跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃倚昇
研究生(外文):Yi-sheng Huang
論文名稱:從胎盤絨毛組織分選出CD90+/CD44+細胞之特性分析
論文名稱(外文):Characterization of CD90+/CD44+ cells from human placental villi
指導教授:黃玲惠
指導教授(外文):Lynn L.H. Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物科技研究所碩博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:胎盤絨毛組織群落細胞胚胎幹細胞間葉幹細胞
外文關鍵詞:mesenchymal stem cellembryonic stem cellcolony-forming cellplacental villa
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
幹細胞是應用於再生醫學、組織工程、細胞療法與基因療法的主要素材,最近的研究發現,人類間葉幹細胞已由不同的成體及胎兒組織中分離與鑑定,因此我們認為胎盤中可能存在較原始的間葉幹細胞。我們分離由胎盤絨毛組織取得的細胞,並鑑定其是否具有間葉幹細胞與胚胎幹細胞的特性。
由胎盤所取得的細胞呈現類似纖維母細胞之型態與可增生形成群落,表現ABCG2、CD9、CD29、CD44、CD73、CD90、 CD105、HLA-ABC,不表現HLA-DR、CD34、CD45細胞標誌,且經由適當的誘導分化為脂肪、成骨、軟骨細胞,顯示此細胞仍保有分化之潛能。此間葉幹細胞會表現胚胎幹細胞的細胞標誌Oct-4、Sox-2、SSEA-3、TRA-1-60、TRA-1-81但不表現SSEA-4,以RT-PC及real-time PCR分析也會表現HOX-b4、Bmi-1、Oct-4、Rex-1幹細胞相關的基因。
在分離、培養台盤取得的間葉幹細胞之後,進行較原始的胎盤間葉幹細胞之鑑定,利用流式細胞儀由胎盤取得之細胞中分選出CD90+/CD44+細胞,約2~3%的細胞有CD90和CD44表現,且此群細胞也會表現間葉幹細胞的標誌,而表現Oct-4、Sox-2、TRA-1-60、TRA-1-81但不表現SSEA-3、SSEA-4。CD90+/CD44+細胞分選後不能培養,而能增生形成群落的細胞都能同時表現CD90和CD44,所以將能增生形成群落的細胞當作CD90+/CD44+細胞來進行更進一步的分析。單一群落細胞具有間葉幹細胞的特性,並且保有能分化脂肪細胞、成骨細胞、軟骨細胞之潛能。所以我們認為CD90+/CD44+細胞可能為較原始的胎盤間葉幹細胞。
Stem cells could be useful for regeneration medicine, tissue engineering, gene therapy and cell therapy. Human mesenchymal stem cells (MSCs) can be isolated and identified from various adult and fetal tissues. We suggest that primitive mesenchymal stem cells may exist in placental villa. In this study, we isolate and characterize cells from placental villa as regards their MSC properties and embryonic stem cell (ESC)properties.
The placenta-derived cells display fibroblast-like morphology and grow into colonies. They express ABCG2, CD9, CD29, CD44, CD73, CD90, CD105 and HLA-ABC but not, CD34, CD45 and HLA-DR. Under appropriate culture conditions, these cells are able to differentiate into cells of the adipogenic, osteogenic and chondrogenic lineages. The MSCs express ESC markers, such as Oct-4, Sox-2, SSEA-3, TRA-1-60 and TRA-1-81 but not SSEA-4. The PDMSCs also express stem cell-related gene such as HOX-b4, Bmi-1, Oct-4, and Rex-1 by RT-PCR and real-time PCR.
After isolation and cultivation of MSCs from placenta we tried to identify the primitive MSCs. The CD90+/CD44+ cells were isolated from fresh placental cells by fluorescence activated cell sorting. There was only about 2~3% population of cells were found to be positive for CD90 and CD44, and expressed MSC markers. The CD90+/CD44+ cells expressed Oct-4, Sox-2, TRA-1-60 and TRA-1-81, but did not express SSEA-3 and SSEA-4. The CD90+/CD44+ cells could not be expended after sorting . Colony-forming are found to be positive for CD90 and CD44. So we considered colony-forming cells as criteria of the CD90+/CD44+ cells. Colony-forming cells have MSC proprieties and multilineage potential to differentiate into adipogenic, osteogenic, and chondrogenic lineages. The subpopulation of CD90+/CD44+ cells could be regarded as primitive MSCs from fresh placental cells.
中文摘要 I
Abstract III
目錄 V
圖表目錄 VIII
第一章、文獻回顧 1
1.1 幹細胞(Stem cells) 1
1.2 幹細胞的應用 4
1.3 體幹細胞的分化 4
1.4 幹細胞發展之現況 6
1.5 間葉幹細胞(Mesenchymal stem cells, MSCs) 7
1.6 間葉幹細胞鑑定分析 9
1.7 胎盤間葉幹細胞之細胞標誌 11
1.7.1 CD90 11
1.7.2 CD44 12
1.7.3 ABCG2 12
1.7.4 CD9 12
1.7.5 CD29 13
1.7.6 CD34 13
1.7.7 CD73 13
1.7.8 CD105 13
1.8 胚胎幹細胞之細胞標誌 14
1.8.1 Stage-specific embryonic antigens 14
1.8.2 Tumor rejection antigens 14
1.8.3 SOX2 14
1.9 幹細胞相關基因 14
1.9.1 Oct4 14
1.9.2 Rex1 15
1.9.3 Bmi-1 15
1.9.4 Hoxb4 15
1.10 胎盤(placenta) 17
1.11 研究動機 19
第二章、實驗材料 21
2.1 實驗儀器 21
2.2 實驗藥品 22
第三章、實驗方法 25
3.1 胎盤絨毛組織細胞分離 25
3.2 初代細胞培養及繼代 27
3.3 細胞繼代 27
3.4 流式細胞儀分析 28
3.5 Cell array分析 28
3.6 細胞免疫染色 30
3.7 細胞生長曲線分析 31
3.8 細胞分化 32
3.9 RNA分離純化 34
3.10 反轉錄聚合酶連鎖反應(RT-PCR) 34
3.11 及時定量聚合酶連鎖反應(real-time PCR) 36
第四章、實驗結果 38
4.1 細胞分離、培養及生長情形 38
4.2 間葉幹細胞之細胞標誌表達分析 39
4.3 胎盤幹細胞之細胞標誌表達分析 39
4.4 PDMSC之分化能力分析 40
4.5 PDMSC之增生能力分析 41
4.6 Colony-forming cells之繼代培養 41
4.7 Colony-forming cells之MSC細胞標誌鑑定分析 41
4.8 Colony-forming cells之增生能力分析 42
4.9 Colony-forming cells之分化能力分析 42
4.10 CD90+/CD44+細胞分選 43
4.11 CD90+/CD44+細胞之鑑定分析 44
4.12 幹細胞相關基因分析 44
第五章、討論 46
5.1 初始分離之胎盤細胞 46
5.2 細胞標誌之表達 47
5.3 PDMSC之分化潛能分析 47
5.4 幹細胞相關基因分析及ES細胞標誌分析 49
5.5 CD90+/CD44+細胞鑑定分析 50
第六章、圖 53
第七章、參考文獻 89
1.Thomson, J.A., Waknitz, Embryonic stem cell line derived from human blastocysts. Science, 1998. 282: p. 1061-62.
2.Yamashita, Y.M., Mahowald, A. P., Perlin, J. R. & Fuller, M. T., Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, 2007. 315: p. 518-521.
3.Mitsiadis, T.A., Barrandon, O., Rochat, A., Barrandon, Y. & De Bari, C., Stem cell niches in mammals. Exp Cell Res., 2007. 313: p. 3377-3385.
4.Zech, N.H., Adult Stem Cell Manipulation and Possible Clinical Perspectives. J Reproduktionsmed Endokrinol 2004. 1(2): p. 91-99.
5.Goodell, M.A., Stem-cell "plasticity": befuddled by the muddle. Curr Opin Hematol., 2003. 10: p. 208-213.
6.Kai, T.S., A., Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature, 2004. 428: p. 564-9.
7.Vieyra, D.S., Jackson, K. A. & Goodell, M. A., Plasticity and tissue regenerative potential of bone marrow-derived cells. Stem Cell Rev, 2005. 1: p. 65-69.
8.Wurmser, A.E., Nakashima, K., Summers, R. G., Toni, N., D'Amour, K. A., Lie, D. C. & Gage, F. and H., Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature, 2004. 430: p. 350-6.
9.Friedenstein, A.J., et al., Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol, 1974. 2(2): p. 83-92.
10.Friedenstein, A.J., Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus, 1980. 25: p. 19-29.
11.Knudtzon, S., In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood, 1974. 43(3): p. 357-61.
12.Gluckman, E., et al., Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med, 1989. 321(17): p. 1174-8.
13.Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, 2000. 109(1): p. 235-42.
14.Friedenstein, A.J., R.K. Chailakhyan, and U.V. Gerasimov, Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 1987. 20(3): p. 263-72.
15.Conget PA, M.J., Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol
1999. 181: p. 67-73.
16.Prockop, D., Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997. .276: p. 71-4.
17.Pittenger MF, M.A., Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR, Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284: p. 143-7.
18.Grassel, S. and N. Ahmed, Influence of cellular microenvironment and paracrine signals on chondrogenic differentiation Frontiers in Bioscience 2007. 12: p. 4946-56.
19.Książek., K., A Comprehensive Review on Mesenchymal Stem Cell Growth and Senescence. Rejuvenation Research. , 2009. 12( 2): p. 105-16.
20.Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy 2006. 8: p. 315-7.
21.Catherine M Kolf, E.C.a.R.S.T., Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Research & Therapy, 2007. 9: p. 204-213.
22.Henniker, A.J., Cd90. J Biol Regul Homeost Agents, 2001. 15(4): p. 392-3.
23.Tiveron, M.C., Barboni, E., Pliego Rivero, F. B., Gormley, A. M., Seeley, P. J., Grosveld, F., and Morris, R., Selective inhibition of neurite outgrowth on mature astrocytes by Thy-1 glycoprotein. Nature, 1992. 355: p. 745–8.
24.Xue, G.P., Calvert, R. A., and Morris, R. J. (1990), Expression of the neuronal surface glycoprotein Thy-1 is under post-transcriptional control, and is spatially regulated, in the developing olfactory system. Development 1990. 109: p. 851-64.
25.Saalbach, A., Aneregg, U., Bruns, M., Schnabel, E., Herrmann, K., and Haustein, U. F., Novel fibroblast-specific monoclonal antibodies: properties and specificities. J. Invest. Dermatol., 1996. 106: p. 1314-9.
26.Hagood, J.S., Miller, P. J., Lasky, J. A., Tousson, A., Guo, B., and G.M. Fuller, and McIntosh, J. C., Differential expression of platelet-derived growth factor-alpha receptor by Thy-1(-) and Thy-1( ) lung fibroblasts. Am. J. Physiol. , 1999. 277: p. 218-24.
27.Saalbach, A., Hildebrandt, G., Haustein, U. F., and Anderegg, U., The Thy-1/Thy-1 ligand interaction is involved in binding of melanoma cells to activated Thy-1- positive microvascular endothelial cells. Microvasc. Res. , 2002. 64: p. 86-93.
28.Furnus, C.C., et al., The hyaluronic acid receptor (CD44) is expressed in bovine oocytes and early stage embryos. Theriogenology, 2003. 60(9): p. 1633-44.
29.Charles J. Dimitroff, J.Y.L., Shahin Rafii, Robert C. Fuhlbrigge, and Robert Sackstein, CD44 Is a Major E-Selectin Ligand on Human Hematopoietic Progenitor Cells. The Journal of Cell Biology, 2001. 153: p. 1277-86.
30.Zhou, S., et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 2001. 7(9): p. 1028-34.
31.Shi, W., et al., The Tetraspanin CD9 Associates with Transmembrane TGFa and Regulates TGFa -induced EGF Receptor Activation and Cell Proliferation. 2000. 148: p. 591-601.
32.Reali C, e.a., Differentiation of human adult CD34+ stem cells into cells with a neural phenotype: role of astrocytes. Exp neurol, 2006. 197(2): p. 399-406.
33.Thompson, L.F., et al., Antibodies to 5'-nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral blood T cells to proliferate. J Immunol, 1989. 143(6): p. 1815-21.
34.Barry, F., et al., The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun, 2001. 289(2): p. 519-24.
35.Lee, e.a., Isolation of mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-75.
36.Ben-Shushan, E., et al., Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol Cell Biol, 1998. 18(4): p. 1866-78.
37.Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
38.D'Ippolito, G., et al., Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci, 2004. 117(14): p. 2971-81.
39.Lessard, J. and G. Sauvageau, Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 2003. 423(6937): p. 255-60.
40.Park, I.K., et al., Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 2003. 423(6937): p. 302-5.
41.Molofsky, A.V., et al., Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 2003. 425(6961): p. 962-7.
42.Leung, C., et al., Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature, 2004. 428(6980): p. 337-41.
43.Sauvageau, G., et al., Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci U S A, 1994. 91(25): p. 12223-7.
44.Bjornsson, J.M., et al., Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol, 2003. 23(11): p. 3872-83.
45.Seaberg, R.M., et al., Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol, 2004. 22(9): p. 1115-24.
46.PAROLINI, O., et al., Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem cells, 2008. 26: p. 300-11.
47.D., Z., Plasticity is essential, whereas self-renewal and hierarchy are optional. STEM CELLS 2005. 23: p. 719 -26.
48.Delorme B, C.S., Charbord P., The concept of mesenchymal stem cells. Regen Med 2006. 1: p. 497-509.
49.Dominici M, L.B.K., Mueller I et al., Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy 2006. 8: p. 315-317.
50.Benito, A.I., et al., Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant, 2004. 33(7): p. 675-90.
51.B. M. Deasy, B.M.G., J. B. Pollett, M. M. Jones, M. A. Lucas, Y. Kanda, and J. Huard, Long-Term self-renewal of postnatal muscle-derived stem cells. Molecular Biology of the Cell, 2005. 16: p. 3323–33.
52.Frankf, H.-G., et al., Cell Culture Model of Human Trophoblast: Primary Culture of Trophoblast-A Workshop Report. Placenta, 2001. 21: p. 120-2.
53.Aboagye-Mathiesen, G., et al., Isolation and Characterization of Human Placental Trophoblast Subpopulations from First-Trimester ChorionicVilli. Clinical and Diagnostic Laboratory Immunology, 1996: p. 14-22.
54.Lee, J.B., et al., Comparative Characteristics of Three Human Embryonic Stem Cell Lines. Mol. Cells, 2005. 19: p. 31-8.
55.Digirolamo, C.M., et al., Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol, 1999. 107(2): p. 275-81.
56.Miki, T., et al., Stem cell characteristics of amniotic epithelial cells. Stem Cells, 2005. 23(10): p. 1549-59.
57.Yen, B.L., et al., Isolation of multipotent cells from human term placenta. Stem Cells, 2005. 23(1): p. 3-9.
58.McGuckin, C.P., et al., Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. , 2005. 38: p. 245-55
59.Payushina, O.V., E.I. Domaratskaya, and V.I. Starostin, Mesenchymal Stem Cells: Sources, Phenotype, and Differentiation Potential. Biology Bulletin, 2006. 33: p. 6-25.
60.吳建勳, Identification and characterization of mesenchymal stem cells from placental villi. 2006.
61.Ishizu A, I.H., Nakamuru Y, Kikuchi K, Koike T,Yoshiki T. , Interleukin-1α regulates Thy-1 expression on rat vascular endothelial cells. Microvasc Res, 1997. 53: p. 73-8.
62.Meirelles, L.d.S., P.C. Chagastelles, and N.B. Nardi, Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science 2006. 119: p. 2204-13.
63.Chang, Y.-J., et al., Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biology International, 2006. 30: p. 495-9.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top