跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅云汝
研究生(外文):Yun-Ru Luo
論文名稱:AGL6-like基因參與蝴蝶蘭花被發育之探討
論文名稱(外文):Characterization of AGL6-like genes involved in perianth development of Phalaenopsis spp.
指導教授:陳虹樺陳虹樺引用關係
指導教授(外文):H. H. Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物科技研究所碩博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:50
中文關鍵詞:唇瓣蝴蝶蘭花部發育轉錄因子
外文關鍵詞:Phalaenopsisfloral organ identitytranscription factorlip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蘭花的花器構造由外而內為:花萼、花瓣、唇瓣、合蕊柱及子房。唇瓣為高度特化的花瓣,吸引授粉者前來為其授粉。本篇研究旨在探討屬於MADS-box 轉錄因子的AGL6基因如何參與蘭花發育。
本研究發現姬蝴蝶蘭保存有三個AGL6-like 基因,分別為PeAGL6a,PeAGL6b及PeAGL6c。依據序列比對及演化樹分析的結果,推測姬蝴蝶蘭的AGL6-like 基因經過ㄧ次複製產生兩條同物種同源基因,其中PeAGL6c在序列上與單子葉植物的同源基因相似而較為保留; 另外一條AGL6-like 基因經過突變而改變了部份的胺基酸,並且再次複製而產生PeAGL6a及PeAGL6b,這兩個基因在親緣上獨立於被子植物及裸子植物之間,同時我們發現文心蘭的AGL6-like 基因 (OMADS1)也歸屬此外群,究竟此獨特的AGL6-like外群基因在蘭花花部發育上扮演什麼樣的角色。由RT-PCR及in situ localization的結果得知PeAGL6c在各個花器皆微量表現,但主要表現於花梗,花梗未來會發育成子房的構造,因而保留有大部份植物AGL6基因表現子房的特性。此外PeAGL6c也表現於花發育始原細胞,可能調控始原細胞走向分化。PeAGL6b於花器分化早期表現於各花器,分化晚期於花萼及花瓣內的表現下降,集中表現於唇瓣與合蕊柱,在成熟花苞中則可以看到PeAGL6b在各花器內些微表現。PeAGL6a表現於花發育初期及花苞的唇瓣、花萼與合蕊柱中。由yeast two-hybrid的結果可知PeAGL6a、PeAGL6b、PeAGL6c蛋白皆可與B群PeMADS2~6以及E群的PeMADS8蛋白結合,並與AGL6蛋白相互結合形成異質二元體 (heterodimer),唯一不同的是PeAGL6a與PeAGL6b皆可形成同質二元體 (homodimer) ,但PeAGL6c則否,推測是因為胺基酸的改變造成結合能力差異。由結果推測,表現於花器分化早期的PeAGL6b與 PeAGL6a可能B群及C群MADS-box蛋白形成聚合體,形成調控花部發育的MADS-box轉錄因子複合體。
Phalaenopsis is a member of the Orchidaceae, its flowers contain three sepals, two petals and a highly modified petal, the labellum or lip. Because of lip faces to column (a fusion of the male and female reproductive organs, with stamen on the column top), it is considered to be important for both pollination and evolution of orchids. Previously, we have identified an AGL6-like gene, PeAGL6a, will highly expressed in lip and ectopic expressed in lip-like petal of peloric mutant. In this study we further investigation of whether AGL6-likge genes involved in flower development of Phalaenopsis orchid.
In this study, three AGL6-like genes of P. equestris were found. According to the results of sequence and phylogenetic analyses, suggesting that the ancient AGL6-like gene of P. equestris was duplicated into two paralogous genes. One of them is PeAGL6c which is most similar to AGL6-like gene of monocots in amino acid sequence. The other paralogous gene was duplicated again to produce PeAGL6a and PeAGL6b. PeAGL6a and PeAGL6b were classified with OMADS1 of Oncidium into the branch-group of angiosperm. The role of unique branch-group of AGL6-like genes for orchid floral morphogenesis is interesting. Results of RT-PCR and in situ hybridization revealed that PeAGL6c expressed in all floral organs but higher expressed in pedicle which contains immature ovary. These expression profiles were similar to that of most AGL6-like genes. In addition, PeAGL6c also highly expressed in floral meristem and primodium, and may be related to floral transition identity. PeAGL6b were expressed in all floral organs in early floral differentiation stage, and it continued to highly express in lip and column and slightly express in sepal and petal until floral development complete. In mature flower buds, PeAGL6b was slightly expressed in all floral organs. PeAGL6a was specific expressed in sepal, lip and column in both of early floral development stage and floral bud. In yeast two-hybrid analysis, PeAGL6a、PeAGL6b and PeAGL6c all could interact with B-class MADS proteins and E-class MADS protein (PeMADS8). Moreover, they could interact with each other to form heterodimers. However, PeAGL6a and PeAGL6b could form homodimer, but PeAGL6c could not. It suggested that the capacity of forming homodimer of PeAGL6a and PeAGL6b result from some amino acids were changed. Furthermore, I presumed PeAGL6b and PeAGL6a which expressed in early flower development stage will combine with B-class proteins and E-class MADS proteins to form MADS-box transcription factor complex to regulate floral organ identity.
中文摘要 ii
Abstract iii
誌謝 iv
List of Tables viii
List of Figures ix
1. Introduction
1.1 Flower
1.1.1 Floral organs 1
1.1.2 Floral organs of Phalaenopsis orchids 1
1.1.3 Perianth of flower is evolved to facilitate
pollinator attraction 1
1.1.4 Lip is highly modified petal of orchid 2
1.2 Genes control the floral organ development in plants
1.2.1 ABCDE model in Arabidopsis and Antirrhinum majus 2
1.2.2 ABCDE genes encode the type II MADS-box
transcription factors 3
1.2.3 Floral quartet model 3
1.3 AGL6-like gene
1.3.1 AGL6 is a subfamily of AGL2/SQUA clade 4
1.3.2 AGL6-like gene express in reproductive organs 4
1.3.3 AGL6-like genes also may involved in plant
transition 4
1.3.4 AGL6-like gene also express in perianth 5
1.3.5 Protein interaction profile of AGL6 proteins 5
1.3.6 The functional analysis of AGL6-like genes 5
1.4 MADS-box genes control the floral organ development
in Phalaenopsis orchid
1.4.1 ABCDE genes in orchid 5
1.4.2 Protein interaction profile in orchid 6

2. Specific aim 6
3. Material and Methods
3.1 Plant materials 7
3.2 Sequence alignments 7
3.3 Phylogenetic analyses 7
3.4 RNA extraction and RT-PCR 8
3.5 Yeast two-hybrid assay 8
3.6 Yeast three-hybrid assay 9
3.7 Isolation of genomic DNA and Southern blot analysis 9
3.8 In situ hybridization 10
3.9 Construction of ectopic transformed fusion 10
3.10 Plant transformation 10
3.11. Generation of pCambia-CymMV-PeUFGT3 constructs 10
3.12 Agroinoculation of plants 11
4. Results
4.1 Identification of AGL6-like MADS-box genes in P.
equestris 12
4.2 Phylogenetic relationship of PeAGL6a, PeAGL6b and
PeAGL6c with other AGL6-like genes 12
4.3 Expression patterns of PeAGL6a, PeAGL6b and PeAGL6c
13
4.4 Genomic organization of PeAGL6 genes 14
4.5 In situ hybridization 15
4.6 Yeast two-hybrid analysis of interaction between
PeAGL6 proteins and B-class/PeMADS8 proteins 15
4.7 Yeast three-hybrid analysis for examination of
bridge protein between PeMADS3 and PeMADS4 16
4.8 PeAGL6 genes ectopic expression in Arabidopsis
thaliana 16
4.9 PeAGL6 gene knock-down by using VIGS in
Doritaenopsis Taida Salu 17
5. Discussion
5.1 The evolution of AGL6-like genes of Phalaenopsis
orchids 18
5.2 PeAGL6b may involve in sepal, petal, lip and column
identity 18
5.3 The AGL6 homolog were expressed in perianth of basal
angiosperm 19
5.4 PeAGL6a may effort for lip function during the
mature bud 19
5.5 The expression pattern of PeAGL6c is similar to most
AGL6-like genes 19
5.6 The MADS-transcription factor complex involved in
floral organ development in P. equestris 20
6. Conclusion 21
7. Perspectives 22
8. References 23
Aivarez-Buylla E. R., Pelaz S., Liljegren S. J. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97: 5328―5333, 2000

Almeida J., Rocheta M. and Galego L. Genetic control of flower shape in Antirrhinum majus. Development124:1387-1392, 1997

Becker A., and Theiβen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29:464-489. 2003

Becker A., Saedler H., Theiβen G. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol 213 (11): 567-572, 2003

Boss P. K., Sensi E., Hua C. Cloning and characterization of grapevine (Vitis vinifera L.). MADS-box genes expressed during inflorescence and berry development. Plant Sci 162 (6): 887-895 33, 2002

Cheng C.C. Identification of transcription factors involved in labellum development in Phalaenopsis orchids. Master degree thesis. National Cheng Kung University. Department of Life Sciences. Tainan, Taiwan. pp. 92, 2007

Cho S., Jang S., Chae S., Chung K.M., Moon Y. H., An G. and Jang S.K. Analysis of the C-terminal region of Arabidopsis thaliana APETALA 1 as a transcription activation domain. Plant Mol. Biol. 40: 419-429. 1999

Christenson E.A. Phalaenopsis. pp: 330. 2001

Coen E.S., and Meyerowitz E.M. The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37, 1991

Cronk Q., Ojeda I. J. Bird-pollinated flowers in an evolutionary and molecular context. Exp Bot. 59(4):715-27. 2008

De Folter S., Immink R. G. H., Kieffer M. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17: 1424―1433, 2005

Dressler R. Phylogeny and classification of the orchid family. Dioscorides Press, Cambridge, Massachusetts. 1993.

Egea Cortines M., Saedler H. and Sommer H. Ternary complex formation between the MADS-box proteins SOUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379. 1999

Endress K. Origins of flower morphology. J Exp Zool. 15 (2):105-15, 2001

Fan H. H., Hu Y., Tudor M., Hong M. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12(5):999-1010, 1997

Fan J. H., Li W. Q., Dong X. C., Guo W. and Shu H. R. Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis. Science in China Series C: Life Sciences 50 (.5): 676-689, 2007

Favaro R., Immink G.H., Ferioli V., Bernasconi B., Byzova M., An-genent G.C., Kater M., and Colombo L.. Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol Genet. Genomics 268:152–159, 2002

Fornara F., Parenicov´a L., Falasca G., Pelucchi N., Masiero S., Ciannamea S., Lopez-Dee Z., Altamura M.M., Colombo L., and Kater M.M. Functional characterization of Os- MADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135(4):2207–2219, 2004.

Galliot C., Hoballah M. E., Kuhlemeier C., Stuurman J. Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta 225(1):203-12, 2006


Gietz, R.D., St. Jean, A, Woods, R.A. and Schiest, R.H. Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res 8, 1425. 1992

Goh C. J., Arditti J. Orchidaceae. In: A. H. Halevy Handbook of Flowering. CRC Press Inc., (1) pp. 309-336, 1985

Groose R.W. and Bingham E.T. Variation in plants regenerated form tissue culture of tetraploid alfalfa heterozygous for several traits. Crop Sci 24:655-658, 1984

Hirochika H., Sugimoto K., Otsuki Y. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93:7783-7788, 1996

Honma T. and Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525-529, 2001

Hsu H.F., Huang C.H., Chou L.T. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant and Cell Physiol 44: 783―794, 2003

Irish V.F. and Litt A. Flower development and evolution: Gene duplication, diversification and redeployment. Curr. Opin. Genet. Dev. 15:454-460, 2005

Immink R.G, Angenent G.C. Transcription factors do it together: the how and why of studying protein-protein interactions. Trends Plant Sci. (12):531-4, 2002

Jack T. Molecular and genetic mechanisms of floral control. Plant Cell 16: S1-17, 2004

Kanno A., Hienuki H., Ito T., Nakamura T., Fukuda T., Yun P. Y. Song I. J., Kamimura T., Ochiai T., Yokoyama J., Maki M., Kameya T. The structure and expression of SEPALLATA-like genes in Asparagus species (Asparagaceae) Sex Plant Reprod 19: 133–144, 2006

Kaufmann K., Melzer R., Theigen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183–198, 2005

Kim S., Koh J., Yoo M. J., Kong H., Hu Y., Ma H., Soltis P. S., Soltis D. E. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. The Plant Journal 43, 724–744, 2005

Koukalova B., Fojtova M., Lim K.Y. Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol.139: 275-286. 2005

Krizek B.A., and Meyerowitz E.M. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc. Natl. Acad. Sci. USA 93: 4063-4070, 1996

Krizek BA, Fletcher JC., Knudson L. Molecular mechanisms of flower development: an armchair guide. Molecular mechanisms of flower development: an armchair guide.. Nat Rev Genet 73: 1-25, 2005

Lamb R.S. and Irish V.F. Functional divergence within the APETALA3/ PISTILLATA floral homeotic gene lineages, Proc. Natl. Acad. Sci. USA 100: 6558-6563, 2003

Larkin P.J. and Scowcroft W.R. Somaclonal variation –a novel source of variability from cell cultures for plant improvement. Thero. Appl. Genet. 60:443-455, 1981

Larkin M.A., Blackshields. G, Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. and Higgins D.G. Clustal W and Clustal X version 2.0 Bioinformatics 23(21):2947-2948, 2007

Lawton-Rauh A.L., Alvarez-Buylla, E.R., Purugganan, M.D. Molecular evolution of flower development. Trends Ecol. Evol. 15: 144–149, 2000

Munster T., Pahnke J., Di Rosa A., Kim J. T., Martin W., Saedler H. and Theiβen G. Floral homemotic genes were recruited form homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl Acad. Sci. USA 94: 2415-2420, 1997

Ma, H. The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev. 8, 745–756, 1994

Ma H, Yanofsky M.F., Meyerowitz E.M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes De 5: 484―495, 1991

Mouradov A, Glassick T.V., Hamdorf B.A. Family of MADS-box genes expressed early in male and female reproductive structure of monterey pine. Plant Physiol 117: 55―61, 1998

Mena M, Mandel M. A., Lerner D. R. A characterization of the MADS-box gene family in maize. Plant J 8: 845―854, 1995

Moon Y. H., Kang H. G. and Jung J. Y. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS- LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol 120: 1193―1204, 1999

Miguel M.T., Veronica L.B., José Luis C.P. and Luis H.E. Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Molecular Biology Reporter 22: 63–70, 2004

Parenicová L., de Folter S., Kieffer M. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell15: 1538―155, 2003

Pelaz S., Ditta G.S., Baumann E., Wisman E., and Yanofsky M.F. B and C floral organ identity function require SEPALLATA MADS-box genes. Nature 405: 200-203., 2000

Peshke V.M. and Phillips R.L. Genetic implications of somaclonal variation in plants. Adv. Genet. 30: 41–75, 1992

Petersen K., Didion T., Andersen C. H. MADS-box genes fromperennial ryegrass differentially expressed during transition fromvegetative to reproductive growth. J Plant Physiol161 (4):439―447, 2004

Purugganan, M.D. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J. Mol. Biol. 45, 392–396, 1997

Purugganan M.D., Rounsley S., Schmidt R.J. and Yanofsky M.F. Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics 140, 345-356, 1995

Rijpkema A.S., Zethof J., Gerats T. and Vandenbussche M. The Petunia AGL6 gene has a SEPALLATA-like function in floral patterning. The Plant Journal, 2009

Riechmann J.L.,Wang M. and Meyerowitz E.M. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALE3, PISTILATA and AGAMOUS. Nucleic Acid Res. 24;3134-3141, 1996

Riechmann J.L., Krizek B.A. and Meyerowitz E.M. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol. Bio. Cell 8:1243-1259, 1997

Riechmann J.L., Krizek B.A. and Meyerowitz E.M. MADS domain proteins in plant development. Biol. Chem. 378:1079-1101, 1997

Rounsley S.D., Ditta G.S., Yanofsky M.F. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell. 7(8):1259-69, 1995

Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936. 1990

Shindo S, Ito M, Ueda K., Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev, 1:180―190, 1999

Thien L.B. and Marcks B. G. The floral biology of Arethusa bulbosa, Calopogon tuberosus and Pogonia ophioglossoides (Orchidaceae). Canadian Journal of Botany 23, 19–25, 1972

Theiβen G. Development of floral organ identity: stories form the MADS house. Curr. Opin. Plant Biol. 4: 75-85, 2001

Theißen G., Becker A., Di Rosa A., Kanno A., Kim J.T., Mϋnster T., Winter K.U., Saedler H. A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149, 2000

Tokuhara K. and Mii M. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep. 13:7-11, 1993

Tsai W.C., Huoh C.S., Chuang M.H., Chen W.H. and Chen H.H. Four DEF-like MADS-box genes displayed distinct floral morphogenetic roles in Phalaenopsis Orchid. Plant Cell Physiol. 45: 831-844, 2004

Tsai W.C., Lee P.F., Chen H.I., Hsiao Y.Y., Wei W.J. and Pan Z.J. Chuang M.H., Kuoh C.S., Chen W.S. and Chen H.H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant and Cell Physiology 46:1125-1139, 2005

Tsai W.C., Pan Z.J., Hsiao Y.Y., Jeng M.F., Wu T.F., Chen W.H., Chen H.H.. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol. 49(5):814-24. 2008

Tsuchimoto S., Mayama T., Van der Krol A., The whorl-specific action of a Pentunia class B floral homeotic gene. Genes to Cells 5 (2): 89―992, 2000

Van Der Pijl L. Pollination mechanisms in orchids. In reproductive biology and taxonomy of vascular plants, 9th Conference report of the Botanical society of the British Isles (ed. J. G. Hawkes), Pergamon Press, pp. 61–75,

Vogel S. Pilzmueckenblumen als Pilzmimeten. Flora 167, 329–398, 1978

Yao J. L., Dong Y. H., Kvarnheden A. Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124: 8―13, 1999

Zahn L.N., Feng B. and Ma H. Beyond the ABC-model: Regulation of floral homeotic genes. In Developmental Genetics of the Flower: Advances in Botanical Research 44:163-207, 2006

Zhao T., Ni Z., Dai Y. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics 276(4): 334―350, 2006
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊