(3.239.159.107) 您好!臺灣時間:2021/03/08 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李彥陵
研究生(外文):Yen-Ling Lee
論文名稱:人類修復蛋白beta-hOGG1與NDUFB10的交互作用與其在粒腺體DNA修復的角色
論文名稱(外文):Association of human 8-oxoguanine DNA glycosylase 1 beta isoform with NDUFB10 and its potential role in mitochondrial DNA repair
指導教授:黃溫雅黃溫雅引用關係
指導教授(外文):Wenya Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學檢驗生物技術學系碩博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:52
中文關鍵詞:粒腺體人類修復蛋白
外文關鍵詞:beta-hOGG1NDUFB10
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
人類修復蛋白8-oxoganine DNA glycosylase 1 (hOGG1)可藉由鹼基切除修復(BER) 來移除DNA氧化傷害。hOGG1可經由選擇性剪接機制產生兩種主要的型態:一為alpha-hOGG1,一為beta-hOGG1。alpha-hOGG1會存在在細胞核及粒腺體中,而beta-hOGG1則主要分佈於粒腺體中。在細胞核中,alpha-hOGG1的功能及調控其的機制已較明確。然而,alpha-hOGG1和 beta-hOGG1對於粒腺體DNA的修復仍不明確,需要更進一步的研究。為了要了解alpha-hOGG1和 beta-hOGG1在粒腺體DNA修復所辦演的角色,實驗室之前以酵母菌雙雜合系統來篩選會和hOGG1結合的蛋白質。在這實驗中找到了兩個有興趣的蛋白質:polynucleotide kinase 3'-phosphatase (PNKP) and NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10 (NDUFB10).在本次實驗中,我們以酵母菌雙雜合系統確認了 beta-hOGG1會直接和NDUFB10結合。然而酵母菌雙雜合系統結果指出不論是 alpha-hOGG1或 beta-hOGG1 都不會和PNKP結合。NDUFB10為NADH:ubiquinone oxidoreductase complex I的一部分且位在粒腺體內膜上。另外,我們也以免疫共同沈澱法及免疫螢光染色來確認人類細胞中 beta-hOGG1和NDUFB10的結合關係。此外,免疫共同沈澱法的結果也看到細胞曝露在過氧化氫環境下會增加 beta-hOGG1和NDUFB10的結合。這表示 beta-hOGG1會藉由和NDUFB10結合參與粒腺體DNA的修復。除此之外,alpha-hOGG1可能也會和beta-hOGG1結合且和 beta-hOGG1及NDUFB10形成一粒腺體DNA修復的複合體。雖然,我們也試圖找出 beta-hOGG1和NDUFB10結合的區域,但酵母菌雙雜合系統和免疫共同沈澱法的結果互相矛盾。以酵母菌雙雜合系統找出的beta-hOGG1 之helix-hairpin-helix motif並非是其和NDUFB10結合的位置。雖然如此,其他的結果還是讓我們了解到 beta-hOGG可能在粒腺體DNA修復中辦演的角色。
The human 8-oxoguanine-DNA glycosylase 1 (hOGG1) is an essential base excision repair (BER) for oxidative DNA damage. hOGG1 yields two alternatively spliced isoforms, designated alpha- and beta-hOGG1. The alpha-hOGG1 is localized in nucleus and mitochondria (mt); whereas the beta-hOGG1 is mainly localized in mitochondria. In nucleus, the function and regulation of alpha-hOGG1 is well known. However, the potential functions of alpha- or beta-hOGG1 in mitochondrial DNA repair were not extensively investigated yet. In order to understand the possible roles of alpha- and beta-hOGG1 in mtDNA repair, we previously used yeast two-hybrid screening assays to screen for the proteins that are associated with them. We found that beta- but not alpha-hOGG1 directly interacts with NADH dehydrogenase (ubiquinone) 1 beta subcomplex 10 (NDUFB10). NDUFB10 is a subunit of the NADH:ubiquinone oxidoreductase complex I, which is located on mitochondrial inner membrane. We also confirmed the in vivo interaction between beta-hOGG1 with NDUFB10 by co-immunoprecipitation and immunofluorescence assays. By co-IP studies, it was found that association of ���{hOGG1 with NDUFB10 was enhanced after treatment of hydrogen peroxide, suggesting that beta-hOGG1 repairs mtDNA damages through its interaction with NDUFB10 upon oxidative stress. Furthermore, alpha-hOGG1 also interacts with beta-hOGG1 and might form a repair complex with beta-hOGG1 and NDUFB10 for mtDNA repair. Although, we tried to look for the interaction region of beta-hOGG1 that directly binds with NDUFB10. However, the co-IP result validated either helix-hairpin-helix motif or predictive transmembrane region (C terminus) is not the binding domain. The results of these studies will help us to understand the role of beta-hOGG1 on mitochondrial DNA repair or other relevant functions.
Contents

Abstract in Chinese…………………………………………………………..... I
Abstract in English…………………………………………………………...... II
Abbreviations………………………………………………………………….. III
Acknowledgements……………………………………………………………. IV
Contents………………………………………………………………………... V
Contents of Tables and Figures……………………………………………….. VIII

I. Introduction……………………………………………………....…. 1
1.1 DNA damage and its consequence…………………………………………. 1
1.2 DNA repair…………………………………………………………………. 2
1.2.1 Base excision repair (BER)……………………………………………. 3
1.3 Oxidative DNA damage and its repair mechanism…………………………. 4
1.3.1 Oxidative damage and human disease…………………………………. 5
1.4 Human 8-oxoganine DNA glycosylase 1 (hOGG1)………………………... 6
1.4.1 Modification of hOGG1……………………………………………….. 7

II. Research goal……………………………………………………..…. 9
2.1 Characteristic of PNKP……………………………………………………... 9
2.2 Characteristic of NDUFB10………………………………………………… 9

III. Materials and methods……………………………………………. 11
3.1 Yeast two-hybrid assay……………………………………………………… 11
3.1.1 Plasmid constructs……………………………………………………… 11
3.1.2 E. coli transformation…………………………………………………... 12
3.1.3 Isolation DNA plasmid from E. coli………..…………..….…………... 13
3.1.4 Phenol/chloroform extraction………………………………………….. 13
3.1.5 Yeast transformation……………………………………………………. 14
3.1.6 Yeast protein extraction and western blotting………………………….. 14
3.2 Immunoprecipitation assay………………………………………………..... 15
3.2.1 Plasmid constructs……………………………………………………… 15
3.2.2 Cell line and culture……………………………………………………. 17
3.2.3 Transfection……………………………………………………………. 17
3.2.4 Immunoprecipitation and western blotting…………………………….. 17
3.3 Reactive oxygen species treatment…………………………………………. 18
3.4 Immunofluorescence and microscopy……………………………………… 18

IV. Results………………………………………………………………… 20
4.1 Construction of alpha/beta-hOGG1, PNKP and NDUFB10 plasmids…………….. 20
4.2 beta-hOGG1 interacts with NDUFB10 in yeast two-hybrid system…………... 20
4.3 In vivo association between beta-hOGG1 and NDUFB10…………………….. 20
4.4 beta-hOGG1 and NDUFB10 were colocalized in mitochondria…………......... 21
4.5 Association of beta-hOGG1 with NDUFB10 is induced by H2O2 treatment….. 21
4.6 The binding region of beta-hOGG1 that interacts with NDUFB10…………… 22
4.7 In vivo association between alpha-hOGG1 and NDUFB10……………………. 23
4.8 Repair complex of alpha-hOGG1 and beta-hOGG1………………………………. 23

V. Discussion…………………………………………………………….. 25
VI. References…………………………………………………................. 29
VII. Tables………………………………………………………………….. 34
VIII. Figures………………………………………………………………… 36
IX. Appendix……………………………………………………………... 47
VI. References

Ames, B.N., Shigenaga, M.K., Hagen, T.M. (1993) Oxidants, antioxidants, and the
degenerative diseases of aging. Proc. Natl. Acad. Sci. U.S.A. 90: 7915–7922.
Andreyev, A.Y.U., Kushnareva, Y.U.E., Starkov, A.A. (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Moscow) 70: 200–214.
Bandy, B., Davidson, A.J. (1990) Mitochondrial mutations may increase oxidative
stress: implication for carcinogenesis and aging? Free Radical Biol. Med. 8: 523–539.
Bashir, S., Harris, G., Denman, M. A., Blake, D. R., and Winyard, P. G. (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann. Rheum. Dis. 52: 659–666.
Bhakat, K. K., S. K. Mokkapati, I. Boldogh, T. K. Hazra, and S. Mitra. (2006) Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Mol. Cell. Biol. 26:1654-1665.
Bjoras, M., Seeberg, E., Luna, L., Pearl, L.H., Barrett, T.E. (2002) Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase. J.Mol.Biol. 317: 171-177.
Bogenhagen DF, Pinz KG and Perez-Jannotti RM. (2001) Enzymology of mitochondrial base excision repair. Prog Nucleic Acid Res Mol Bio.l 68: 257−271.
Carroll J., Fearnley I. M., Skehel J. M., Shannon R. J., Hirst J., and Walker J. E. (2006)
Bovine complex I is a complex of 45 different subunits. J. Biol. Chem. 281: 32724 - 32727.
Clayton, D.A., Doda, J.N., Friedberg, E.C. (1974) The absence of a pyrimidine dimmer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. U.S.A. 71: 2777–2778.
Chatterjee, A., Chang, X., Nagpal, JK., Chang, S., Upadhyay, S., Califano, J., Trink B., Sidransky, D. (2008) Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from 2-methoxyestradiol-induced-mitochondria- dependent apoptosis. Oncogene. 27: 3710–3720.
Christmann,M., Tomicic,M.T., Roos,W.P. and Kaina,B. (2003) Mechanisms of human DNA repair: an update. Toxicology, 193: 3–34
Croteau, D.L., ap Rhys, C.M., Hudson, E.K., Dianov, G.L., Hansford, R.G., Bohr, V.A. (1997) An oxidative damage-specific endonuclease from rat liver mitochondria.
J. Biol. Chem. 272: 27338–27344.
Croteau, D.L., Stierum, R.H., Bohr, V.A. (1999) Mitochondrial DNA repair pathway.
Mutat. Res. 434: 137–148.
Coffey, G., Lakshmipathy, U., Campbell, C. (1999) Mammalian mitochondrial
extracts possess DNA end-binding activity. Nucleic Acids Res. 27: 3348–3354.
Cooke M.S., Evans M.D., Dizdaroglu M. and Lunec J. (2003) Oxidative DNA damage: mechanisms, mutation, and disease, FASEB J. 17: 1195–1214.
Doherty A.J. , Serpell L.C. , Ponting C.P. (1996) The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 24: 2488-2497.
Emahazion, T.; Beskow, A.; Gyllensten, U.; Brookes, A. J. (1998) Intron based radiation hybrid mapping of 15 complex I genes of the human electron transport chain. Cytogenet. Cell Genet. 82: 115-119.
Fang, W.H., Modrich, P. (1993) Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J. Biol. Chem. 268: 11838–11844.
Fortini, P., Pascucci, B., Parlanti, E., D’Errico, M., Simonelli, V., Dogliotti, E. (2003) The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie. 85: 1053–1071.
Friedberg, E.C. (2001) How nucleotide excision repair protects against cancer.
Nat. Rev. Cancer. 1: 22–33.
Fromme, J.C., Bruner, S.D., Yang, W., Karplus, M., Verdine, G.L. (2003) Product-Assisted catalysis in base-excision DNA repair. Nat.Struct.Biol. 10: 204-211.
Galante Y. M., Hatefi Y. (1978) Resolution of complex I and isolation of NADH dehydrogenase and an iron-sulfur protein. Methods in Enzymology. 53: 15-21.
Galante, YM., Hatefi, Y. (1979) Purification and molecular and enzymic properties of mitochondrial NADH dehydrogenase. Arch Biochem Biophys. 192: 559–568.
Garrido, N., Griparic, L., Jokitalo, E., Wartiovaara, J., van der Bliek, A.M., Spelbrink,
J.N. (2003) Composition and dynamics of human mitochondrial nucleoids.
Mol. Biol. Cell. 14: 1583–1596.
Gedik, C. M. & Collins, A. (2005) Establishing the background level of base oxidation in human lymphocyte DNA: results on an interlaboratory validation study. FASEB J. 19: 82–84.
Grollman,A.P. and Moriya,M. (1993) Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 9, 236-249.
Hanawalt, P.C. (2001) Controlling the efficiency of excision repair. Mutat. Res. 485: 3–13.
Hashiguchi,K., Stuart,J.A., Souza-Pinto,N.C. and Bohr,V.A. (2004) The C-terminal alphaO helix of human Ogg1 is essential for 8-oxoguanine DNA glycosylase activity: the mitochondrial beta-Ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Res. 32: 5596–5608.
Hofmann, K., Stoffel, W. (1993) TMbase - A database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler. 374:166
Hu J., Imam S. Z., Hashiguchi K., de Souza-Pinto N. C., and Bohr V. A.. (2005)
Phosphorylation of human oxoguanine DNA glycosylase ({alpha}-OGG1) modulates its function. Nucleic Acids Res. 33: 3271 - 3282.
Hudson, E. K., Hogue, B., Souza-Pinto, N., Croteau, D. L., Anson, R. M., Bohr,
V. A., and Hansford, R. G. (1998) Age-associated change in mitochondrial DNA damage. Free Radic. Res. 29: 573–579.
Ishida, T., Hippo, Y., Nakahori, Y., Matsushita, I., Kodama, T., Nishimura, S., Aburatani, H. (1999) Structure and chromosome location of human OGG1. Cytogenet. Cell Genet. 85: 232-236.
Jilani, A. Ramotar, D. Slack, C. Ong, C. Yang, X. M. Scherer, S. W. Lasko, D. D. (1999) Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3-prime-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem. 274: 24176-24186.
Karimi-Busheri, F. Daly, G. Robins, P. Canas, B. Pappin, D. J. C. Sgouros, J. Miller, G. G. Fakhrai, H. Davis, E. M.; Le Beau, M. M. Weinfeld, M. (1999) Molecular characterization of a human DNA kinase. J. Biol. Chem. 274: 24187-24194.
Kasai H, Nishimura S. (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res., 12: 2137–2145.
Klaunig, J. E. & Kamendulis, L. M. (2004) The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44: 239–267.
Kvist, L., Martens, J., Higuchi, H., Nazarenko, A.A., Valchuk, O.P., Orell, M. (2003)
Evolution and genetic structure of the great tit (Parus major) complex.
Proc. Biol. Sci. 270: 1447–1454.
Larsen NB., Rasmussen M., Rasmussen LJ. (2005) Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5:89-108.
LeDoux, S.P., Driggers, W.J., Hollensworth, B.S., Wilson, G.L. (1999) Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat. Res.
434: 149–159.
Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. (2004). Molecular Biology of the Cell, p963. WH Freeman: New York, NY. 5th ed.
Loeffen, J. L. C. M., Triepels, R. H., van den Heuvel, L. P., Schuelke, M., Buskens, C. A. F., Smeets, R. J. P., Trijbels, J. M. F., and Smeitink, J. A. M. (1998) cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterisation completed. Biochem. Biophys. Res. Commun. 253, 415 –422.
Lunec, J., Herbert, K., Blount, S., Griffiths, H. R., and Emery, P. (1994) 8-Hydroxydeoxyguanosine. A marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett. 348: 131–138.
Mandavilli BS, Santos JH, Van Houten B. (2002) Mitochondrial DNA repair and aging. Mutat Res. 509:127-151
Marsin,S., Vidal,A.E., Sossou,M., Menissier-de Murcia,J., Le Page,F.,
Boiteux,S., de Murcia,G. and Radicella,J.P. (2003) Role of XRCC1 in the
coordination and stimulation of oxidativeDNAdamage repair initiated by
the DNA glycosylase hOGG1. J. Biol. Chem. 278: 44068–44074.
Mason, P.A., Matheson, E.C., Hall, A.G., Lightowlers, R.N. (2003) Mismatch repair
activity in mammalian mitochondria. Nucleic Acids Res. 31: 1052–1058.
Memisoglu, A. & Samson, L. (2000) Base excision repair in yeast and mammals. Mutat. Res. 451: 39–51.
Mullenders, L.H., Berneburg, M. (2001) Photoimmunology and nucleotide excision repair: impact of transcription coupled and global genome excision repair.
J. Photochem. Photobiol. 65: 97–100.
Nishioka, K., Ohtsubo, T., Oda, H., Fujiwara, T., Kang, D., Sugimachi, K., Nakabeppu,Y. (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell. 10: 1637–1652.
Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 60: 759–767.
Oka S., Ohno M., Tsuchimoto D., Sakumi K., Furuichi M. and Nakabeppu Y. (2008) Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. EMBO J. 27: 421–432.
Robin, E.D. & Wong, R. (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 136: 507−513.
Sakumi K., Furuichi M., Tsuzuki T., Kakuma T., Kawabata S., Maki H. and Sekiguchi M. (1993) Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J. Biol. Chem. 268: 23524–23530.
Sawyer, D.E., Van Houten, B. (1999) Repair of DNA damage in mitochondria.
Mutat. Res. 434: 161–176.
Shimura-Miura H, Hattori N, Kang D, Miyako K, Nakabeppu Y, Mizuno Y (1999) Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson’s disease. Ann Neurol. 46: 920–924.
Slupska MM, Luther WM, Chiang JH, Yang H, Miller JH. (1999) Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein.
J Bacteriol. 181: 6210–6213.
Slupphaug, G., Markussen, F.H., Olsen, L.C., Aasland, R., Aarsaether, N., Bakke, O.,
Krokan, H.E., Helland, D.E. (1993) Nuclear and mitochondrial forms of human
uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res.
21: 2579–2584.
Stuart, J.A., Mayard, S., Hashiguchi, K., Souza-Pinto, N.C., Bohr, V.A. (2005) Localization of mitochondrial DNA base excision repair to an inner membrane-associated particulate fraction. Nucleic Acid Res. 33: 3722–3732.
Szczesny B., Tann AW., Longley MJ., Copeland WC., Mitra S. (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem. 283: 26349-56.
Thayer M.M. , Ahern H. , Xing D. , Cunningham R.P. , Tainer J.A. (1995) Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure.
EMBO J. 14: 4108-4120.
Thyagarajan, B., Padua, R.A., Campbell, C. (1996) Mammalian mitochondria possess
homologous recombination activity. J. Biol. Chem. 271: 27536–27543.
Yakes, M.F., Van Houten, B. (1997) Mitochondrial DNA damage is more extensive
and persists longer than nuclear DNA damage in human cells following oxidative
stress. Proc. Natl. Acad. Sci. U.S.A. 94: 514–519.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔