跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊淑惠
研究生(外文):Shu-Hui Chuang
論文名稱:間斷性禁食增強大鼠下視丘GABA系統的活性
論文名稱(外文):Intermittent Fasting in Rats Upregulates the GABA System in the Anterior Hypothalamus
指導教授:任卓穎
指導教授(外文):Chauying J Jen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:74
中文關鍵詞:血壓心跳間斷性禁食下視丘室旁核γ-胺基丁酸麩胺酸脫羧酵素67一氧化氮合成酶飲食限制γ-胺基丁酸甲型接受器
外文關鍵詞:dietary restrictionintermittent fastingblood pressureheart ratehypothalamusPVNGABAGAD67GABAA receptorgephyrinnNOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:566
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
許多研究顯示,飲食限制無論是限制卡路里攝取量或是間斷性禁食在許多物種上皆有正面的幫助,包括可以延長壽命、增加對壓力的抵抗性、改善對胰島素的敏感性以及預防心血管疾病的發生。下視丘是主要掌管食慾的腦區。除此之外,位於下視丘前區的室旁核在調控心血管反應上扮演重要的角色。室旁核可以藉由神經及荷爾蒙的路徑來調控心血管反應。在神經路徑的調控上包括興奮性的麩氨酸以及抑制性的γ-胺基丁酸(GABA)和一氧化氮。過去研究顯示,長期間斷性禁食降低動物的血壓、心跳和交感神經活性以及提高副交感神經活性。然而,長期間斷性禁食究竟是透過什麼機制降低動物的血壓和心跳目前還不是很清楚。因此假設長期間斷性禁食是透過增強下視丘GABA神經系統的活性來影響心血管功能。七週大的雄性大白鼠分成控制組、間斷禁食組(為期二十四週交替禁食的攝食方式)以及恢復攝食組(二十四週間斷禁食後恢復四週正常攝食)。實驗結果顯示1) 間斷禁食組平均攝食量約為控制組的百分之七十;恢復攝食組在恢復正常攝食四週期間的攝食量與控制組沒有差異;2) 各組體重皆隨週齡數增加而漸增,但間斷禁食組及恢復攝食組在間斷禁食期間體重上升的幅度顯著較控制組為低,而恢復攝食組在恢復正常攝食四週期間體重持續上升;3) 間斷性禁食顯著降低動物的血壓及心跳,恢復攝食四週抵銷間斷性禁食的影響; 4) 長期間斷性禁食增加下視丘前區一氧化氮合成酶(nNOS)、麩胺酸脫羧酵素67 (GAD67, GABA合成酶)及gephyrin (具有聚集抑制性離子通道受器功能的蛋白質)的蛋白質表現,而恢復攝食四週抵銷間斷性禁食的影響;5) 免疫組織染色結果顯示長期間斷性禁食主要增加下視丘前區中室旁核的GAD67蛋白質表現;6) 長期間斷性禁食增加下視丘後區nNOS的表現;恢復攝食降低下視丘後區gephyrin的表現量;7) 長期間斷性禁食及恢復攝食皆不改變孤獨核及網狀腹外側核中nNOS、GAD67、GABA甲型接受器及gephyrin的蛋白質表現;8) 至於間斷性禁食是否能改變室旁核中神經樹突的型態則尚未有定論。總結來說,長期間斷性禁食可能透過增強下視丘前區的GABA系統來影響心血管功能。
Dietary restriction, either caloric restriction or intermittent fasting (IF), has been shown to exert many beneficial effects, including increased life span, stress resistance, insulin sensitivity, and the prevention of cardiovascular diseases. Hypothalamus is the brain region controlling appetite and its paraventricular nucleus (PVN) plays an important role in regulating cardiovascular responses via neuronal and hormonal pathways. The synaptic control of the PVN involves excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) and nitric oxide. Animals under IF-condition showed reduced blood pressure (BP), heart rate (HR) and sympathetic tone, and elevated parasympathetic tone. However, the underlying mechanism is still unclear. In the present study, we hypothesized that the cardiovascular effects of IF might involve hypothalamic adaptations. Male Wistar rats (7-wk-old) were divided into three groups: 24-wk IF, 24-wk IF followed by 4-wk ad libitum feeding (IF/AL), and the AL control. Our results showed that 1) IF rats consumed 30% less food and showed less body weight gain than AL controls; the food consumption in IF/AL rats were the same as in the AL controls and their body weight gain increased again during the additional 4 week period under AL diet; 2) IF rats had lower blood pressure and heart rate than controls, whereas IF/AL completely reversed the IF effects on these two parameters; 3) IF increased protein levels of neuronal nitric oxide synthase (nNOS), GAD67 (an enzyme for GABA synthesis) and gephyrin (a clustering protein of inhibitory ion channel receptors) in the anterior hypothalamus, whereas IF/AL blunted IF-upregulated protein levels; 4) immunohistochemical experiments indicated that IF-induced upregulation of GAD67 in the anterior hypothalamus mainly occurred in the PVN; 5) same proteins in the posterior hypothalamus were minimally altered by IF or IF/AL; 6) dietary intervention did not significantly alter the nNOS, GAD67, GABAA receptor, and gephyrin protein levels in either nucleus tractus solitarius or rostral ventrolateral medulla; 7) whether food restriction would alter the dendritic morphology in PVN or not was unclear at present. Taken together, our results suggested that IF upregulated the GABA system in the anterior hypothalamus which might contribute to IF-reduced basal HR and mean BP.
Qualified Certificate........................- 1 -
Abstract in Chinese..........................- 2 -
Abstract in English..........................- 4 -
Acknowlegement...............................- 6 -
Table of Contents............................- 7 -
Abbreviations................................- 8 -
List of Table................................- 9 -
List of Figures.............................- 10 -
Introduction................................- 13 -
Hypothesis and Experimental Design..........- 18 -
Materials...................................- 19 -
Methods.....................................- 27 -
Results.....................................- 33 -
Discussion..................................- 37 -
References..................................- 42 -
Table.......................................- 46 -
Figure......................................- 47 -
Appendix....................................- 71 -
Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan M (2005) Cardioprotection by intermittent fasting in rats. Circulation 112:3115-3121.
Allen AM (2002) Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 39:275-280.
Beatty JA, Kramer JM, Plowey ED, Waldrop TG (2005) Physical exercise decreases neuronal activity in the posterior hypothalamic area of spontaneously hypertensive rats. J Appl Physiol 98:572-578.
Benarroch EE (2005) Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res 15:254-263.
Coote JH, Yang Z, Pyner S, Deering J (1998) Control of sympathetic outflows by the hypothalamic paraventricular nucleus. Clin Exp Pharmacol Physiol 25:461-463.
Czyzewska-Szafran H, Wutkiewicz M, Remiszewska M, Jastrzebski Z, Czarnecki A, Danysz A (1989) Down-regulation of the GABA-ergic system in selected brain areas of spontaneously hypertensive rats (SHR). Pol J Pharmacol Pharm 41:619-627.
Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM (2005) Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol 32:419-425.
De Angelis K, Wichi RB, Jesus WR, Moreira ED, Morris M, Krieger EM, Irigoyen MC (2004) Exercise training changes autonomic cardiovascular balance in mice. J Appl Physiol 96:2174-2178.
Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A 100:2911-2916.
Flanagan-Cato LM, Fluharty SJ, Weinreb EB, LaBelle DR (2008) Food restriction alters neuronal morphology in the hypothalamic ventromedial nucleus of male rats. Endocrinology 149:93-99.
Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335-346.
Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018:35-45.
Horn EM, Shonis CA, Holzwarth MA, Waldrop TG (1998) Decrease in glutamic acid decarboxylase level in the hypothalamus of spontaneously hypertensive rats. J Hypertens 16:625-633.
Kalra SP, Kalra PS (2004) NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides 38:201-211.
Kramer JM, Beatty JA, Little HR, Plowey ED, Waldrop TG (2001) Chronic exercise alters caudal hypothalamic regulation of the cardiovascular system in hypertensive rats. Am J Physiol Regul Integr Comp Physiol 280:R389-397.
Ling LL, Hughes LF, Caspary DM (2005) Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience 132:1103-1113.
Little HR, Kramer JM, Beatty JA, Waldrop TG (2001) Chronic exercise increases GAD gene expression in the caudal hypothalamus of spontaneously hypertensive rats. Brain Res Mol Brain Res 95:48-54.
Lin CY thesis (2007) Effects of intermittent food deprivation on stress-induced changes in cardiovascular functions in rats. Department of physiology, College of Medicine, National Chen Kung University, Tainan, Taiwan, ROC
Luscher B, Keller CA (2004) Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 102:195-221.
Mager DE, Wan R, Brown M, Cheng A, Wareski P, Abernethy DR, Mattson MP (2006) Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J 20:631-637.
Mastorakos G, Zapanti E (2004) The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: the role of corticotropin releasing hormone. Nutr Neurosci 7:271-280.
Mattson MP, Wan R (2005) Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem 16:129-137.
McCay CM CM, Maynard LA. (1935) The effect of retarded growth upon the length of lifespan and upon ultimate body size. J Nutr 10:63–79.
Murphy DD, Cole NB, Greenberger V, Segal M (1998) Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 18:2550-2559.
Overton JM, VanNess JM, Casto RM (1997) Food restriction reduces sympathetic support of blood pressure in spontaneously hypertensive rats. J Nutr 127:655-660.
Patel KP (2000) Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Fail Rev 5:73-86.
Patel KP, Schmid PG (1988) Role of paraventricular nucleus (PVH) in baroreflex-mediated changes in lumbar sympathetic nerve activity and heart rate. J Auton Nerv Syst 22:211-219.
Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7:773-808.
Ranson RN, Motawei K, Pyner S, Coote JH (1998) The paraventricular nucleus of the hypothalamus sends efferents to the spinal cord of the rat that closely appose sympathetic preganglionic neurones projecting to the stellate ganglion. Exp Brain Res 120:164-172.
Saper CB (2002) The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 25:433-469.
Sassoe-Pognetto M, Fritschy JM (2000) Mini-review: gephyrin, a major postsynaptic protein of GABAergic synapses. Eur J Neurosci 12:2205-2210.
Sawchenko PE, Brown ER, Chan RK, Ericsson A, Li HY, Roland BL, Kovacs KJ (1996) The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog Brain Res 107:201-222.
Stocker SD, Keith KJ, Toney GM (2004) Acute inhibition of the hypothalamic paraventricular nucleus decreases renal sympathetic nerve activity and arterial blood pressure in water-deprived rats. Am J Physiol Regul Integr Comp Physiol 286:R719-725.
Uibo R, Lernmark A (2008) GAD65 autoimmunity-clinical studies. Adv Immunol 100:39-78.
VanNess JM, DeMaria JE, Overton JM (1999) Increased NPY activity in the PVN contributes to food-restriction induced reductions in blood pressure in aortic coarctation hypertensive rats. Brain Res 821:263-269.
VanNess JM, Casto RM, DeMaria JE, Overton JM (1998) Food restriction attenuates the blood pressure response to paraventricular hypothalamic nuclei lesions in aortic coarctation hypertension. Brain Res 792:237-245.
Wan R, Camandola S, Mattson MP (2003a) Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J Nutr 133:1921-1929.
Wan R, Camandola S, Mattson MP (2003b) Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB J 17:1133-1134.
Zahner MR, Pan HL (2005) Role of paraventricular nucleus in the cardiogenic sympathetic reflex in rats. Am J Physiol Regul Integr Comp Physiol 288:R420-426.
Zhang K, Patel KP (1998) Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA. Am J Physiol 275:R728-734.
Zhang K, Li YF, Patel KP (2001) Blunted nitric oxide-mediated inhibition of renal nerve discharge within PVN of rats with heart failure. Am J Physiol Heart Circ Physiol 281:H995-1004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊