(3.238.186.43) 您好!臺灣時間:2021/03/05 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳宜蓁
研究生(外文):I-Chen Wu
論文名稱:台灣產莎草亞科光合作用路徑、生態特徵與地理分布
論文名稱(外文):Photosynthetic Pathway, Ecological Characteristics and Geographical Distribution of Cyperoideae in Taiwan
指導教授:郭長生郭長生引用關係
指導教授(外文):Chang-Sheng Kuoh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生命科學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:200
中文關鍵詞:棲地類型光合作用路徑環境因子莎草亞科
外文關鍵詞:environmental factorsCyperoideaephotosynthetic pathwayshabitat types
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
莎草科是世界開花植物中的大科之一,許多物種生長於溼地水生環境,其光合作用包含C3、C4路徑型式,甚至擁有C3與C4路徑間的中間型。多樣性的光合作用型式在莎草科植物解剖、生態、生理與演化上的相關性及意義均值得探討。本研究以葉部或桿解剖及穩定碳同位素確認台灣產莎草亞科的光合作用類型。應用ArcGIS配合Excel將氣候資料與不同光合作用類型、族的物種比率及物種數行簡單相關與迴歸分析,並繪製主題圖。此外,亦調查莎草亞科物種的棲地環境。
結果顯示共49種5亞種9變種為C4路徑,22種4亞種2變種為C3路徑,11種未檢驗。計算出台灣產莎草科C4物種比率占35.2%,在世界其他地區莎草科光合作用路徑的研究中,C4物種比率較高,因台灣位處副熱帶、熱帶氣候區。相關與迴歸分析的結果C4物種比率與溫度因子的相關程度皆較雨量因子高,且有正因果關係,雨量因子則無。在海拔高度與C4比率並無因果關係,應受因變數n值小影響。但在C3與C4物種數上,皆與海拔高度為高度負因果關係,顯示無論光合作用類型為何,莎草亞科物種為熱帶、副熱帶親合。在族比率的分析中,飄拂草族迴歸上皆不顯著,而莎草族與溫度因子有正因果關係,莞族有負因果關係,但程度皆較C4比率為小。因此莎草亞科光合作用類型受氣候因子的影響較分類群大。海拔高度則與莎草族有負因果關係,符合前人研究。
莎草亞科棲地以溼地水生為主(68.5%),雖C4路徑比率於溼地水生中較低(59.7%),但中溼環境亦有21.9%,相較禾草與雙子葉C4植物適應於較乾燥環境,水分使用效率似乎並非莎草科演化出C4類型的關鍵。另一方面,C3路徑適應於濕地水生棲地(88.9%),除說明水分取得對C3路徑的重要性外,可能暗示C4植物由溼地水生的C3路徑演化後,逐漸適應於不同棲地,且分化出不同物種。
本研究確認莎草亞科光合作用類型,並初步探討台灣產莎草亞科與環境因子的關係,未來研究除繼續檢驗薹亞科物種外,應用地理資訊系統結合生態環境資料庫與數學模型更精確揭櫫影響莎草科C3、C4路徑分布的因子,更深入探討整個莎草科各類光合作用型與生態上的意義。
Cyperaceae is the large flowering plant family in the world. There are many species growing in wetland and aquatic areas, and their photosynthesis include C3 and C4 pathways, and even have C3-C4 intermediates. It is worth to explore the diversity of the photosynthetic mechanisms of Cyperaceae in plant anatomy, ecology, physiology and evolution of their relation and significance. In this study, photosynthetic pathways of Cyperoideae in Taiwan were recognized by leaves or culms anatomy and stable carbon isotope ratios. Applying ArcGIS and Excel softwares, simple correlation and linear regression analysis were used to investigate the correlations of climatic data and latitude with species percentages, species numbers of different photosynthetic pathways and 3 tribes. All these correlations are displayed by the theme maps. In addition, we also investigated the habitats of Cyperoideae.
The results showed that 49 species, 5 subspecies and 9 varieties displayed C4 pathway, and 22 species, 4 subspecies and 2 varieties belonged to C3 pathway. The C4 percentage was 35.2% of Cyperaceae in Taiwan. It was higher when compared with other regional studies of photosynthetic pathways of Cyperaceae in the world, because Taiwan is located in the subtropical and tropical climate districts. The results of correlation and regression showed that the correlations of the C4 percentage with temperature factors are higher than rainfall factors. It was positively correlated with temperature factors, but not with the rainfall factors. The C4 percentage was not correlated with altitude, due to the small number of independent variable. However, the numbers of C3 and C4 were strongly and negatively correlated with altitude, showing that no matter what types of photosynthesis, Cyperoideae possess tropical and subtropical affinities. The analysis of tribe percentage, Abildgaardieae showed no correlated with any environmental factors, Cypereae was positively correlated with temperature factors, but Scirpeace was negatively correlated. Their coefficients of regression were smaller than that of C4 percentage. Therefore, the climatic factors are much to do with photosynthetic pathways than taxa. And Cypereace is negatively correlated with altitude in line with previous studies.
Most species in Cyperoideae were found in wet and aquatic areas (68.5%). The percentage of C4 plants was lower in wet and aquatic areas (59.7%), but there was 21.9% in mesic areas, compared with the C4 grasses and dicots that tended to be more abundance in arid areas. It appears that water use efficiency is not the key point of C4 evolution in Cyperaceae. On the other hand, C3 pathway adapted to wet and aquatic areas (88.9%). It may explain that the water availability is crucial and suggests C4 plants evolved from C3 pathway in wet and aquatic areas, then gradually have been adapting to different habitats, and differentiation of species.
This research recognizes photosynthetic pathways of Cyperoideae, and preliminary investigates the correlations between Cyperoideae and the environmental factors in Taiwan. More information still need further survey especially the Caricoideae species, and the application of Geographic Information System to establish ecological environmental databases and mathematical models for understanding the effects of environmental factors on the distribution of C3 and C4 pathways.
摘要……………………………………………………………………………Ⅰ
英文摘要………………………………………………………………………III
致謝……………………………………………………………………………V
表目錄…………………………………………………………………………VIII
圖目錄…………………………………………………………………………IX
壹、前言………………………………………………………………………1
貳、文獻回顧…………………………………………………………………3
一、莎草科與光合作用研究簡介………………………………………3
二、莎草科的光合作用研究……………………………………………6
三、穩定碳同位素比值與光合作用……………………………………10
四、物種分布與環境因子……………………………………………………11
参、材料與方法………………………………………………………………13
一、材料蒐集…………………………………………………………………13
二、實驗方法…………………………………………………………………13
肆、結果………………………………………………………………………18
一、葉部/桿解剖 ………………………………………………………18
二、穩定碳同位素比值………………………………………………………18
三、莎草族小穗排列…………………………………………………………21
四、環境因子…………………………………………………………………21
五、棲地類型與物種分布……………………………………………………30
伍、討論………………………………………………………………………32
一、光合作用路徑判定………………………………………………………32
二、環境因子分析……………………………………………………………34
三、棲地環境…………………………………………………………………42
四、檢討與建議………………………………………………………………43
陸、結論………………………………………………………………………45
柒、參考文獻…………………………………………………………………47
台灣水資源特性. 2004. 經濟部水利署. 台北市. 上網日期: 2008/12/17, 網址: http://www.wra.gov.tw/ct.asp?xItem=11733&ctNode=2314&comefrom=lp
交通部中央氣象局. 2003- 2007. 中華民國氣候資料年報 地面資料2003-2007年. 交通部中央氣象局. 台北市
地方環境資料庫. 無日期. 行政院環境保護署. 台北市. 上網日期: 2008/12/14, 網址http://edb.epa.gov.tw/localenvdb/index.asp
吳靜昀. 2005. 莎草科六種莞族植物之花序形態及模式研究. 國立中興大學生命科學研究所碩士論文
吳聲海. 2002. 物種豐量與多樣性. 出自”生態學”, 第2版, 372-391. 金恆鑣召集. 麥格羅希爾. 台北市
李培芬, 廖倩瑜, 李玉琪, 潘彥宏, 傅維馨, 陳宣汶. 台灣地區生態與環境因子地理資訊資料庫電子版. 1997. 台灣大學動物學系空間生態研究室. 台北市. 上網日期: 2008/08/20, 網址: http:/wagner.zo.ntu.edu.tw/taiwan/download.htm
李錦育. 2005. 台灣地區氣象資料庫(增補版). 睿煜出版社. 屏東縣
孟猛, 倪健, 張治國. 2004. 地理生態學的乾燥指數及其應用評述. 應用生態學報 28(6): 853-861
林良恭. 2002. 族群的分布與豐量. 出自”生態學”, 第2版, 214-237. 金恆鑣召集. 麥格羅希爾. 台北市
林怡玲. 2008. 台灣產飄拂草屬植物之分類研究. 國立中山大學生物科學研究所碩士論文
南仁山生態保護區. 無日期. 墾丁國家公園管理處. 屏東縣. 上網日期: 2008/12/14, 網址: http://www.ktnp.gov.tw/manager/pageeditor/stations/CP/10023/protect02.aspx
徐善德, 廖玉琬. 2005. 光合作用中之能量保存:CO2同化作用. 出自”植物生理學”, 第3版, 93-128. 偉明圖書有限公司. 台北市
殷立娟, 王萍. 1997. 中國東北草原植物中的C3和C4光合作用途徑. 生態學報17(2):113-123
涂建翊, 余嘉裕, 周佳. 2003. 台灣的氣候. 遠足文化. 台北縣新店市
張瑞津. 2001. 地形. 出自”台灣地理概論”, 9-22. 石再添主編. 中華書局股份有限公司. 台北市
戚啓勳. 1977. 新氣候學. 台灣開明書店. 台北市
梁慧舟. 2000. 台灣產薹屬宿柱薹節植物之分類學研究. 國立成功大學生物學研究所碩士論文
許重洲. 2002. 玉山國家公園關山越嶺古道中之關段森林植群之研究. 國立屏東科技大學熱帶農業研究所碩士論文
郭長生,江蔡淑華. 1984. 飄拂草屬植物葉之比較解剖. Yushania 1(3):29-43
郭長生. 1973. 台灣莎草科(蔍草亞科除外)之分類研究. 國立台灣大學植物學研究所碩士論文
郭長生. 1985. 台灣產禾草葉部比較解剖. 國立台灣大學植物學研究所博士論文
陳正祥. 1957. 氣候之分類與分區. 國立台灣大學農學院實驗林. 台北市
陳國彥. 1984. 柯本氣候分類的方法與教學. 師大中等教育35(2): 4-9
陳國彥. 1986. 台灣的柯本氣候機率分類. 師大地理研究報告12: 45-56
陳國彥. 2001. 氣候. 出自”台灣地理概論”, 23-45. 石再添主編. 中華書局股份有限公司. 台北市
陳逸忠. 1998. 台灣大學山地實驗農場梅峰地區之植群及其演替之研究. 國立台灣大學森林學研究所碩士論文
楊萬全. 2001. 水文. 出自“台灣地理概論”, 46-76. 石再添主編. 中華書局股份有限公司. 台北市
Bruhl, J. J. 1995. Sedge genera of the world: Relationships and a new classification of the Cyperaceae. Australian Systematic Botany 8: 125-305
Cabido, M., E. Pons, J. J. Cantero, J. P. Lewis and A. Anton. 2008. Photosynthetic pathway variation among C4 grasses along a precipitation gradient in Argentina. Journal of Biogeography 35: 131-140
Carolin, R. C., S. W. L. Jacobs and M. Vesk. 1977. The ultrastructure of Kranz cells in the family Cyperaceae. Botanical Gazette 138: 413-419
Collins, R. P., M. B. Jones 1985. The influence of climatic factors on the distribution of C4 species in Europe. Vegetatio 64: 121-129
Farage, P. K., D. Blowers, S. P. Long and N. R. Baker. 2006. Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus. Plant, Cell and Environment 29: 720–728
Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick. 1989. Carbon isotope discrimination and photosynthesis. Annual Review Plant Physiology 40: 503-537
Giberson, R. T., Demaree, R. S. 2001. Microwave Techniques and Protocols: 181-189
Goetghebeur, P. 1998. Cyperaceae. The Family and Genera of Vascular Plants ver. 3: 141-190. Springer Verlag. Berlin
Hatch, M. D.. 1999. C4 photosynthesis: A historical overview. In:“C4 Plant Biology”, ed: Sage, R. F. and R. K. Monson, 17-40. Academic Press. California, USA
Hattersley, P. W.. 1983. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57: 113-128
Hesla, B. I., L. L. Tieszen and S. K. Imbamba. 1982. A systematic survey of C3 and C4 photosynthesis in the Cyperaceae of Kenya, East Africa. Photosynthetica 16(2): 196-205
Jones, M. B. 1987. The photosynthetic characteristics of papyrus in a tropical swamp. Oecologia 71:355-359
Kalapos, T., A. Baloghne-Nyakas and P. Csontos. 1997. Occurrence and ecological characteristics of C4 dicot and Cyperaceae species in the Hungarian flora. Photosynthetica 33(2): 227-240
Kanai, R. and G. E. Edwards. 1999. The biochemistry of C4 photosynthesis. In:“C4 Plant Biology”, ed: Sage, R. F. and R. K. Monson, 49-80. Academic Press. California, USA
Keeley, J. E., P. W. Rundel. 2003. Evolution of CAM and C4 carbon-concentrating mechanisms. International Journal of Plant Sciences 164(S3): S55-S77
Koyama, T., C. S Kuoh., W. C. Leong and H. Y. Liu. 2000. Cyperaceae. Flora of Taiwan second edition V.5: 191-317. Editorial Committee of the Flora of Taiwan, Department of National Taiwan University. Taipei.
Krüger, L. and G. O. Kirst. 1991. Field studies on the ecology of Bolboschoenus maritimus (L.) Palla (Scirpus maritimuz L. s.1.). Folia Geobotanica et Phytotaxonomica 26: 277-286
Li, M. R. 1993. Distribution of C3 and C4 species of Cyperus in Europe. Photosynthetica 28(1): 119-126
Li, M. R. 1993. Leaf photosynthetic nitrogen-use efficiency of C3 and C4 Cyperus species. Photosynthetica 29(1): 117-130
Li, M. R. and M. B. Jones. 1994. Kranzkette, a unique C4 anatomy occurring in Cyperus japonicus leaves. Photosynthetica 30(1): 117-131
Li, M. R., D. A. Wedin, and L. L. Tieszen. 1999. C3 and C4 photosynthesis in Cyperus (Cyperaceae) in temperate eastern North America. Canadian Journal of Botany 77: 209-218
Li, M. R., M. B. Jones. 1995. CO2 and O2 transport in the aerenchyma of Cyperus papyrus L. Aquatic Botany 52: 93-106
Lin, C. H., Y. S. Tai, D. J. Liu and M. S. B. Ku. 1993. Photosynthetic mechanisms of weeds in Taiwan. Australian Journal of Plant Physiology 20: 757-769
Liu, X. Q. and R. Z. Wang. 2006. Photosynthetic pathway and morphological functional types in the vegetation from North-Beijing agro-pastoral ecotone, China. Photosynthetica 44(3): 365-386
Metcalfe, C. R. 1971. Anatomy of the Monocotyledons V. Cyperaceae. Oxford University Press. New York, USA
Muasya, A. M., D. A. Simpson, M. W. Chase, and A. Culham. 1998. An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Plant Systematics and Evolution 211: 257-271
Muasya, A. M., D. A. Simpson, M. W. Chase. 2001. Generic relationships and character evolution in Cyperus s.l. (Cyperaceae). Systematics and Geography of Plants 71: 539-544
Muasya, A. M., D. A. Simpson, M. W. Chase. 2002. Phylogenetic relationships in Cyperus L. s.l. (Cyperaceae) inferred from plastid DNA sequence data. Botanical Journal of the Linnean Society 138: 145-153.
Murphy, L. R., J. Barroca, V. R. Franceschi, R. Lee, E. H. Roalson, G. E. Edwards and M. S. B. Ku. 2007. Diversity and plasticity of C4 photosynthesis in Eleocharis (Cyperaceae). Functional Plant Biology 34: 571-580
O'Leary, M. H. 1988. Carbon Isotopes in Photosynthesis. BioScience 38: 328-336
Pagano, M. and K, Gauvreau. 2000. Correlation. In: “Principles of Biostatistics”, 2rd ed, 398-414. Duxbury. Australia
Pyankov, V. I., P. D. Gunin, S. Tsoog, and C. C. Black. 2000. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia 123: 15-31
Sage, R. F. 2004. The evolution of C4 photosynthesis. New Phytologist 161: 341-370
Sage, R. F. and D. S. Kubien. 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. 2003. Photosynthesis Research 77: 209-225
Sage, R. F., D. A. Wedin, and M. R. Li. 1999. The biogeography of C4 photosynthesis: patterns and controlling factors. In:“C4 Plant Biology”, ed: Sage, R. F. and R. K. Monson, 313-356. Academic Press. California, USA
Sage, R. F., M. R. Li, and R. K. Monson. 1999. The distribution of C4 photosynthesis. In:“C4 Plant Biology”, ed: Sage, R. F. and R. K. Monson, 551-581. Academic Press. California, USA
Sánchez-Cordero, V., M. Munguía, and A. T. Peterson. 2004. GIS-based predictive biogeography in the context of conservation. In: “Frontiers of Biogeography: New Directions in the Geography of Nature”, ed: Lomolino M. V. and L. R. Heaney, 311-324. Sinauer Associates. Sunderland, USA
Soros, C. L. 1999. Comparative Structure, Development and Evolution of Photosynthetic Tissue in C3 and C4 Cyperaceae. PhD Dissertation. Department of Botany. University of Toronto. Canada
Soros, C. L. and J. J. Bruhl. 2000. Multiple evolutionary origins of C4 photosynthesis in the Cyperaceae. In: “Monocots: Systematics and Evolution”, ed: Wilson, K. L and D.A.Morrison, 629-636. CSIRO Publishing & Royal Botanic Garden Kew. Melbourne, Australia
Soros, C. L. and N. G. Dengler. 1998. Quantitative leaf anatomy of C3 and C4 Cyperaceae and comparisons with the Poaceae. International Journal of Plant Sciences 159(3): 480-491
Soros, C. L. and Nancy G. Dengler. 2001. Ontogenetic derivation and cell differentiation in photosynthetic tissues of C3 and C4 Cyperaceae. American Journal of Botany 88(6): 992–1005
Ssegawa, P., E. Kakudidi, M. Muasya and J. Kalema. 2004. Diversity and distribution of sedges on multivariate environmental gradients. African Journal of Ecology 42(S1): 21-33
Stock, W. D., D. K. Chuba and G. A. Verboom. 2004. Distribution of South African C3 and C4 species of Cyperaceae in relation to climate and phylogeny. Austral Ecology 29: 313–319
Taiz, L. and E. Zeiger. 2006. Photosynthesis: Carbon reactions. In” Plant Physiology”, 4rd ed, 159-195. Sinauer Associates. Sunderland, USA
Takeda, T., O. Ueno, M. Samejima and T. Ohtani. 1985. An Investigation for the Occurrence of C4 Photosynthesis in the Cyperaceae from Australia. The Botanical Magazine, Tokyo 98: 393-411
Taub, D. R. Climate and the U.S. distribution of C4 grass subfamily and decarboxylation variants of C4 photosynthesis. 2000. American Journal of Botany 87(8): 1211-1215
Teeri, J. A. 1979. The climatology of the C4 photosynthetic pathway. In ”Topics in Plant Population Biology”, ed: Solbrig, O. T., S. Jain, G. B. Johnson and P. H. Raven, 356–374. Columbia University Press. New York, USA
Teeri, J. A., L. G. Stowe, and D.A. Livingstone. 1980. The distribution of C4 species of the Cyperaceae in north America in relation to climate. Oecologia 47: 307-310
Ueno, O. 1989. Structural features of NAD-malic enzyme type C4 Eleocharis: an additional report of C4 acid decarboxylation types of the Cyperaceae. The Botanical Magazine, Tokyo 102: 393-402
Ueno, O. 2001. Environmental regulation of C3 and C4 differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiology 127: 1524-1532
Ueno, O. and T. Takeda. 1992. Photosynthetic pathways, ecological characteristics, and the geographical distribution of the Cyperaceae in Japan. Oecologia 89:195-203
Ueno, O., M. Samejima and T. Koyama. 1989. Distribution and evolution of C4 syndrome in Eleocharis, a sedge group inhabiting wet and aquatic environments, based on culm anatomy and carbon isotope ratios. Annals of Botany 64: 425-438
Vogel, J. C., A. Fuls., and R. P. Ellis. 1978. The geographical distribution of Kranz grasses in South Africa. South African Journal of Science 74(6): 209-215
Wang, R. Z. 2003a. C4 plants in the vegetation of Tibet, China: their natural occurrence and altitude distribution pattern. Photosynthetica 41(1): 21-26
Wang, R. Z. 2004. Photosynthetic and morphological functional types from different steppe communities in Inner Mongolia, North China. Photosynthetica 42(4): 493-503
Wang, R. Z. 2004b. C4 species and their response to large-scale longitudinal climate variables along the Northeast China Transect (NECT). Photosynthetica 42(1): 71-79
Wang, R. Z. 2005. C3 and C4 photosynthetic pathways and life form types for native species from agro-forestry region, Northeastern China. Photosynthetica 43(4): 535-549
Wang, R. Z. 2006a. The occurrence of C4 photosynthesis in Yunnan province, a tropical region in south-western China. Photosynthetica 44(2): 286-292
Wang, R. Z. 2006b. The occurrence of C4 plants and their morphological functional types in the vegetation of Xinjiang, China. Photosynthetica 44(2): 293-298
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔