跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃姿勳
研究生(外文):Zih-syun Huang
論文名稱:台灣布袋岩芯中沉積物砷含量分布變化及其地質意義
論文名稱(外文):Distribution of arsenic in cored sediments from Budai, Taiwan and its geological significances
指導教授:楊懷仁楊懷仁引用關係
指導教授(外文):Huai-Jen Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:布袋黏土非晶質鐵氫氧化物
外文關鍵詞:Budaiarsenicclayamorphous iron oxyhydroxide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
砷是具有高度毒性的物質,且對人類健康產生廣泛危害。許多研究顯示癌症及其相關疾病與飲用受砷汙染之地下水具有相當程度之關聯。地下水中砷的來源尚無明確結論,但可能與該區域地底下之含水層有關。本研究分析之沉積物為中央地質調查所位於嘉義縣布袋之鑽井岩芯,樣本顯示該區沉積物主要由不同比例之砂、粉砂與泥所構成,可由沉積物顏色明顯區別。沉積物所含砷濃度範圍由1 mg/L至1677 mg/L,且濃度變化與深度並無系統性相關,其中砷濃度最高之樣本(1677 mg/L)位於深度189.8 m處。所有分析樣本之砷濃度均低於15 mg/kg,除七個樣本之砷含量高於20 mg/kg,這些「高砷樣本」砷濃度較受到嚴重砷汙染地區孟加拉與West Bengal沉積物所含之砷濃度高(20-30 mg/kg; Nickson et al., 2000)。在這些「高砷樣本」中,鋁與鐵濃度呈現正相關。而X光繞射分析,結果顯示高砷樣本中主要礦物相包括石英、長石、伊來石與綠泥石。
利用沉降法將這七個「高砷樣本」分為大、中、小三種粒徑群,並以Keon et al.(2001)連續萃取法找出寄主礦物。一般而言,砷主要富集於具吸附能力的相中,例如非晶質鐵氫氧化物、酸揮發硫化物、氧化錳與碳酸鹽等。七個高砷樣本中有六個樣本所含之砷主要透過吸附作用而富集,然而深度為136.5 m之樣本則主要透過與非晶質鐵氫氧化物共沉澱而富集。因此這些高砷樣本所含砷之寄主礦物推測主要為黏土礦物與非晶質鐵氫氧化物。「高砷樣本」皆採自於厚度小於10 cm且上下沉積物砷濃度低的地層,因此這些「高砷樣本」可能代表地下水中砷富集之處而非地下水砷的來源。而砷濃度與板岩屑含量之間缺乏相關性則指出板岩屑並非沉積物砷之來源。
Arsenic is highly toxic and can lead to a wide range of health problems in humans. Numerous studies showed some extents of connection between cancer-related illnesses and intakes of arsenic-contaminated ground water. The source of arsenic in groundwater is not ascertained definitely, but it might be related to the aquifer below this area. In this study, sediment samples collected from the core drilled by Central Geological Survey, MOEA at Budai, Chiayi were analyzed. These samples show variable admixtures of sand, silt and clay, characterized by distinct colors. Arsenic concentrations vary in the ranges of 1-1677 mg/L without a systematic correlation between arsenic concentration and depth. The highest arsenic concentration (1677 mg/L) occurs at the depth of 189.8 m. All the samples have arsenic concentrations lower than 15 mg/kg, except for seven samples with arsenic contents over 20 mg/kg, higher than that in the severely arsenic-polluted Bangladesh and West Bengal sediments (20-30 mg/kg; Nickson et al., 2000). There is a positive correlation between Al and Fe concentrations in the high-arsenic samples. XRD analyses indicate that these high-arsenic samples are consisted of quartz, feldspar, illite and chlorite.
Seven samples with arsenic content greater than 20 mg/L were analyzed by the arsenic sequential extraction procedure of Keon et al. (2001) to identify the arsenic-host minerals. The sediment samples were separated into fine, middle, and coarse grains by the precipitation method. In general, arsenic contents mainly concentrate at absorbable phases, such as amorphous iron oxyhydroxide, acid volatile sulfide, Mn oxides and carbonates. The majority of arsenic in six of seven of high-arsenic samples was concentrated by adsorption, while that in sample 136.5m were co-precipitated with amorphous Fe oxyhydroxides. The hosts of arsenic in the high-arsenic samples are inferred to be clay minerals and/or amorphous iron-oxyhydroxides. These high-arsenic samples were all collected from thin layers of < 10 cm thickness with adjacent samples having low arsenic concentration. Therefore, it is more likely that these high-arsenic samples represent sinks rather than sources of arsenic in ground water. The absence of a correlation between the abundance of detrital slates and arsenic concentration indicates that slate is not the source of arsenic in these sediments.
目錄
中文摘要...............................................................................................................................I
英文摘要............................................................................................................................. II
誌謝.....................................................................................................................................IV
目錄.....................................................................................................................................VI
章節目錄.............................................................................................................................VI
表目錄.............................................................................................................................. VIII
圖目錄.................................................................................................................................IX

章節目錄
第一章 序論 1
  1.1 前言.......................................................................................................................1
1.2 研究區域地質背景...............................................................................................2
1.3 文獻回顧...............................................................................................................2
1.3.1 砷的化學特性來源與分佈............................................................................2
1.3.2 砷的種類與毒性............................................................................................7
1.3.3 砷在沉積物及水之間的遷移........................................................................8
1.3.4 砷之相關研究................................................................................................9
1.4 研究目的.............................................................................................................10
第二章 實驗材料與分析方法 11
2.1 研究材料.............................................................................................................11
2.1.1 布袋岩芯樣本採集......................................................................................11
2.1.2 布袋岩芯概述..............................................................................................16
2.2 分析方法.............................................................................................................19
2.2.1 沉降法區分沉積物顆粒大小......................................................................19
2.2.2 分析沉積物中固態砷特性..........................................................................21
2.2.2.1 礦物相鑑定...........................................................................................21
2.2.2.2 強酸淋溶萃取法萃取法.......................................................................22
2.2.2.3 砷的連續萃取方法與步驟...................................................................24
2.2.3 沉積物總砷與主要元素分析......................................................................27
第三章 分析結果 28
3.1 總砷濃度...............................................................................................................28
3.2 布袋岩心沉積物主要元素鋁、鐵、錳與砷之相對變化.................................34
3.3 布袋岩芯沉積物之礦物相分析.........................................................................38
3.4 布袋岩芯沉積物之連續萃取.............................................................................42
3.4.1 評估連續萃取結果........................................................................................42
3.4.2 砷的連續萃取................................................................................................43
3.5 砷濃度量測方法之差異.....................................................................................50
第四章 討論 54
4.1 「高砷樣本」中砷的賦存狀態.........................................................................54
4.2 其他研究比較.....................................................................................................56
4.2.1 砷濃度..........................................................................................................56
4.2.2 連續萃取......................................................................................................61
4.3 綜合討論.............................................................................................................64
第五章 結論 67
參考文獻 68
中文部分......................................................................................................................68
英文部份......................................................................................................................69
附錄......................................................................................................................................75

表目錄
表1-1 岩石、沉積物及泥土砷含量....................................................................................5
表1-2 自然界水體砷含量..................................................................................................6
表2-1 布袋岩芯基本資料................................................................................................11
表2-2 布袋岩芯採集樣本之深度與簡略描述................................................................13
表2-3 沉積物分類量化表................................................................................................17
表2-4 布袋岩芯定年資料表............................................................................................17
表2-5 沉降法時間紀錄表................................................................................................19
表2-6 粒徑群之粒徑大小................................................................................................20
表2-7 含砷固相物之連續萃取步驟................................................................................26
表3-1 布袋岩心沉積物鋁、錳、鐵、砷之濃度..................................................................30
表3-2 不同標準液與標準添加法量測經酸溶消化之「高砷樣本」砷濃度...................32
表3-3 連續萃取步驟萃取之砷重量與樣本之砷濃度....................................................44
表3-4 各步驟萃取量在樣本中之百分比........................................................................46
表3-5 草酸三次萃取之鐵、砷重....................................................................................48
表3-6 不同方法量測「高砷樣本」砷濃度之比............................................................52
表4-1 台南岩芯三階段萃取結果....................................................................................62
表4-2 宅港岩芯六階段萃取結果....................................................................................63







圖目錄
圖1-1 嘉南平原地下水區域圖..........................................................................................3
圖1-2 砷物種在As - O2 - H2O系統中pH - Eh的分布.....................................................7
圖1-3 三價及五價砷物種在不同pH之含量....................................................................8
圖2-1 布袋岩芯位置圖....................................................................................................12
圖2-2 佛羅里達鵝卵石砷、鐵、有機碳濃度與顏色之關係圖.....................................12
圖2-3 布袋岩芯照片........................................................................................................14
圖2-4 布袋岩芯地層柱....................................................................................................18
圖2-5 沉降法所分沉積物大中小粒徑之示意圖............................................................20
圖2-6 溶樣之殘留固體照片............................................................................................23
圖3-1 不同方法量測高砷濃度樣本之比較....................................................................32
圖3-2 布袋岩心沉積物砷含量分布圖............................................................................33
圖3-3 沉降法區分D189.8三種粒徑樣本之砷濃度.......................................................33
圖3-4 樣本研磨前與研磨後砷濃度之比較....................................................................34
圖3-5 布袋岩芯沉積物中主要元素氧化物變化趨勢....................................................36
圖3-6 布袋岩芯沉積物主要元素氧化物Al2O3、MnO、Fe2O3互相之關係與其對砷濃度之關係圖............................................................................................................37
圖3-7 低砷含量樣本與D189.8之X光繞射分析圖譜...................................................39
圖3-8 七個高砷含量樣本中粒徑之X光繞射分析圖譜................................................40
圖3-9 七個高砷含量樣本小粒徑之X光繞射分析圖譜................................................41
圖3-10 各萃取步驟所萃取之砷濃度長條圖....................................................................45
圖3-11 各萃取步驟之砷量占樣本全部砷量之百分比圖................................................47
圖3-12 草酸萃取出之鐵、砷含量關係圖........................................................................49
圖3-13 「高砷樣本」以不同方法量測砷濃度之比較圖................................................53
圖4-1 布袋岩芯粒徑分析................................................................................................57
圖4-2 「低砷樣本」顆粒分群在深度的變化...................................................................58
圖4-3 「低砷樣本」顆粒分群之鋁、錳、鐵與砷之關係圖................................................59
圖4-4 30-100 m 「低砷樣本」顆粒分群的鋁、錳、鐵與砷之關係................................60
圖4-5 不同板岩碎屑含量沉積物總砷總鐵之關係圖....................................................66
參考文獻
中文部份
中央地質調查所網站 http://hydro.moeacgs.gov.tw/。
王聖瑋,台灣西南沿海地區地層環境中砷之來源與釋出機制,國立台灣大學生物環境系統工程研究所博士論文(2007)。
吳琮壬,嘉義海岸平原區末次冰期以來古沉積環境之研究,國立台灣大學地質科學研究所碩士論文(2007)。
畢如蓮,台灣嘉南平原地下水砷生成途徑與地質環境之初步探討,國立台灣大學地質科學研究所碩士論文(1995)。
陳于高,晚更新世以來南台灣地區海水面變化與新構造運動研究,國立台灣大學地質科學研究所博士論文(1993)。
陳文福,台灣的地下水,遠足文化出版(2005)。
陳冠宇,台灣西南海岸平原地下水砷之遷移與富集,國立台灣大學地質科學研究所碩士論文(2007)。
陳拱北與吳新英,第二份烏腳病流行病學研究報告:飲用水源與疾病的關係。台灣醫誌,(61): 611-618(1962)。
陳麒全,台灣嘉南平原新東及錦湖兩地沉積物砷富集與釋出之研究,國立台灣大學地質科學研究所碩士論文(2003)。
經濟部水資會,民國七十三年台灣水利年報:經濟部水資會(1986)。
經濟部水資源局,台灣地區地下水觀測網水質監測調查分析(3/5) (2001)。
劉聰桂,嘉南平原地下水定年分析及垂向水質變化研究(1999)。
歐東坤,台南地區地下水砷濃度之研究,國立台灣大學地質科學研究所碩士論文(2005)。
賴志傑,嘉南平原之水文地質環境中砷之分布與特徵:意涵砷之釋出過程,國立台灣大學生物環境系統工程學研究所碩士論文(2008)。
顏富士,曾文溪下游之砷異常及板岩屑與漂砂,科學發展月刊,第6卷,第3期(1978)。


英文部分
Anawar, H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S. and Kato, K., Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77(2-3): 109-131, 2003.
Appelo, C. A. J. and Postma D. Geochemistry, Groundwater and Pollution. Balkema, A. A., Rotterdam, 1994.
Belzile, N. and Tessier, A., Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochimica Et Cosmochimica Acta, 54(1): 103-109, 1990.
Berg, M.,Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Van Dan, N., Giger, W., Stuben, D., Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249(1-2): 91-112, 2008.
Berner, R. A., A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, 51(2): 359-365, 1981.
Bowell, R.J., Sorption of arsenic by iron-oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3): 279-286, 1994.
Brookins, D.G., Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin, 1988.
Charlet, L., Chakraborty, S., Appelo, C.A.J., Roman-Ross, G., Nath, B., Ansari, A.A., Musso, M., Chatterjee, D., Basu Mallick, S., Chemodynamics of an As “hotspot” in a West Bengal aquifer: A field and reactive transport modelling study. Applied Geochemistry, 22: 1273-1292, 2007.
Chen, C.J., Kuo, T.L. and Wu, M.M., Arsenic and cancers. Lancet, 1(8582): 414-415, 1988.
Chen, K.P., Wu, H.Y. and Wu, T.C., Epidemiologic studies on blackfoot disease in Taiwan 3 physiochemical characteristics of drinking water in endemic blackfoot disease area memoirs college of medicine. National Taiwan Univ., 8: 115-129, 1962.
Chester, R., Thomas, A., Lin, F. J., Basaham, A. S. and Jacinto, G., The solid-state speciation of copper in surface-water particulates and oceanic sediments. Marine Chemistry, 24(3-4): 261-292, 1988.
Chin, H.F., Lin, M.C. and Yang, C.Y., Primary intracerebral hemorrhage mortality reduction after installation of a tap-water supply system in an arseniasis-endemic area in southwestern Taiwan. Journal of Toxicology and Environmental Health-Part a-Current Issues, 70(5-6): 539-546, 2007.
Davis, J. A., Kent, D. B., Surface complexation modeling in aqueous geochemistry, Reviews in Mineralogy, 23: 177-260, 1990.
Dhar, R.K. Biswas, B. K., Samanta, G., Mandal, B. K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A. W., Ahmed, S. A., Hadi, S. A., Groundwater arsenic calamity in Bangladesh. Current Science, 73(1): 48-59, 1997.
Driehaus W., Jekel M. and Hildebrandt U., Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. J Water SRT – Aqua, 47: 30-35, 1998.
Elkhatib, E.A., Bennett, O.L. and Wright, R.J., Kinetics of arsenite sorption in soils. Soil Science Society of America Journal, 48(4): 758-762, 1984a.
Elkhatib, E.A., Bennett, O.L. and Wright, R.J., Arsenite sorption and desorption in soils. Soil Science Society of America Journal, 48(5): 1025-1030, 1984b.
Gambrell, R. P., Wiespape, J. B., Patrick, W. H. Jr., Duff, M. C., The effects of pH, redox and salinity on metal release from a contaminated sediment, Water Air and Soil Pollution, 57-8: 359-367, 1991.
Han, B.C., Jeng, W. L., Chen, R. Y., Fang, G. T., Hung, T. C. and Tseng, R. J., Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Archives of Environmental Contamination and Toxicology, 35(4): 711-720, 1998.
Hering, J. G. and Kneebone, P. E., Biogeochemical controls on arsenic occurrence and mobility in water supplies. In: Frankenberger, W. T. Jr., (Ed.), Environmental Chemistry of Arsenic. Marcel Dekker Publ., New York: 155-181, 2002.
IARC (International Agency for Research on Cancer), Monographs on evaluation of carcinogenic risk to humans. In: Some Drinking Water Disinfectants and Contaminants, including Arsenic Vol. 84. Lyon: IARC Press. 269–477, 2004.
IPCS, Arsenic and arsenic compounds. Environmental Health Criteria, No,224, 2001. http://www.inchem.org/documents/ehc/ehc/ehc224.htm
Jacobs, L.W., Syers, J.K. and Keeney, D.R., Arsenic sorption by soils. Soil Science Society of America Proceedings, 34(5): 750-754, 1970.
Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C.F. and Hemond, H.F., Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science and Technology, 35(13): 2778-2784, 2001.
Kim, M.J., Nriagu, J. and Haack, S., Carbonate ions and arsenic dissolution by groundwater. Environmental Science and Technology, 34(15): 3094-3100, 2000.
Kim, M.J., Nriagu, J. and Haack, S., Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 120(2): 379-390, 2002.
Li, X. D., Coles, B. J., Ramsey, M. H. and Thornton, I., Sequential extraction of soils for multielement analysis by ICP-AES. Chemical Geology, 124: 109-123, 1995.
Lin, M.C., Liao, C.M., Liu, C.W. and Singh, S., Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from Blackfoot disease area in Taiwan. Bulletin of Environmental Contamination and Toxicology, 67(1): 91-97, 2001.
Livesey, N.T. and Huang, P.M., Adsorption of arsenate by soils and its relation to selected chemical-properties and anions. Soil Science, 131(2): 88-94, 1981.
Lovley, D.R., Organic-matter mineralization with the reduction of ferric iron - a review. Geomicrobiology Journal, 5(3-4): 375-399, 1987.
Malachowski, M.E., An update on arsenic. Clinics in Laboratory Medicine, 10(3): 459-472, 1990.
Mandal, B.K. and Suzuki, K.T., Arsenic round the world: a review. Talanta, 58(1): 201-235, 2002.
Mandal, B.K. Chowdhury, T. R., Samanta, G., Mukherjee, D. P., Chanda, C. R., Saha, K. C. and Chakraborti, D., Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Science of the Total Environment, 218(2-3): 185-201, 1998.
McArthur, J. M., Ravenscroft, P., Safiullah, S. and Thirlwall, M. F., Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37: 109-117, 2001.
Moore, J.N., Ficklin, W.H. and Johns, C., Partitioning of arsenic and metals in reducing sulfidic sediments. Environmental Science and Technology, 22(4): 432-437, 1988.
Mukherjee, A. and Fryar, A.E., Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal Basin, West Bengal, India. Applied Geochemistry, 23: 863-893, 2008.
Nath, B., Stueben, D., Basu Mallik, S., Chatterjee, D. and Charlet, L., Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Applied Geochemistry, 23: 977-995, 2008a.
Nath, B., Berner, Z., Chatterjee, D., Basu Mallik, S. and Stueben, D., Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part II: Comparative geochemical profile and leaching study. Applied Geochemistry, 23: 996-1011, 2008b.
Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., and Rahman, M., Arsenic poisoning of Bangladesh groundwater. Nature, 395(6700): 338-338, 1998.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G. and Ahmed, K.M., Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413, 2000.
Nirel, P.M.V. and Morel, F.M.M., Pitfalls of sequential extractions. Water Research, 24(8): 1055-1056, 1990.
NRC, National Research Council. Arsenic in the Drinking Water, National Academy Press, Washington, DC, pp. 1–310, 1999.
NRC., National Research Council. National Academy; Washington, DC: 2001. Arsenic in the Drinking Water; Update, 2001.
NTP. National Toxicology Program Report on Carcinogens. 11th Edition. U.S. Department of Health and Human Services, Research Triangle Park; NC: 2004. Arsenic compounds, inorganic; pp. III18–III20, 2004.
Onishi H., Arsenic, in: K.H. Wedepohl (Ed.), Handbook of Geochemistry, Springer-Verlag, New York, Vol. II-2, Chapter 33, 1969.
Paige, C.R., Snodgrass, W.J., Nicholson, R.V. and Scharer, J.M., An arsenate effect on ferrihydrite dissolution kinetics under acidic oxic conditions. Water Research, 31(9): 2370-2382, 1997.
Pontius, F.W., Brown, K.G., and Chen, C.J., Health implication of arsenic in drinking water. J.Am. Water Works Ass., 86: 52-63, 1994.
Ruttenberg, K.C., Development of a sequential extraction method for different forms of phosphorus in marine-sediments. Limnology and Oceanography, 37(7): 1460-1482, 1992.
Sadiq, M., Zaidi, T.H. and Mian, A.A., Environmental behavior of arsenic in soils - theoretical. Water Air and Soil Pollution, 20(4): 369-377, 1983.
Sakata, M., Relationship between adsorption of arsenic(iii) and boron by soil and soil properties. Environmental Science and Technology, 21(11): 1126-1130, 1987.
Smedley, P.L. and Kinniburgh, D.G., A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5): 517-568, 2002.
Smedley, P.L., Edmunds, W.M. and Pelig-Ba, K.B., Mobility of arsenic in groundwater in the Obuasi gold-mining area Ghana: some implication for human health. In: Appleton, J.D., Fuge, R. and McCall, G.J.H.(Eds.), Environmental Geochemistry and Health 113, Geological Society Special Publication, London, 163-181, 1996.
Stow, S.H., Occurrence of arsenic and color-causing components in florida land-pebble phosphate rock. Economic Geology, 64(6): 667-671, 1969.
Sullivan, K.A. and Aller, R.C., Diagenetic cycling of arsenic in Amazon shelf sediments. Geochimica Et Cosmochimica Acta, 60(9): 1465-1477, 1996.
Tseng, W. P., Chu, H. M., How, S. W., Fong, J. M., Lin, C. S. and Yeh, S., Prevalence of skin cancer in an endemic area of chronic arsenicism in taiwan. Journal of the National Cancer Institute, 40(3): 453-463, 1968.
Ure, A., Berrow, M., Chapter 3. The elemental constituentsof soils. In: Bowen, H.J.M. (Ed.), Environmental Chemistry. Royal Society of Chemistry, London, pp. 94–203, 1982.
Waslenchuk, D.G., Geochemical controls on arsenic concentrations in southeastern united-states rivers. Chemical Geology, 24(3-4): 315-325, 1979.
Webster, J.G., Arsenic. In: Marshall, C.P., Fairbridge, R.W. (Eds.), Encyclopaedia of Geochemistry. Chapman Hall, London, pp. 21–22, 1999.
Welch, A.H., Lico, M.S. and Hughes, J.L., Arsenic in ground-water of the western united-states. Ground Water, 26(3): 333-347, 1988.
WHO, Guidelines for drinking-water quality. Volume 1: Recommendatoins, 2nd ed. WHO, Geneva. 1993.
WHO, Environmental Health Criteria 224: Arsenic compounds 2nd edition. World Health Organisation, Geneva. 2001.
Williams, M., Fordyce, F., Paijitprapapon, A. and Charoenchaisri, P., Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environmental Geology, 27(1): 16-33, 1996.
Xu, H., Allard, B. and Grimvall, A., Influence of pH and organic-substance on the adsorption of As(v) on geologic materials, Water Air and Soil Pollution, 40(3-4): 293-305, 1988.
Yan, X.P., Kerrich, R. and Hendry, M.J., Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochimica Et Cosmochimica Acta, 64(15): 2637-2648, 2000.
Yoshinaga, J., Chatterjee, A., Shibata, Y., Morita, M. and Edmonds, J.S., Human urine certified reference material for arsenic speciation. Clinical Chemistry, 46(11): 1781-1786, 2000.
Yu, K.H., Chang, M.C., Yen, F.S., Tsai, S.C., On the arsenic distribution along the coastline are of southwestern Taiwan. In: Geertman, R.M. (Ed.) 8th World Saly Symposium, 601-605, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top