跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪于喬
研究生(外文):Yu-chiao Hung
論文名稱:綠島火山岩化學成分及鍶-釹-鉿同位素在岩漿作用及源區特性之意函
論文名稱(外文):Chemical compositions and Sr-Nd-Hf isotopes of Lutao volcanic rocks: significances on magmatic processes and source characteristics
指導教授:楊懷仁楊懷仁引用關係
指導教授(外文):Huai-Jen Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:隱沒帶交代換質作用火山岩綠島呂宋島弧
外文關鍵詞:LuzonarcLutaovolcanic rockmetasomatism
相關次數:
  • 被引用被引用:2
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
加入北呂宋島弧火山岩的源區化學成份為何特性爭議已久,在已提出的混合模式中,虧損的端元皆指向中洋脊玄武岩有關的源區(MORB source),但富化端元為第一型富化地函(EMI)及與隱沒沉積物有關的液體或融熔物質。但這些模式是由整個北呂宋島弧火山岩的化學特性所建構,並未詳細探討個別島嶼中火山岩成份變化的意義,本研究以綠島火山岩之主要和微量元素含量,以及Sr、Nd與Hf同位素組成討論岩漿演化過程中化學特性及源區特性。
本研究樣本採自綠島全島共28件樣本,根據SiO2與Na2O+K2O含量,樣本可分為玄武岩(B)、玄武質安山岩(BA)、安山岩(A)與石英安山岩。另玄武岩與安山岩樣本,依據同位素組成再細分為靠近富化端元(Enriched component)之樣本(BE與AE),和靠近貧瘠端元(Depleted component)之樣本(BD與AD)。
有相似Sr、Nd與Hf同位素比值的安山岩樣本(A 群安山岩樣本)之MgO含量與不相容元素呈負相關,反映其源自相同源區之經不同程度結晶分化作用演化而成。根據微量元素的理論模擬計算,A群樣本為殘餘岩漿經密集的結晶分化作用之產物。二個AE群樣本有富化的87Sr/86Sr, 143Nd/144Nd和176Hf/177Hf比值,但它們的不相容元素比值相似於A群樣本,一可能解釋為A群樣本與AE群樣本源區受相同物質交代換質作用,但AE群樣本之源區的交代換質作用發生較早於A群樣本,導致較富化的87Sr/86Sr、 143Nd/144Nd和176Hf/177Hf比值。AD群樣本在87Sr/86Sr-143Nd/144Nd-176Hf/177Hf投圖中靠近MORB。且AD群樣本之Nb/La與Ti/HREE比值低於MORB的比值,暗示其受到交代換質作用的影響,此一推論與Sr、Nd與Hf同位素數值相符。
BE群樣本的87Sr/86Sr、 143Nd/144Nd和176Hf/177Hf比值相似於AE群樣本。但是不相容元素模擬計算的結果,其無法用源自相同源區,不同部份熔融解釋。而是AE群樣本源區有富化的不相容元素。BD群樣本與AD群樣本有相似的143Nd/144Nd和176Hf/177Hf比值,但BD群樣本有較高的Sm/Nd與Lu/Hf比值。此結果暗示BD樣本之源區較AD樣本之源區更晚受到交代換質作用影響。
總而言之,綠島火山岩的化學成分與同位素數據皆顯示其源區受過多期且多重交代換質作用的富化。另根據Kuo(2007)提出的同位素模式,源自隱沒沉積物與海洋板塊的熔融物質混染,能最佳解釋綠島的87Sr/86Sr、 143Nd/144Nd和176Hf/177Hf比值。
The chemical components involved in the mantle source of the North Luzon lavas have been an issue of debate. In existing mixing models, the depleted end-member was assigned to MORB source, while EMI, subducting sediments, and metasomatic fluids and melts were considered as enriched components. These models were all developed from chemical and isotope compositions of lavas from entire North Luzon arc without a detailed investigation on chemical variations of lavas in individual islands. In this study, the chemical compositions and Sr, Nd, and Hf isotope ratios of Lutao volcanic rocks are used to address the process and source controls on lavas chemistry.
Twenty-eight volcanic rock samples were collected from Lutao. Based on their SiO2 and total alkali contents, these samples were classified into basalt (B), basaltic andesite (BA), andesite (A) and dacite. Basalts and andesites were subdivided into isotopically enriched groups (BE and AE, respectively) and depleted groups (BD and AD, respectively).
The andesite (group A) samples have similar Sr, Nd, and Hf isotope ratios with inverse correlations between MgO and incompatible element contents, reflecting fractional crystallization after partial melting from a common source. Based on trace element variations, the group A samples are modeled to be residual melts after intensive fractional crystallization. The two group AE samples have enriched 87Sr/86Sr, 143Nd/144Nd, and 176Hf/177Hf ratios, but their abundance ratios of incompatible elements resemble those of the group A samples. A plausible explanation is that the mantle sources of the groups A and AE lavas were metasomatized by same materials; however, the metasomatic process occurred earlier in the source of AE lavas, leading to enriched 87Sr/86Sr, 143Nd/144Nd, and 176Hf/177Hf ratios. The group AD samples plot closer to MORB in the 87Sr/86Sr-143Nd/144Nd- 176Hf/177Hf space. Their Nb/La and Ti/HREE ratios are lower than MORB values implying subjection to metasomatism, an inference consistent with their Sr, Nd, and Hf isotope data.
87Sr/86Sr, 143Nd/144Nd, and 176Hf/177Hf ratios of the group BE samples are similar to those of the group AE samples. However, model calculations show that their incompatible element abundances can not be explained by derivation from a common source by different degrees of partial melting. An incompatible element enriched source is required for the group AE lavas. The groups BD and AD samples have similar 143Nd/144Nd and 176Hf/177Hf ratios, but group BD has higher Sm/Nd and Lu/Hf ratios. These results imply that the source of the group BD samples was metasomatized later than that of the group AD samples.
Overall, the composition and isotope data require that the mantle sources of Lutao lavas were subjected to various metasomatic agents at different time. Based on the mixing models of Kuo (2007), the 87Sr/86Sr, 143Nd/144Nd, and 176Hf/177Hf ratios of the Lutao samples are best explained by mixing sub-equal amounts of siliceous melts derived from subducted sediments and oceanic crust.
目錄
摘要..................................................................................................I
誌謝..................................................................................................V
目錄................................................................................................VII
章目錄..............................................................................................VII
表目錄...............................................................................................IX
圖目錄................................................................................................X

章節目錄
第一章 序論..........................................................................................1
  1-1 前言.........................................................................................1
1-2 文獻回顧.........................................................................................3
1-3 研究動機.........................................................................................9
第二章 地質背景與樣本...............................................................................10
2-1 地質背景....................................................................................10
2-2 野外調查及標本採集..........................................................................11
第三章 分析方法....................................................................................16
3-1 岩象觀察........................................................................................16
3-2 全岩地球化學分析................................................................................16
3-3 X光螢光分析.....................................................................................17
3-4 樣本酸溶處理....................................................................................18
3-5 感應耦合電漿質譜儀分析(Q-ICP-MS) ...............................................................18
3-6 Hf同位素分析....................................................................................19
3-7 Sr-Nd同位素分析.................................................................................25
第四章 分析結果.....................................................................................28
4-1 岩象特徵........................................................................................28
4-2 主要元素........................................................................................30
4-3 微量元素評估....................................................................................37
4-4 微量元素相對含量................................................................................44
4-5 稀土元素分佈圖(REE pattern)與整體不相容元素分佈圖(Spider diagram)...........................47
4-6 Sr-Nd-Hf同位素..................................................................................47
第五章 討論..........................................................................................50
5-1 以結晶分化模式計算模擬A群安山岩樣品成分變化.....................................................51
5-2 菫青石在岩漿演化上之隱喻........................................................................57
5-3 以AD群安山岩樣本微量元素含量推測地函交代換質作用中元素遷移之程度................................57
5-4 AE群樣本的源區特性及可能成因............................................................,.......62
5-5 AD群樣本的源區特性及可能成因............................................................,,......63
5-6 BE群樣本的源區特性及可能成因............................................................,.......66
5-7 BD群樣本的源區特性及可能成因................................................................,...67
5-8 綠島火山岩與其他島嶼火山岩之比較...........................................................,,,..68
5-9 Sr-Nd-Hf同位素比值的制約........................................................................68
第六章 結論.........................................................................................72
參考文獻.............................................................................................74


表目錄
表2-1 綠島樣本編號、岩層及岩性表....................................................................13
表4-1 綠島火山岩主要元素含量、微量元素濃度及Sr-Nd-Hf同位素比值......................................31
表4-2 綠島火山岩微量元素濃度與偏差值................................................................38
表5-1 模擬計算之分配係數表..........................................................................55
表5-2 綠島火山岩微量元素比值........................................................................60


圖目錄
圖1-1 海洋板塊碰撞隱沒帶交代換質作用示意圖...........................................................2
圖1-2 B10/Be(10-11) -B/Be圖..........................................................................3
圖1-3 北呂宋島弧火成岩之Sm/Hf -εHf和Hf/Sm -εNd.................................................,,..7
圖1-4 北呂宋島弧火成岩之εNd-εHf圖..................................................................7
圖1-5 Nd-O同位素比值圖...............................................................................8
圖2-1 北呂宋島弧位置圖..............................................................................10
圖2-2 綠島採樣地點分布圖............................................................................14
圖2-3 綠島火山岩野外照片............................................................................15
圖3-1 全岩地球化學分析流程圖........................................................................16
圖3-2 日本新潟大學X光螢光分析儀.....................................................................17
圖3-3 Hf同位素化學前處理之第一層析管柱處理示意圖....................................................20
圖3-4 Hf同位素化學前處理之第一層析管柱沖提圖........................................................21
圖3-5 Hf同位素化學前處理之第二層析管柱處理示意圖....................................................21
圖3-6 Hf同位素化學前處理之第二層析管柱沖提圖........................................................22
圖3-7 MC-ICP-MS原理示意圖...........................................................................24
圖3-8 MC-ICP-MS, Thergmo-Finnigan Neptune...........................................................24
圖3-9 Nd-Sr同位素化學前處理之第一層析管柱分離柱沖提圖...............................................26
圖3-10 Nd-Sr同位素化學前處理第二層析管柱分離柱沖提圖................................................27
圖4-1 偏光顯微鏡正交偏光下之岩象照片................................................................29
圖4-2 Alkali–Silica Diagram........................................................................35
圖4-3 MgO對其他主要元素的變異圖.....................................................................36
圖4-4 ICP-MS分析結果與XRF數據之偏差值和ICP-MS分析不同質量數結果相對圖...............................42
圖4-5 微量元素相對含量圖............................................................................45
圖4-6 稀土元素圖與不相容元素經原始地函標準化分佈圖..................................................48
圖4-7 Sr-Nd-Hf同位素比值相對圖......................................................................49
圖5-1 87Sr/86Sr-Nb/La圖............................................................................50
圖5-2 MgO對微量元素之含量變化圖.....................................................................52
圖5-3 A群安山岩結晶分化模擬模式圖...................................................................56
圖5-4 La與微量元素比值圖............................................................................59
圖5-5 部分熔融與岩漿中Ti/Nb比例關係圖...............................................................62
圖5-6 Sr-Nd-Hf同位素比值與Ba/La相對圖...............................................................64
圖5-7 不相容元素經MORB標準化分佈圖..................................................................65
圖5-8 Nd同位素比值與Sm/Nd相對圖.....................................................................67
圖5-9 綠島火山岩Sr-Nd-Hf同位素模擬模式圖.............................................................71
中文部份:
陳正宏(1990)台灣之火成岩:經濟部中央地質調查所出版,共137頁。
陳正宏、劉聰桂、楊燦堯、陳于高(1994)台灣五萬分之一地質圖說明書:經濟部中央地質調查所出版,共57頁。
莊文星(1988)台灣新生代晚期火山岩之定年與地球化學:國立台灣大學海洋研究所博士論文,共231頁。
莊文星、陳汝勤(1989)綠島安山岩內之菫青石之探討:經濟部中央地質調查所彙刊,第五號,第67-80頁。
楊燦堯 (1992)北呂宋島弧岩漿之演化及其地體構造模式:國立台灣大學地質學研究所博士論文,共458頁。


英文部份:
Allegre, C. J. and Minster, J. F. (1978) Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38: 1–25.
Barry, T. L., Pearce, J. A., Leat, P. T., Millar, I. L. and le Roex, A. P. (2006) Hf isotope evidence for selective mobility of high-field-strength elements in a subduction setting: South Sandwich Islands, Earth and Planetary Science Letters, 252: 223-244.
Blichert-Toft, I., Frey, F. A. and Albarede, F. (1999) Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts, Science, 285: 879-882.
Castillo, P. R. and Newhall, C. G. (2004) Geochemical constraints on Possible subduction components in lavas of Mayon and Taal volcanoes, south Luzon, Philippines, Journal of Petrology, 45: 1089-1108.
Chen, C-. H., Shieh, Y-. N., Lee, T., Chen, C. H., and Mertman, S. A. (1990) Nd-Sr-O isotopic evidence for source contamination and an unusual mantle component under Luzon Arc, Geochimica et Cosmochimica Acta, 54: 2473-2483.
Chen, J. C. and Huang, C. B. (1986) Geochemistry of late Cenozoic andesites from Taiwan, Proceedings of the National Science Council (ROC), 10: 325-334.
Claeson, D. T. and W. P. Meurer (2004) Fractional crystallization of hydrous basaltic "arc-type" magmas and the formation of amphibole-bearing gabbroic cumulates, Contributions to Mineralogy and Petrology, 147(3): 288-304.
Class, C., Miller, D. M., Goldstein, S. L. and Langmuir, C. H (2000) Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc, Geochemistry, Geophysics, Geosystems, 1: 1999GC000010.
Defant, M. J., Jacques, D., Maury, R. C., Boer, J. D. and Joron, J. L. (1989) Geochemistry and tectonic setting of the Luzon arc Philippines, Geological Society of America Bulletin, 101: 663-672.
Fourcade, S., Maury, R. C., Defant, M. J., and McDermott, F. (1994) Mantle metasomatic enrichment versus arc crust contamination in the Philippines- oxygen-isotope study of Batan ultramafic nodules and Northern Luzon Arc lavas, Chemical Geology, 114(3-4): 199-215.
Frey, F. A., Clague, D. A., Mahoney, J. J., and Sinton, J. M. (2000) Volcanism at the edge of Hawaiian plume: petrogenesis of submarine alkalic lavas from the North Arch volcanic field, Journal of Petrology, 41: 667– 691.
Gast, P. W. (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochimica et Cosmochimica Acta, 32: 1067–1086.
Gómez-Tuena, A., Langmuir, C. H., Goldstein, S. L., Straub, S. M. and Ortega- Gutiérrez, and Fernando (2007) Geochemical Evidence for Slab Melting in the Trans-MexicanVolcanic Belt, Journal of Petrology, 48(3): 537-562.
Hannigan, R. E., Basu, A. R., and Teichmann F. (2001) Mantle reservoir geochemistry from statistical analysis of ICP-MS trace element data of equatorial mid-Atlantic MORB glasses, Chemical Geology, 175(3-4): 397-428.
Hawkesworth, C. J., Gallagher, K., Hergt, J. M. and McDermott, F. (1993) Mantle and slab contributions in arc magmas, Annual Reviews of Earth and Planetary Sciences, 21:175-204.
Hergt, J. M. and Woodhead, J. D. (2007) A critical evaluation of recent models for Lau-Tonga arc-backarc basin magmatic evolution, Chemical Geology, 245: 9-44.
Iacumin, M., Piccirillo, E. M., Girardi, V. A. V., Teixeira, W., Bellieni, G., Echeveste, H., Fernandez, R., Pinese, J. P. P., and Ribot, A. (2001) Early Proterozoic calc-alkaline and Middle Proterozoic tholeiitic dyke swarms from central-eastern Argentina: Petrology, geochemistry, Sr-Nd isotopes and tectonic implications, Journal of Petrology, 42(11): 2109-2143.
Jicha, B. R., Singer, B. S., Brophy J. G., Fournelle J. H. , Johnson C. M., Beard B. L., Lapen T. J., and Mahlen N. J. (2004) Variable impact of the subducted slab on Aleutian island arc magma sources: evidence from Sr, Nd, Pb, and Hf isotopes and trace element abundances, Journal of Petrology, 45: 1845–1875.
Jolly, W. T., Lidiak, E. G., Dickin, A. P., and Wu, T. W. (2001). Secular geochemistry of central Puerto Rican island arc lavas: Constraints on Mesozoic tectonism in the eastern Greater Antilles, Journal of Petrology, 42(12): 2197-2214.
Kelley, K. A., Plank, T., Ludden, J., and Staudigel, H. (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149, Geochemistry, Geophysics, Geosystems, 4: 2002GC000435.
Kobayashi, K. and Nakamura, E. (2001) Geochemical evolution of Akagi volcano, NE Japan: Implications for interaction between island-arc magma and lower crust, and generation of isotopically various magmas, Journal of Petrology, 42(12): 2303-2331.
Kuo, T. Y. (2007). Sr-Nd-Hf-Pb isotopic constraints on the role of South China Sea sediments in mantle wedge metasomatism beneath the North Luzon Arc, Earth Sciences Department, Taiwan, National Cheng Kung University. Master: 94.
LeBas, M. J., Lemaitre, R. W., Streckeisen, A., and Zanettin, B. (1986) A chemical classification of volcanic-rocks based on the total Alkali-Silica Dagram, Journal of Petrology, 27(3): 745–750.
Lee, D.- C., Halliday, A. N., Hein, J. R., Burton, K. W., Christensen, J. N. and Gunther, D. (1999) Hafnium isotope stratigraphy of ferromanganese crusts, Science, 285: 1052-1054.
Li, X. H., Chen, Z., Liu, D. Y., and Li, W. X. (2003) Jurassic gabbro-granite-syenite suites from Southern Jiangxi province, SE China: Age, origin, and tectonic significance, International Geology Review, 45(10): 898-921.
Macdonald, R., Hawkesworth, C. J., and Heath, E. (2000) The Lesser Antilles volcanic chain: a study in are magmatism, Earth-Science Reviews, 49(1-4): 1-76.
Marini, J.- C., Chauvel, C. and Maury, R. C. (2005) Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source, Contributions to Mineralogy and Petrology, 149: 216-232.
McDermott, F., Defant, M. J., Hawkesworth, C. J., Maury, R. C. and Joron, J. L. (1993) Isotope and trace element evidence for three component mixing in the genesis of the North Luzon arc lavas (Philippines), Contributions to Mineralogy and Petrology, 113: 9-23.
Morris, J. D., Leeman, W. P. and Tera, F. (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics, Nature, 344:31-36.
Münker, C. (2000) The isotope and trace element budget of the Cambrian Devil River arc system, New Zealand: Identification of four source components, Journal of Petrology, 41(6): 759-788.
Münker, C., Worner, G., Yogodzinski, G., and Churikova, T. (2004) Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas, Earth and Planetary Science Letters, 224(3-4): 275-293.
Murton, B. J., Taylor, R. N., and Thirlwall, M. F. (2002) Plume-ridge interaction: A geochemical perspective from the Reykjanes Ridge, Journal of Petrology, 43(11): 1987-2012.
Pearce, J. A., Kempton, P. D., and Gill, J. B. (2007) Hf-Nd evidence for the origin and distribution of mantle domains in the SW Pacific, Earth and Planetary Science Letters, 260(1-2): 98-114.
Peccerillo, A. and T. W. Wu (1992) Evolution of cala-alkaline magmas in continental volcanos- evidence from Alicudi, Aeolian Arc ( Southern Tyrrhenian Sea, Italy), Journal of Petrology, 33(6): 1295-1315.
Plank, T. and Langmuir, C. H. (1998) The Chemical composition of sucducting sediment and its consequences for the crust and mantle, Chemical Geology, 145: 325-394.
Salters, V. J. M. and Hart, S. R. (1991) The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection, Earth and Planetary Science Letters, 104: 364-380.
Schiano, P., Clocchiatti, R., Shimizu, N., Maury, R. C., Jochum, K. P. and Hofmann, A. W. (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas, Nature, 377: 595-600.
Shaw, D. M. (1970) Trace element fractionation during anatexis, Geochimica et Cosmochimica Acta, 34: 237–243.
Sisson, T. W. and Grove, T.L. (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113: 143–166.
Sun, S.-S., and McDonough, W.F., (1989) Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the Oceanic Basins. (eds. Saunders, A.D., Norry, M.J.), Geological Society, London, 313–345.
Tera, F., Brown, L., Morris, J., Sacks, S., Klein, J. and Middleton, S. (1986) Sediment incorporation in island-arc magmas: inferences from l0Be, Geochimica et Cosmochimica Acta, 50: 535-550.
Thirlwall, M. F., Graham, A. M., Arculus, R. J., Harmon, R. S. and Macpherson, C. G. (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles, Geochimica et Cosmochimica Acta, 60: 4785-4810.
Tollstrup, D. L. and Gill, J. B. (2005) Hafnium systematics of the Mariana arc: Evidence for sediment melt and residual phases, Geology, 33: 737-740.
Turner S., Hawkesworth, C., Rogers, N., Bartlett, J., Worthington, T., Hergt, J., Pearce, J. and Smith, I. (1997) 238U-230Th disequilibria, magma petrogenesis and flux rates beneath the depleted Tonga-Kermadec island arc, Geochimica et Cosmochimica Acta, 61: 4855-4884.
Wade, J. A., Plank, T., Stern, R. J., Tollstrup, D. L., Gill, J. B., O’Leary, J. C., Eiler, J. M., Moore, R. B., Woodhead, J. D., Trusdell, F., Fischer, T. P. and Hilton, D. R. (2005) The May 2003 eruption of Anatahan volcano, Mariana Islands: Geochemical evolution of a silicic island-arc volcano, Journal of Volcanology and Geothermal Research, 146:139-170.
Weaver, B. L. (1991) The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints, Earth and Planetary Sciences Letters, 104:364-397.

Weis, D., Kieffer, B., Hanano, D., Silva, I.N., Barling, and J., Pretorius, W., 2007. Hf isotope compositions of U.S. Geological Survey reference materials, Geochemistry, Geophysics, Geosystems, 8, Q06006, doi:10.1029/ 2006GC001473.
White, W. M. and Dupre, B. (1986) Sediment subduction and magma genesis in the Lesser Antilles: Isotopic and trace element constraints, Journal of Geophysical Research, 91: 5927-5941.
Woodhead, J. D., Hergt, J. M., Davidson, J. P. and Eggins, S. M. (2001) Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes, Earth and Planetary Science Letters, 192: 331-346.
Yang, H.-J., Kinzler, R.J. and Grove, T.L. (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar, Contributions to Mineralogy and Petrology, 124: 1–18.
Yang, H.-J., Frey, F.A., and Clague, D.A. (2003) Compositional and isotopic constraints on the source components of the lavas forming the Hawaiian North Arch and Honolulu Volcanics, Journal of Petrology, 44: 603–627.
Zindler, A. and Hart, S. (1986) Chemical geodynamics, Annual Reviews of Earth and Planetary Sciences, 14: 493–57
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top