跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 00:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳侑峻
研究生(外文):Yu-Chun Wu
論文名稱:珊瑚支架及電漿表面處理之幾丁聚醣於骨組織工程之研究
論文名稱(外文):The Study of Coralline and Plasma Surface Modified Chitosan for Bone Tissue Engineering
指導教授:蕭世裕楊俊佑楊俊佑引用關係
指導教授(外文):Shyh-Yu ShawChyun-Yu Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:生物科技研究所碩博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:127
中文關鍵詞:幾丁聚醣珊瑚支架骨組織工程
外文關鍵詞:coral scaffoldbone tissue engineeringchitosan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
每年都有很多病患需要進行骨移植手術,而尋找適當的骨移植材料一直是熱門的研究主題。骨組織工程提供了一種新的解決方式來幫助更有效的骨修復與再生。在此篇研究中,我們嘗試使用珊瑚外骨骼作為新的支架來源,並利用表面改質來達成調控細胞行為的方法。首先我們分析不同種類的珊瑚外骨骼及其物化性質,並依照符合骨組織工程概念的特性進行篩選。其中,我們發現Goniopora sp. 具高孔隙率( 73%),且其滲透率(Permeability)和機械強度都類似於人的疏鬆骨(Cancellous Bone)。另一方面,幾丁聚醣常用於生醫材料用途,包括組織工程之應用。在先前研究中發現,幾丁聚醣能幫助骨細胞分化,但卻抑制細胞黏著。所以我們亦嘗試利用電漿進行其表面改質並期望提昇其骨細胞黏著性。結果顯示,電漿能有效的增進幾丁聚醣的表面親水性,並因此提高細胞的黏著效率。最後,我們製備了三種支架,珊瑚支架、幾丁聚醣表面修飾之珊瑚支架、電漿改質之幾丁聚醣表面修飾支架,並比較其支架對骨細胞特性之影響。結果顯示,骨細胞在三種支架上的形態及特性表現皆不同。電漿表面改質能使骨細胞攤平並提昇在平面以及支架的黏著效率。而幾丁聚醣表面改質使骨細胞形態變圓但卻能幫助骨細胞分化。以上這些結果能提供給我們未來在設計支架並調控細胞功能的策略性考量。
There are numerous patients needed to perform bone surgery each year in the world. Bone tissue engineering offers a promising new approach in bone repair and regeneration. We had previously used PLGA as scaffold for bone tissue engineering. However, the PLGA scaffold has weak mechanical strength and causes the inflam-mation in vivo after degradation. Therefore, we chose coral as scaffold instead of PLGA scaffold in this study.
In this study, we have characterized physical and chemical properties of coral obtained around Taiwan coast. We found that the corals have the same chemical composites but with different pore size and porosity. We also found that Goniopora sp. can potentially be used as a scaffold for bone-tissue engineering because of its high porosity (73%) and its permeability and mechanics were similar to those in human cancellous bone.
Secondly, Chitosan is a biocompatible and bioresorbable biopolymer obtained by N-deacetylation of chitin under alkaline treatment. Chitosan was found to improve osteogenesis and angiogenic activity in animal study. In our pervious study, we also found that chitosan coated PLGA-scaffold enhances osteoblast growth and diffe-rentiation; however, it is worse for osteoblast attachment. In this study, we per-formed the plasma surface modification of chitosan for improving the attachment. We evaluated the physical and chemical characterization of the plasma-treated chitosan film and found that the plasma-treated chitosan film have more hydro-philic, more roughness, neutralized charge, and oxidized chemistry. We also found the preliminary results showed the cells prefer to attach the plasma-treated chito-san film.
Finally, we fabricated three kinds of scaffold, coral, Chitosan coated coral, and plasma treated Chi-coral (chitosan coated coral) scaffolds and cultured osteoblasts for their behaviors including attachment, proliferation and differentiation. We found plasma treatment could improve the cellular attachment of Chi-coral scaffold and make osteoblast spread. The chitosan coated layer did make osteoblast round and differentiation. In conclusion, the results showed the strategy of surface modification would alter the cellular behavior on scaffold and provided us cues to design the functional scaffold.
中文摘要 2
Abstract 3
Table of Contents 5
List of Figures 9
List of Tables 12
1. Chapter 1: Introduction 13
1.1. The Bone biology 14
1.2. Bone cell type 16
1.3. Bone tissue engineering 17
1.4. Biodegradable scaffolds 21
1.4.1. Biodegradable synthetic polymers 21
1.4.2. Bioceramics 22
1.4.3. Bioabsorbable nature polymers 23
2. Chapter 2: Objective 25
3. Chapter 3: The Criteria of Bone Scaffold 26
Subtitle: A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds 26
3.1. Introduction 28
3.2. Materials & methods 31
3.2.1. Experimental scaffold 31
3.2.2. Geometric characterizations 31
3.2.3. X-ray diffractometry and thermal analysis 32
3.2.4. Permeability studies 33
3.2.5. Mechanical studies 34
3.2.6. Cell culture and the biocompatibility of coral 34
3.2.7. Statistical analysis 35
3.3. Results & Discussion 36
3.3.1. Macro- and microstructure and biocompatibility 36
3.3.2. XRD analysis and transition temperature 43
3.3.3. Permeability and permeability/porosity ratios 46
3.3.4. Compressive strength of three corals 48
3.3.5. Ecological concern 51
3.4. Conclusion 52
4. Chapter 4: Surface Modification of Biomaterial 54
Subtitle: Argon-plasma-treated chitosan film: biomaterial characterization and initial cell attachment film 54
4.1. Introduction 55
4.2. Materials & methods 58
4.2.1. Materials 58
4.2.2. Preparing chitosan solution 58
4.2.3. Preparing chitosan film 58
4.2.4. Argon plasma surface modification of chitosan film 59
4.2.5. Contact-angle measurement 60
4.2.6. Roughness assay 60
4.2.7. ATR-FTIR assay 61
4.2.8. Electron spectroscopy for chemical analysis (ESCA, also known as x-ray photoelectron spectroscopy or XPS) 61
4.2.9. Cell culture and initial attachment assay 62
4.2.10. Statistical analysis 63
4.3. Results 64
4.3.1. The effect on the roughness of plasma-treated film. 64
4.3.2. The influence on surface hydrophilicity of plasma-treated film 66
4.3.3. The chemical structure analysis for plasma-treated chitosan 66
4.3.4. The initial attachment of hFOB on plasma-treated chitosan 75
4.4. Discussion 80
4.5. Conclusion 88
5. Chapter 5: Surface Modification of Scaffold 89
Subtitle: The Comparison of Coral, Chitosan Coated Coral and Plasma Treated Scaffold in Osteoblast Attachment, Proliferation and Differentiation 89
5.1. Introduction 90
5.2. Materials and Methods 93
5.2.1. Coral scaffold preparation 93
5.2.2. Preparing chitosan solution 93
5.2.3. Surface modification of coral scaffold 93
5.2.4. The surface evaluation of coral scaffold and chitosan coated coral. 94
5.2.5. Argon plasma surface treatment 94
5.2.6. Human fetal osteoblast cells and reagents. 95
5.2.7. Cell attachment & proliferation 96
5.2.8. Cell differentiation assay 97
5.3. Result and Discussion 99
5.3.1. Surface properties of scaffold 99
5.3.2. Cell morphology 100
5.3.3. Cell attachment & proliferation 104
5.3.4. Cell differentiation 107
5.4. Conclusion 112
6. Conclusion Remark 113
7. References 114
1.Urabe K, Itoman M, Toyama Y, Yanase Y, Iwamoto Y, Ohgushi H, et al. Current trends in bone grafting and the issue of banked bone allografts based on the fourth nationwide survey of bone grafting status from 2000 to 2004. Journal of Orthopaedic Science.12:520-5. 2007.
2.Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun.292:1-7. 2002.
3.Jeffrey O. Hollinger TAE, Bruce Doll, Charles Sfei. Bone tissue engineering‎. CRC Press; 2004. pp. 336.
4.U.S. National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) Program.
5.Caetano-Lopes J, Canhao H, Fonseca JE. Osteoblasts and bone formation. Acta Reumatol Port.32:103-10. 2007.
6.Franceschi RT, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation of osteoblasts. Ann N Y Acad Sci.1116:196-207. 2007.
7.Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos Int.11:905-13. 2000.
8.Enneking WF, Eady JL, Burchardt H. Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects. J Bone Joint Surg Am.62:1039-58. 1980.
9.Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma.3:192-5. 1989.
10.Bone Tissue Engineering. Carnegie Mellon University.
11.Zhang Y, Zhang M. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res.61:1-8. 2002.
12.Chiroff RT, White EW, Weber KN, Roy DM. Tissue ingrowth of Replamineform implants. J Biomed Mater Res.9:29-45. 1975.
13.Soost F. [Biocoral--an alternative bone substitute]. Chirurg.67:1193-6. 1996.
14.Yang C, Hillas PJ, Baez JA, Nokelainen M, Balan J, Tang J, et al. The application of recombinant human collagen in tissue engineering. BioDrugs.18:103-19. 2004.
15.Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res.44:407-15. 1999.
16.Klokkevold PR, Vandemark L, Kenney EB, Bernard GW. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol.67:1170-5. 1996.
17.Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Choi SM, et al. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. J Periodontol.71:410-7. 2000.
18.Cai K, Yao K, Li Z, Yang Z, Li X. Rat osteoblast functions on the o-carboxymethyl chitosan-modified poly(D,L-lactic acid) surface. Journal of biomaterials science.12:1303-15. 2001.
19.Machado CB, Ventura JM, Lemos AF, Ferreira JM, Leite MF, Goes AM. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells. Biomed Mater.2:124-31. 2007.
20.Wu YC, Shaw SY, Lin HR, Lee TM, Yang CY. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials.27:896-904. 2006.
21.Patel A, Honnart F, Guillemin G, Patat JL. [Use of madreporaria coral skeletal fragments in orthopedic and reconstructive surgery: experimental studies and human clinical application (author's transl)]. Chirurgie.106:199-205. 1980.
22.Guillemin G, Patat JL, Fournie J, Chetail M. The use of coral as a bone graft substitute. J Biomed Mater Res.21:557-67. 1987.
23.Brasnu D, Roux F, Loty B, Laccourreye H. [Coral: a new procedure for cranio-facial reconstruction]. Ann Otolaryngol Chir Cervicofac.105:431-3. 1988.
24.Arnaud E, De Pollak C, Meunier A, Sedel L, Damien C, Petite H. Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials.20:1909-18. 1999.
25.Damien CJ, Christel PS, Benedict JJ, Patat JL, Guillemin G. A composite of natural coral, collagen, bone protein and basic fibroblast growth factor tested in a rat subcutaneous model. Ann Chir Gynaecol Suppl.207:117-28. 1993.
26.Luyten FP, Yu YM, Yanagishita M, Vukicevic S, Hammonds RG, Reddi AH. Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. J Biol Chem.267:3691-5. 1992.
27.Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol.18:959-63. 2000.
28.Holt GE, Halpern JL, Dovan TT, Hamming D, Schwartz HS. Evolution of an in vivo bioreactor. J Orthop Res.23:916-23. 2005.
29.Langer R, Vacanti JP. Tissue engineering. Science.260:920-6. 1993.
30.Li S, De Wijn JR, Li J, Layrolle P, De Groot K. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng.9:535-48. 2003.
31.Dai CF. Assessment of the present health of coral reefs in Taiwan. In: Grigg RW, Birkeland C, eds. Status of coral reefs in the Pacific. Honolulu: University of Hawaii; 1997. pp. 123-31.
32.Bouchon C, Lebrun T, Rouvillain J-L, Roudier M. The Caribbean scleractinian corals used for surgical implants. Bull de Inst Océanogr.14:111-22. 1995.
33.Grimm MJ, Williams JL. Measurements of permeability in human calcaneal trabecular bone. J Biomech.30:743-5. 1997.
34.Harris SA, Enger RJ, Riggs BL, Spelsberg TC. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res.10:178-86. 1995.
35.Malik MA, Puleo DA, Bizios R, Doremus RH. Osteoblasts on hydroxyapatite, alumina and bone surfaces in vitro: morphology during the first 2 h of attachment. Biomaterials.13:123-8. 1992.
36.Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng.12:15-35. 2002.
37.Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res.4:433-56. 1970.
38.Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Annals of biomedical engineering.32:1728-43. 2004.
39.Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials.26:5474-91. 2005.
40.Birk RZ, Abramovitch-Gottlib L, Margalit I, Aviv M, Forti E, Geresh S, et al. Conversion of adipogenic to osteogenic phenotype using crystalline porous biomatrices of marine origin. Tissue Eng.12:21-31. 2006.
41.Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. Oxford: Pergamon Press; 1988.
42.Alvarez K, Camero S, Alarcon ME, Rivas A, Gonzalez G. Physical and mechanical properties evaluation of Acropora palmata coralline species for bone substitution applications. Journal of materials science.13:509-15. 2002.
43.Knackstedt MA, Arns CH, Senden TJ, Gross K. Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials.27:2776-86. 2006.
44.Reilly DT, Burstein AH. Review article. The mechanical properties of cortical bone. J Bone Joint Surg Am.56:1001-22. 1974.
45.Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech.8:393-405. 1975.
46.Goldstein SA. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech.20:1055-61. 1987.
47.De'ath G, Lough JM, Fabricius KE. Declining Coral Calcification on the Great Barrier Reef. Science (New York, NY.323:116-9. 2009.
48.Norlander B. Coral crisis! Humans are killing off these bustling underwater cities. Can coral reefs be saved? Science World2003.
49.Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials.22:165-73. 2001.
50.Kato Y, Onishi H, Machida Y. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates. Biomaterials.25:907-15. 2004.
51.Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials.20:1133-42. 1999.
52.VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res.59:585-90. 2002.
53.Muzzarelli RA, Zucchini C, Ilari P, Pugnaloni A, Mattioli Belmonte M, Biagini G, et al. Osteoconductive properties of methylpyrrolidinone chitosan in an animal model. Biomaterials.14:925-9. 1993.
54.Park JS, Choi SH, Moon IS, Cho KS, Chai JK, Kim CK. Eight-week histological analysis on the effect of chitosan on surgically created one-wall intrabony defects in beagle dogs. Journal of clinical periodontology.30:443-53. 2003.
55.Loh IH. Plasma Surface Modification in Biomedical Applications. Medical Device Technology.10:24-30 1999.
56.Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, et al. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res.62:438-46. 2002.
57.Lin C. Feasibility evaluation of chitosan coatings on polyethylene tubing for biliary stent applications. Journal of Applied Polymer Science.vol.97. 2005.
58.Matienzo LJ. Dry Processes for Surface Modification of a Biopolymer: Chitosan. Macromolecular Materials and Engineering.Vol.287. 2002.
59.Silva SS, Santos MI, Coutinho OP, Mano JF, Reis RL. Physical properties and biocompatibility of chitosan/soy blended membranes. Journal of materials science.16:575-9. 2005.
60.Ko TM, Lin JC, Cooper SL. Surface characterization and platelet adhesion studies of plasma-sulphonated polyethylene. Biomaterials.14:657-64. 1993.
61.Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials.17:137-46. 1996.
62.Lim JY, Hansen JC, Siedlecki CA, Hengstebeck RW, Cheng J, Winograd N, et al. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability. Biomacromolecules.6:3319-27. 2005.
63.Lim JY, Dreiss AD, Zhou Z, Hansen JC, Siedlecki CA, Hengstebeck RW, et al. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials.28:1787-97. 2007.
64.Burton Z, Bhushan B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett.5:1607-13. 2005.
65.Xie Y, Sproule T, Li Y, Powell H, Lannutti JJ, Kniss DA. Nanoscale modifications of PET polymer surfaces via oxygen-plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro. J Biomed Mater Res.61:234-45. 2002.
66.Khan SP, Auner GG, Newaz GM. Influence of nanoscale surface roughness on neural cell attachment on silicon. Nanomedicine.1:125-9. 2005.
67.Schwartz Z, Bell BF, Wang L, Zhao G, Olivares-Navarrete R, Boyan BD. Beta-1 integrins mediate substrate dependent effects of 1alpha,25(OH)2D3 on osteoblasts. J Steroid Biochem Mol Biol.103:606-9. 2007.
68.Olivares-Navarrete R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A.105:15767-72. 2008.
69.Wenzel R. Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry.28:988-94. 1936.
70.Yong Chae J, Bharat B. Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity. Nanotechnology.4970-80. 2006.
71.Zhu X, Chian KS, Chan-Park MB, Lee ST. Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res A.73:264-74. 2005.
72.Lee SJ, Khang G, Lee YM, Lee HB. The effect of surface wettability on induction and growth of neurites from the PC-12 cell on a polymer surface. J Colloid Interface Sci.259:228-35. 2003.
73.Hallab NJ, Bundy KJ, O'Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng.7:55-71. 2001.
74.van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials.6:403-8. 1985.
75.Jansen EJ, Sladek RE, Bahar H, Yaffe A, Gijbels MJ, Kuijer R, et al. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials.26:4423-31. 2005.
76.Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br.71:677-80. 1989.
77.Brown KL, Cruess RL. Bone and cartilage transplantation in orthopaedic surgery. A review. J Bone Joint Surg Am.64:270-9. 1982.
78.Gepstein R, Weiss RE, Hallel T. Bridging large defects in bone by demineralized bone matrix in the form of a powder. A radiographic, histological, and radioisotope-uptake study in rats. J Bone Joint Surg Am.69:984-92. 1987.
79.Tiedeman JJ, Garvin KL, Kile TA, Connolly JF. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics.18:1153-8. 1995.
80.Laurencin CT, Attawia MA, Elgendy HE, Herbert KM. Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices. Bone.19:93S-9S. 1996.
81.Takezawa T. A strategy for the development of tissue engineering scaffolds that regulate cell behavior. Biomaterials.24:2267-75. 2003.
82.Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature.247:220-2. 1974.
83.Soost F, Reisshauer B, Herrmann A, Neumann HJ. [Natural coral calcium carbonate as alternative substitute in bone defects of the skull]. Mund Kiefer Gesichtschir.2:96-100. 1998.
84.Koo KT, Polimeni G, Qahash M, Kim CK, Wikesjo UM. Periodontal repair in dogs: guided tissue regeneration enhances bone formation in sites implanted with a coral-derived calcium carbonate biomaterial. J Clin Periodontol.32:104-10. 2005.
85.Holmes RE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study. J Bone Joint Surg Am.68:904-11. 1986.
86.Ripamonti U. Calvarial reconstruction in baboons with porous hydroxyapatite. J Craniofac Surg.3:149-59. 1992.
87.Jensen SS, Aaboe M, Pinholt EM, Hjorting-Hansen E, Melsen F, Ruyter IE. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants.11:55-66. 1996.
88.Beena MS, Chandy T, Sharma CP. Phenyl alanine, tryptophan immobilized chitosan beads as adsorbents for selective removal of immunoproteins. J Biomater Appl.8:385-403. 1994.
89.Wang W, Itoh S, Matsuda A, Ichinose S, Shinomiya K, Hata Y, et al. Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration. J Biomed Mater Res A. 2007.
90.Ishihara M, Obara K, Ishizuka T, Fujita M, Sato M, Masuoka K, et al. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J Biomed Mater Res A.64:551-9. 2003.
91.Knox P, Wells P. Cell adhesion and proteoglycans. I. The effect of exogenous proteoglycans on the attachment of chick embryo fibroblasts to tissue culture plastic and collagen. J Cell Sci.40:77-88. 1979.
92.Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives. Journal of biomaterials science.12:107-24. 2001.
93.Vasita R, Shanmugam IK, Katt DS. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr Top Med Chem.8:341-53. 2008.
94.Cai K, Yao K, Cui Y, Lin S, Yang Z, Li X, et al. Surface modification of poly (D,L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro. J Biomed Mater Res.60:398-404. 2002.
95.Cai K, Hu Y, Jandt KD, Wang Y. Surface modification of titanium thin film with chitosan via electrostatic self-assembly technique and its influence on osteoblast growth behavior. Journal of materials science.19:499-506. 2008.
96.Wang J, de Boer J, de Groot K. Proliferation and differentiation of MC3T3-E1 cells on calcium phosphate/chitosan coatings. Journal of dental research.87:650-4. 2008.
97.Cai K, Wang Y. Polysaccharide surface engineering of poly(D, L-lactic acid) via electrostatic self-assembly technique and its effects on osteoblast growth behaviours. Journal of materials science.17:929-35. 2006.
98.Bumgardner JD, Chesnutt BM, Yuan Y, Yang Y, Appleford M, Oh S, et al. The integration of chitosan-coated titanium in bone: an in vivo study in rabbits. Implant Dent.16:66-79. 2007.
99.Aimin C, Chunlin H, Juliang B, Tinyin Z, Zhichao D. Antibiotic loaded chitosan bar. An in vitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res.239-47. 1999.
100.Patashnik S, Rabinovich L, Golomb G. Preparation and evaluation of chitosan microspheres containing bisphosphonates. J Drug Target.4:371-80. 1997.
101.Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials.20:1407-14. 1999.
102.Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res.51:586-95. 2000.
103.Yamada S, Ohara N, Hayashi Y. Mineralization of matrix vesicles isolated from a human osteosarcoma cell line in culture with water-soluble chitosan-containing medium. J Biomed Mater Res A.66:500-6. 2003.
104.Yamada S, Ganno T, Ohara N, Hayashi Y. Chitosan monomer accelerates alkaline phosphatase activity on human osteoblastic cells under hypofunctional conditions. J Biomed Mater Res A.83:290-5. 2007.
105.Strehl R, Schumacher K, de Vries U, Minuth WW. Proliferating cells versus differentiated cells in tissue engineering. Tissue Eng.8:37-42. 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊