, S.K., Gribben, P.R., 1995. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 15: 559-568.
Vertessy, R.A., Hatton, T.J., Reece, P., Osullivan, S.K. and Benyon, R.G., 1997. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physiology, 17(12): 747-756.
Wang, K.Y., Kellomaki, S., Zha, T. and Peltola, H., 2004. Seasonal variation in energy and water fluxes in a pine forest: an analysis based on eddy covariance and an integrated model. Ecological Modelling, 179(3): 259-279.
Wang, N., Zhang, N.Q. and Wang, M.H., 2006. Wireless sensors in agriculture and food industry - Recent development and future perspective. Computers and Electronics in Agriculture, 50(1): 1-14.
Williams, D.G. Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., Er-Raki, S., Boulet, G., de Bruin, H. A. R., Chehbouni, A., Hartogensis, O. K. and Timouk, F., 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3-4): 241-258.
Wilson, K.B., Hanson, P.J., Mulholland, P.J., Baldocchi, D.D. and Wullschleger, S.D., 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 106(2): 153-168.
Wullschleger, S.D., Hanson, P.J. and Todd, D.E., 2001. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecology and Management, 143(1-3): 205-213.
Yu, P.S., Yang, T.C. and Chou, C.C., 2002. Effects of climate change on evapotranspiration from paddy fields in southern Taiwan. Climatic Change, 54(1-2): 165-179.
Yeh, H.F., Chen, J.F., Lee and C.H., 2005. Optimum comparison of empirical equations for calculating potential evapotranspiration. Journal of Chinese Agricultural Engineering, 51(1): 27-37.
Yue, G.Y., Zhao, H. L., Zhang, T. H., Zhao, X. Y., Niu, L. and Drake, S., 2008. Evaluation of water use of Caragana microphylla with the stem heat-balance method in Horqin Sandy Land, Inner Mongolia, China. Agricultural And Forest Meteorology, 148(11): 1668-1678.
Yunusa, I.A.M., Walker, R.R., Loveys, B.R. and Blackmore, D.H., 2000. Determination of transpiration in irrigated grapevines: comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrigation Science, 20(1): 1-8.
Yunusa, I.A.M., Walker, R.R. and Lu, P., 2004. Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia. Agricultural and Forest Meteorology, 127(1-2): 93-107.
Zeppel, M.J.B., Macinnis-Ng, C.M.O., Yunusa, I.A.M., Whitley, R.J. and Earnus, D., 2008. Long term trends of stand transpiration in a remnant forest during wet and dry years. Journal of Hydrology, 349(1-2): 200-213.
Zhang, H., Simmonds, L.P., Morison, J.I.L. and Payne, D., 1997. Estimation of transpiration by single trees: comparison of sap flow measurements with a combination equation. Agricultural and Forest Meteorology, 87(2-3): 155-169.
Zhu, Y.W., Zhong, X.X. and Shi, J.F., 2006. The design of wireless sensor network system based on ZigBee technology for greenhouse. Journal of Physics: Conference Series, 48: 1195-1199.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top