跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/15 11:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾全雄
研究生(外文):Chuan-Hsiung Chung
論文名稱:高精確度河水及珊瑚骨骼之同位素及微量元素分析:分析方法之發展與應用
論文名稱(外文):Toward High Precision Isotope and Trace Elements Analysis in River water and Coral Skeleton: Analytical Methods Development and Application
指導教授:游鎮烽
指導教授(外文):Chen-Feng You
學位類別:博士
校院名稱:國立成功大學
系所名稱:地球科學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:155
外文關鍵詞:River waterFe isotopeREECoralEnvironmental proxyMass spectrometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
The application of proxies to studies of past ocean chemistry requires both understanding of the systematic and limitations of the proxies, and development of appropriate analytical methodology to produce data with the accuracy, sensitivity and resolution necessary to permit reliable interpretation. The purposes of this research are to develop analytical methods for high precision and accuracy analysis of trace elements concentration and isotope rations in natural samples by advanced mass spectrometric techniques. Then apply these methods can be used to retrieve environmental information from various archives. The systematic and limitations of coral proxies is assessed by a culture experiment. For more comprehensive understanding of the element transportation from land to sea which can affect the elemental composition of coral skeleton, water chemistry of Kaoping river located on southwestern Taiwan were also studied using high precision Sr isotope and REEs data.
Analytical performances of conventional microconcentric nebulizer (MCN) and thermal membrane-desolvation sample introduction systems (Aridus) were compared for determination of low concentrations of rare earth elements in surface and subsurface waters using a double focusing magnetic sector inductively coupled plasma mass spectrometer. Conventional figures of merit were employed, such as REE sensitivities, limits of detection (LODs), memory effects, BaO+ and BaOH+ polyatomic ion interferences, % REE-oxide formation, matrix induced no spectroscopic interferences, long term signal variations, and recovery from spiked sea water samples and CRMs. In general abundance corrected mass distributions for the MCN were quite flat with exception of LREEs which were dependant on REE-O+ polyatomic ion generation. REE sensitivities varied from about 0.3-0.6 MCPS/ppb for 139La+, 140Ce+ and 141Pr+, and to 0.8-1 MCPS/ppb for the remainder of the REEs. In contrast, Aridus responses varied from about 3.5-4.3 MCPS/ppb i.e. signal enhancement factors of 4 to 10. LODs varied from 0.05-0.3 ppt and 0.1-0.2 ppt for the MCN and Aridus systems, respectively. Method accuracy was determined by analyzing a spiked sea water CRM NAAS-5 (1:100 v/v) with 1 µg L-1 REEs and CRM SLRS-4 using an external calibration procedure. The use of Tb with the MCN failed to compensate for LREE variations, but recoveries of MREEs and HREEs were about 95 to 100 %. With the Aridus system uncompensated recoveries were about 85 % for all REE and were about 100 % with Tb. Long term REE determinations of NRC SLRS-4 were in good agreement with the reported values indicating that very low REE concentrations can be determined directly without matrix separation and analyte preconcentration. In routine analysis operating conditions were optimized so that the measured CeO+/Ce+ ratios were less than 1 %. These conditions are obtainable using the Aridus system which was preferred for routine diagnostic REE determinations in surface and subsurface waters in Taiwan
A high precision analytical method of Fe isotope measurement for low concentration samples was developed using HR-MC-ICPMS. Several parameters that may affect the accuracy and precision of 56Fe/54Fe result such as background, instrumental mass discrimination, isobaric interferences, type of introduction system and acid molarity were identified and evaluated. External precisions better than 0.04‰ for δ56Fe can be achieve using only 10ng of iron sample with APEX and X-cone as introduction system. Compare of this study and previous ones shows that significant improvement in terms of sample size was made. Only one tenth of sample amount is needed to get similar precision. This method can be applied on very low concentration samples such as coral and seawater.
The systematic and limitations of coral proxies is assessed by a culture experiment to improve our understanding of the relationships between the proxies and parameters of interest. Sr/Ca variation is mainly controlled by temperature confirming that Sr/Ca ratios in coral skeletons while the kinetic effect may dominate the stable isotopic fractionations. For more comprehensive understanding of the element transportation from land to sea which can affect the elemental composition of coral skeleton, water chemistry of Kaoping river located on southwestern Taiwan were also studied using high precision Sr isotope and REEs data. The 87Sr/86Sr variations are rather large from 0.712649 to 0.713592 and show systematically decreasing ratios with distance from the coastal region. The dissolved REE patterns of the KPR at different tributaries including Laonong River, Cishan River and Baolai River show similar negative Ce anomaly and HREE enrichment. Strong positive Gd anomaly supports an anthropogenic pollution in the river. The REEs patterns may not be reflective of total weathering processes because their distinct behavior in river system. The methods developed in this study are very broad applicable techniques. The systematic assessment criteria of the analytical methodology describe in this thesis can been applied to other elemental or isotopic measurement, for instance, Nd isotope in coral skeleton which can be used to trace the terrestrial input.
Chapter 1. Introduction...................................................................................................... 1
1.1. Global Environmental issues ......................................................................................... 2
1.2. Proxies for environmental study .................................................................................... 2
1.3. Scope of this Thesis ....................................................................................................... 6
Chapter 2. Technique Fundamentals of Mass Spectrometry ................................................ 7
2.1 Why Use Mass Spectrometry.......................................................................................... 8
2.2. Introduction of Inorganic Mass Spectrometry ............................................................... 9
2.3. Ionization Methods ...................................................................................................... 10
2.3.1. Thermo ionization ................................................................................................. 10
2.3.2. Inductively Coupled Plasma .................................................................................. 12
2.4. Mass Analyzer ............................................................................................................. 13
2.4.1. Magnetic Sector Analyzer ..................................................................................... 14
2.4.2. Electrostatic Sector Analyzer ................................................................................ 15
2.4.3. Double-Focusing Sector Field Mass Spectrometer ............................................... 16
2.5. Detectors ...................................................................................................................... 17
2.5.1. Faraday Cups ......................................................................................................... 17
2.5.2. Secondary Electron Multiplier .............................................................................. 18
2.5.3. Single Detector V.S. Multiple Detectors ............................................................... 19
2.6. Instrumental Mass discrimination ................................................................................ 20
2.7. Abundance Sensitivity ................................................................................................. 21
2.8. Mass Spectrometers used in geological and environmental fields .............................. 22
Chapter 3. Comparison of microconcentric and membrane-desolvation sample introduction systems for determination of low rare earth element concentrations in surface and subsurface waters using magnetic sector inductively coupled plasma mass spectrometry ............................................................................................... 26
3.1. Introduction .................................................................................................................. 30
3.2. Experimental ................................................................................................................ 34
3.2.1. Instrumentation...................................................................................................... 34
3.2.2. Instrument set up ................................................................................................... 36
3.2.3. REE mass selection ............................................................................................... 37
3.2.4. Data processing ..................................................................................................... 37
3.3. Results .......................................................................................................................... 39
3.3.1. Sensitivity and response ........................................................................................ 39
3.3.2. Short term variations ............................................................................................. 41
3.3.3. Limits of detection ................................................................................................ 41
3.3.4. Memory effect ....................................................................................................... 42
3.3.5. % 156CeO+ .............................................................................................................. 42
3.3.6. Effect of REE-O bond strength ............................................................................. 43
3.3.7. Effect of Na ........................................................................................................... 46
3.3.8. Validation, accuracy and internal standards .......................................................... 48
3.3.9. Long-term variations and internal standard compensation ................................... 52
3.4. Discussion and conclusions ......................................................................................... 58
Chapter 4. High precision Fe isotope analysis by HR-MC-ICPMS ............................. 61
4.1. Introduction .................................................................................................................. 62
4.2. Elimination isobaric interferences ............................................................................... 63
4.3. High mass resolution MC-ICPMS for Fe isotope analysis .......................................... 64
4.4. Instrumentation ............................................................................................................ 66
4.5. Analytical protocol....................................................................................................... 69
4.6. Results and discussion ................................................................................................. 71
4.6.1. Sample Introduction system .................................................................................. 71
4.6.2. Correction of isobaric interferences ...................................................................... 73
4.6.3. Correction of instrumental mass fractionation ...................................................... 74
4.7. Summary ...................................................................................................................... 78
Chapter 5. A Feasibility Evaluation of Using Coral Chemical Compositions as Climate Proxies:Tank Study ......................................................................................... 79
5.1. Introduction .................................................................................................................. 80
5. 2. Materials and Analytical Methods .............................................................................. 83
5.2.1. Coral Materials ...................................................................................................... 83
5.2.2. Instrumentation...................................................................................................... 84
5.2.3. Standard Develop .................................................................................................. 86
5.3. Result and Discussion .................................................................................................. 88
5.3.1 Tank water temperature and cultured colonies ...................................................... 88
5.3.2. Skeletal stable isotopic data .................................................................................. 90
5.3.3. Trace element in coral skeleton ............................................................................. 93
5.4. Summary ...................................................................................................................... 97
Chapter 6. Weathering Sources in the Gaoping/Kaoping River Catchments, Southwestern Taiwan: Insights from Major Elements, Sr Isotopes, and Rare Earth Elements .................................................................................................................. 98
6.1. Introduction ................................................................................................................ 100
6.2. Study area................................................................................................................... 103
6.3. Sampling and analytical methods .............................................................................. 105
6.4. Results and discussion ............................................................................................... 107
6.4.1. Major element composition and their sources ..................................................... 107
6.4.2. Atmospheric supply............................................................................................. 108
6.4.3. Contributions from silicate vs. carbonate weathering ......................................... 111
6.4.4. Sr concentration and Sr isotopes ......................................................................... 115
6.4.5. REE distributions in the KPR.............................................................................. 117
6.5. Conclusions ................................................................................................................ 121
Chapter 7. Conclusions ................................................................................................... 122
References ........................................................................................................................ 126
Appendix 1. 利用人工養殖珊瑚評估珊瑚骨骼化學組成作為古環境代用指標之應用
Appendix 2. Curriculum Vitae
Aberg, G., 1995. The Use of Natural Strontium Isotopes as Tracers in Environmental-Studies. Water Air Soil Poll 79, 309-322.
Aberg, G., Jacks, G., and Hamilton, P. J., 1989. Weathering Rates and Sr-87/Sr-86 Ratios - an Isotopic Approach. J Hydrol 109, 65-78.
Aggarwal, J. K., Shabani, M. B., Palmer, M. R., and Ragnarsdottir, K. V., 1996. Determination of the rare earth elements in aqueous samples at sub-ppt levels by inductively coupled plasma mass spectrometry and flow injection ICPMS. Anal Chem 68, 4418-4423.
Allison, N. and Finch, A. A., 2004. High-resolution Sr/Ca records in modern Porites lobata corals: Effects of skeletal extension rate and architecture. Geochem Geophy Geosy 5.
Allison, N., 1996. Comparative determinations of trace and minor elements in coral aragonite by ion microprobe analysis, with preliminary results from Phuket, southern Thailand. Geochim Cosmochim Ac 60, 3457-3470.
Allison, N., Finch, A. A., Newville, M., and Sutton, S. R., 2005. Strontium in coral aragonite: 3. Sr coordination and geochemistry in relation to skeletal architecture. Geochim Cosmochim Ac 69, 3801-3811.
Allison, N., Finch, A. A., Sutton, S. R., and Newville, M., 2001. Strontium heterogeneity and speciation in coral aragonite: Implications for the strontium paleothermometer. Geochim Cosmochim Ac 65, 2669-2676.
Alves, L. C., Minnich, M. G., Wiederin, D. R., and Houk, R. S., 1994. Removal of Organic-Solvents by Cryogenic Desolvation in Inductively-Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry 9, 399-403.
Alves, L. C., Wiederin, D. R., and Houk, R. S., 1992. Reduction of Polyatomic Ion Interferences in Inductively Coupled Plasma Mass-Spectrometry by Cryogenic Desolvation. Analytical Chemistry 64, 1164-1169.
Aubert, D., Stille, P., and Probst, A., 2001. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica Et Cosmochimica Acta 65, 387-406.
Aubert, D., Stille, P., Probst, A., Gauthier-Lafaye, F., Pourcelot, L., and Del Nero, M., 2002. Characterization and migration of atmospheric REE in soils and surface waters. Geochimica Et Cosmochimica Acta 66, 3339-3350.
Audry, S., Blanc, G., and Schafer, J., 2005. The impact of sulphide oxidation on dissolved metal (Cd, Zn, Cu, Cr, Co, Ni, U) inputs into the Lot-Garonne fluvial system (France). Applied Geochemistry 20, 919-931.
Augagneur, S., Medina, B., Szpunar, J., and Lobinski, R., 1996. Determination of rare earth elements in wine by inductively coupled plasma mass spectrometry using a microconcentric nebulizer. Journal of Analytical Atomic Spectrometry 11, 713-721.
Backstrom, K., Gustavsson, A., and Hietala, P., 1989. A Membrane Interface for Organic-Solvent Sample Introduction into Inductively Coupled Plasmas. Spectrochimica Acta Part B-Atomic Spectroscopy 44, 1041-1048.
Bailey, S. W., Hornbeck, J. W., Driscoll, C. T., and Gaudette, H. E., 1996. Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes. Water Resources Research 32, 707-719.
Bain, D. C. and Bacon, J. R., 1994. Strontium Isotopes as Indicators of Mineral Weathering in Catchments. Catena 22, 201-214.
Barnes, D. J. and Lough, J. M., 1996. Coral skeletons: Storage and recovery of environmental information. Glob Change Biol 2, 569-582.
Basu, A. R., Jacobsen, S. B., Poreda, R. J., Dowling, C. B., and Aggarwal, P. K., 2001. Large groundwater strontium flux to the oceans from the bengal basin and the marine strontium isotope record. Science 293, 1470-1473.
Bau, M. and Dulski, P., 1996. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters 143, 245-255.
Bayon, G., German, C. R., Burton, K. W., Nesbitt, R. W., and Rogers, N., 2004. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE. Earth and Planetary Science Letters 224, 477-492.
Beard, B. L., Johnson, C. M., Skulan, J. L., Nealson, K. H., Cox, L., and Sun, H., 2003. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology 195, 87-117.
Beck, J. W., Edwards, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F., Joannot, P., and Henin, C., 1992. Sea-Surface Temperature from Coral Skeletal Strontium Calcium Ratios. Science 257, 644-647.
Becker, J. S., 2002. State-of-the-art and progress in precise and accurate isotope ratio measurements by ICP-MS and LA-ICP-MS - Plenary Lecture. Journal of Analytical Atomic Spectrometry 17, 1172-1185.
Becker, J. S., 2005. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides. International Journal of Mass Spectrometry 242, 183-195.
Becker, J. S., Soman, R. S., Sutton, K. L., Caruso, J. A., and Dietze, H. J., 1999. Determination of long-lived radionuclides by inductively coupled plasma quadrupole mass spectrometry using different nebulizers. Journal of Analytical Atomic Spectrometry 14, 933-937.
Benkhedda, K., Infante, H. G., Ivanova, E., and Adams, F. C., 2001. Determination of sub-parts-per-trillion levels of rare earth elements in natural waters by inductively coupled plasma time-of-flight mass spectrometry after flow injection on-line sorption preconcentration in a knotted reactor. Journal of Analytical Atomic Spectrometry 16, 995-1001.
Bickle, M. J., Chapman, H. J., Bunbury, J., Harris, N. B. W., Fairchild, I. J., Ahmad, T., and Pomies, C., 2005. Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges. Geochimica Et Cosmochimica Acta 69, 2221-2240.
Blum, J. D., Erel, Y., and Brown, K., 1993. Sr-87/Sr-86 Ratios of Sierra-Nevada Stream Waters - Implications for Relative Mineral Weathering Rates. Geochimica Et Cosmochimica Acta 57, 5019-5025.
Boulyga, S. F. and Becker, J. S., 2002. Improvement of abundance sensitivity in a quadrupole-based ICP-MS instrument with a hexapole collision cell. Journal of Analytical Atomic Spectrometry 17, 1202-1206.
Boulyga, S. F., Zoriy, M., Ketterer, M. E., and Becker, J. S., 2003. Depth profiling of Pu, Am-241 and Cs-137 in soils from southern Belarus measured by ICP-MS and alpha and gamma spectrometry. Journal of Environmental Monitoring 5, 661-666.
Braun, J. J., Viers, J., Dupre, B., Polve, M., Ndam, J., and Muller, J. P., 1998. Solid/liquid REE fractionation in the lateritic system of Goyoum, east Cameroon: The implication for the present dynamics of the soil covers of the humid tropical regions. Geochimica Et Cosmochimica Acta 62, 273-299.
Brenner, I. B. and Taylor, H. E., 1992. A Critical-Review of Inductively Coupled Plasma-Mass Spectrometry for Geoanalysis, Geochemistry, and Hydrology .1. Analytical Performance. Critical Reviews in Analytical Chemistry 23, 355-367.
Brenner, I. B., Liezers, M., Godfrey, J., Nelms, S., and Cantle, J., 1998. Analytical characteristics of a high efficiency ion transmission interface (S mode) inductively coupled plasma mass spectrometer for trace element determinations in geological and environmental materials. Spectrochimica Acta Part B-Atomic Spectroscopy 53, 1087-1107.
Brenner, I. B., Mermet, J. M., Segal, I., and Long, G. L., 1995a. Effect of Nitric and Hydrochloric Acids on Rare-Earth Element (Ree) Intensities in Inductively-Coupled Plasma Emission-Spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy 50, 323-331.
Brenner, I. B., Segal, I., Mermet, M., and Mermet, J. M., 1995b. Study of the Depressive Effects of Nitric-Acid on the Line-Intensities of Rare-Earth Elements in Inductively-Coupled Plasma-Atomic Emission-Spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy 50, 333-340.
Brenner, I. B., Zander, A., Plantz, M., and Zhu, J., 1997. Characterization of an ultrasonic nebulizer membrane separation interface with inductively coupled plasma mass spectrometry for the determination of trace elements by solvent extraction - Invited lecture. Journal of Analytical Atomic Spectrometry 12, 273-279.
Brotherton, T. J., Pfannerstill, P. E., Creed, J. T., Heitkemper, D. T., Caruso, J. A., and Pratsinis, S. E., 1989. Evaluation of 3 Low-Volume Interfaces for Organic-Solvent Introduction to the Inductively Coupled Plasma - Applications to Flow-Injection. Journal of Analytical Atomic Spectrometry 4, 341-345.
Bullen, T. D., Krabbenhoft, D. P., and Kendall, C., 1996. Kinetic and mineralogic controls on the evolution of groundwater chemistry and Sr-87/Sr-86 in a sandy silicate aquifer, northern Wisconsin, USA. Geochimica Et Cosmochimica Acta 60, 1807-1821.
Byrne, R. H. and Li, B. Q., 1995. Comparative Complexation Behavior of the Rare-Earths. Geochimica Et Cosmochimica Acta 59, 4575-4589.
Cantrell, K. J. and Byrne, R. H., 1987. Rare-Earth Element Complexation by Carbonate and Oxalate Ions. Geochimica Et Cosmochimica Acta 51, 597-605.
Chamberlain, C. P., Waldbauer, J. R., and Jacobson, A. D., 2005. Strontium, hydrothermal systems and steady-state chemical weathering in active mountain belts. Earth and Planetary Science Letters 238, 351-366.
Chave, K. E., 1954. Aspects of the biogeochemistry of magnesium 1. Calcaeous marine organisms. J Geol 62, 266-283.
Chu, H. Y. and You, C. F., 2007. Dissolved constituents and Sr isotopes in river waters from a mountainous island - The Danshuei drainage system in northern Taiwan. Applied Geochemistry 22, 1701-1714.
Chung, C.H., You, C.-F., Chu, H.-Y., Weathering Sources in the Gaoping/Kaoping River Catchments, Southwestern Taiwan: Insights from Major Elements, Sr Isotopes, and Rare Earth Elements, J. of Mar. Syst. (in press).
Chung, S. L. and Sun, S. S., 1992. A New Genetic Model for the East Taiwan Ophiolite and Its Implications for Dupal Domains in the Northern-Hemisphere. Earth and Planetary Science Letters 109, 133-145.
Chung, S. L., Sun, S. S., Tu, K., Chen, C. H., and Lee, C. Y., 1994. Late Cenozoic Basaltic Volcanism around the Taiwan Strait, Se China - Product of Lithosphere Asthenosphere Interaction during Continental Extension. Chemical Geology 112, 1-20.
Clow, D. W., Mast, M. A., Bullen, T. D., and Turk, J. T., 1997. Strontium 87 strontium 86 as a tracer of mineral weathering reactions and calcium sources in an alpine/subalpine watershed, Loch Vale, Colorado. Water Resources Research 33, 1335-1351.
Cohen and McConnaughey, 2003 A.L. Cohen and T.A. McConnaughey, Rev. Miner. Geochem. 54 (2003), pp. 151–187
Cohen, A. L., Layne, G. D., Hart, S. R., and Lobel, P. S., 2001. Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy. Paleoceanography 16, 20-26.
Cohen, A. L., Smith, S. R., McCartney, M. S., and van Etten, J., 2004. How brain corals record climate: an integration of skeletal structure, growth and chemistry of Diploria labyrinthiformis from Bermuda. Marine Ecology-Progress Series 271, 147-158.
Colas, E., Calzado, J.A., Palet, C., Valiente, M., Brenner, I.B., 2002, Behavior of rare earth elements in a helium collision cell with quadrupole ICP-MS, Winter Conference on Plasma Spectrochemistry, Scottsdale, Arizona, Abstract FP 14, p. 14.
Colas, E., Valiente, M., and Brenner, I., 2004. Evaluation of a Cu-Ni laminated sampler cone for ICP-MS: comparison of figures of merit with a conventional system. Journal of Analytical Atomic Spectrometry 19, 282-285.
Dadson, S. J., Hovius, N., Chen, H. G., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648-651.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., and Stark, C. P., 2004. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 32, 733-736.
Dalai, T. K., Krishnaswami, S., and Sarin, M. M., 2002. Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochimica Et Cosmochimica Acta 66, 3397-3416.
De Laeter, J. R., 1996. The role of off-line mass spectrometry in nuclear fission. Mass Spectrometry Reviews 15, 261-281.
de Villiers, S., Nelson, B. K., and Chivas, A. R., 1995. Biological-Controls on Coral Sr/Ca and Delta-O-18 Reconstructions of Sea-Surface Temperatures. Science 269, 1247-1249.
Debaar, H. J. W., Bacon, M. P., Brewer, P. G., and Bruland, K. W., 1985a. Rare-Earth Elements in the Pacific and Atlantic Oceans. Geochimica Et Cosmochimica Acta 49, 1943-1959.
Debaar, H. J. W., Brewer, P. G., and Bacon, M. P., 1985b. Anomalies in Rare-Earth Distributions in Seawater - Gd and Tb. Geochimica Et Cosmochimica Acta 49, 1961-1969.
Dickin, A. P., 2005. Radiogenic isotope geology. Cambridge University Press, Cambridge, UK ; New York.
Doherty, W., 1989. An Internal Standardization Procedure for the Determination of Yttrium and the Rare-Earth Elements in Geological-Materials by Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy 44, 263-280.
Drever, J. I., 1988. The geochemistry of natural waters. Prentice Hall, Englewood Cliffs, N.J.
Druffel, E. R. M., 1997. Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate. P Natl Acad Sci USA 94, 8354-8361.
Duddy, I. R., 1980. Redistribution and Fractionation of Rare-Earth and Other Elements in a Weathering Profile. Chemical Geology 30, 363-381.
Dunbar, R. B. and Wellington, G. M., 1981. Stable Isotopes in a Branching Coral Monitor Seasonal Temperature-Variation. Nature 293, 453-455.
Edmond, J. M., 1992. Himalayan Tectonics, Weathering Processes, and the Strontium Isotope Record in Marine Limestones. Science 258, 1594-1597.
Edmond, J. M., Palmer, M. R., Measures, C. I., Brown, E. T., and Huh, Y., 1996. Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. Geochim Cosmochim Ac 60, 2949-2976.
Elbaz-Poulichet, F., Seyler, P., Maurice-Bourgoin, L., Guyot, J. L., and Dupuy, C., 1999. Trace element geochemistry in the upper Amazon drainage basin (Bolivia). Chemical Geology 157, 319-334.
Elderfield, H. and Ganssen, G., 2000. Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442-445.
Elderfield, H. and Greaves, M. J., 1982. The Rare-Earth Elements in Sea-Water. Nature 296, 214-219.
Elderfield, H., Greaves, M.J., 1983, Determination of the rare earth elements in sea water, in: C.S. Wang, E.A. Boyle, K.W. Bruland, J.D. Burton, E.D. Goldberg (Eds.), Trace Metals in Seawater, Plenum, New York , pp. 427-445.
Elderfield, H., Hawkesworth, C. J., Greaves, M. J., and Calvert, S. E., 1981. Rare-Earth Element Geochemistry of Oceanic Ferromanganese Nodules and Associated Sediments. Geochimica Et Cosmochimica Acta 45, 513-528.
Elderfield, H., Upstillgoddard, R., and Sholkovitz, E. R., 1990. The Rare-Earth Elements in Rivers, Estuaries, and Coastal Seas and Their Significance to the Composition of Ocean Waters. Geochimica Et Cosmochimica Acta 54, 971-991.
Emiliani, C., 1955. Pleistocene temperatures. Journal of Geology 63, 538-578.
Esser, B. K., Volpe, A., Kenneally, J. M., and Smith, D. K., 1994. Preconcentration and Purification of Rare-Earth Elements in Natural-Waters Using Silica-Immobilized 8-Hydroxyquinoline and a Supported Organophosphorus Extractant. Analytical Chemistry 66, 1736-1742.
Fallon, S. J., McCulloch, M. T., and Alibert, C., 2003. Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22, 389-404.
Faure, G. and Mensing, T. M., 2005. Isotopes : principles and applications. Wiley, Hoboken, N.J.
Felis, T., Patzold, J., and Loya, Y., 2003. Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects. Coral Reefs 22, 328-336.
Fernandez, R. G. and Alonso, J. I. G., 2008. Separation of rare earth elements by anion-exchange chromatography using ethylenediaminetetraacetic acid as mobile phase. Journal of Chromatography A 1180, 59-65.
Ferrier-Pages, C., Boisson, F., Allemand, D., and Tambutte, E., 2002. Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. Marine Ecology-Progress Series 245, 93-100.
Field, M. P. and Sherrell, R. M., 1998. Magnetic sector ICPMS with desolvating micronebulization: Interference-free subpicogram determination of rare earth elements in natural samples. Analytical Chemistry 70, 4480-4486.
Fuller, C. W., Willett, S. D., Hovius, N., and Slingerland, R., 2003. Erosion rates for Taiwan mountain basins: New determinations from suspended sediment records and a stochastic model of their temporal variation. Journal of Geology 111, 71-87.
Gagan, M. K., Ayliffe, L. K., Hopley, D., Cali, J. A., Mortimer, G. E., Chappell, J., McCulloch, M. T., and Head, M. J., 1998. Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific. Science 279, 1014-1018.
Gaillardet, J., Dupre, B., Allegre, C. J., and Negrel, P., 1997. Chemical and physical denudation in the Amazon River basin. Chemical Geology 142, 141-173.
Gaillardet, J., Dupre, B., Louvat, P., and Allegre, C. J., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology 159, 3-30.
Gault, A. G., Cooke, D. R., Townsend, A. T., Charnock, J. M., and Polya, D. A., 2005. Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff western Tasmania. Science of the Total Environment 345, 219-228.
Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science 170, 1088-&.
Goldberg, E. D., Koide, M, Schmitt, R. A. and Smith, R. H. , 1963. Rare earth distrubutions in the marine environment. Journal of Geophysical Research 68, 4209-4217.
Goldstein, S. J. and Jacobsen, S. B., 1987. The Nd and Sr Isotopic Systematics of River-Water Dissolved Material - Implications for the Sources of Nd and Sr in Seawater. Chemical Geology 66, 245-272.
Goldstein, S. J. and Jacobsen, S. B., 1988a. Nd and Sr Isotopic Systematics of River Water Suspended Material - Implications for Crustal Evolution. Earth and Planetary Science Letters 87, 249-265.
Goldstein, S. J. and Jacobsen, S. B., 1988b. Rare-Earth Elements in River Waters. Earth and Planetary Science Letters 89, 35-47.
Goldstein, S. J. and Jacobsen, S. B., 1988c. REE in the Great-Whale River Estuary, Northwest Quebec. Earth and Planetary Science Letters 88, 241-252.
Graustein, W.C., 1989. 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In: Rundel, P.W., Ehleringer, J.R., Nagy, K.A._Eds.., Stable Isotopes in Ecological Research.: 494–512.
Gray, A. L., 1989. Visual Observation of Shock-Waves in an Inductively Coupled Plasma Mass-Spectrometry Expansion Stage. Journal of Analytical Atomic Spectrometry 4, 371-374.
Greaves, M., Barker, S., Daunt, C., and Elderfield, H., 2005. Accuracy, standardization, and interlaboratory calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry Geophysics Geosystems 6, -.
Greegor, R. B., Pingitore, N. E., and Lytle, F. W., 1997. Strontianite in coral skeletal aragonite. Science 275, 1452-1454.
Grosbois, C., Negrel, P., Fouillac, C., and Grimaud, D., 2000. Dissolved load of the Loire River: chemical and isotopic characterization. Chemical Geology 170, 179-201.
Grottoli, A. G. and Wellington, G. M., 1999. Effect of light and zooplankton on skeletal delta C-13 values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18, 29-41.
Grottoli, A. G., 2002. Effect of light and brine shrimp on skeletal delta C-13 in the Hawaiian coral Porites compressa: A tank experiment. Geochimica Et Cosmochimica Acta 66, 1955-1967.
Gunther-Leopold, I., Waldis, J. K., Wernli, B., and Kopajtic, Z., 2005. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS. International Journal of Mass Spectrometry 242, 197-202.
Gustavsson, A., 1987. Characterization of an Interface for Sample Introduction into an Inductively Coupled Plasma. Spectrochimica Acta Part B-Atomic Spectroscopy 42, 111-118.
Hall, G. E. M., Vaive, J. E., and Mcconnell, J. W., 1995. Development and Application of a Sensitive and Rapid Analytical Method to Determine the Rare-Earth Elements in Surface Waters. Chemical Geology 120, 91-109.
Hall, G. E. M., Vaive, J. E., and Pelchat, J. C., 1996. Performance of inductively coupled plasma mass spectrometric methods used in the determination of trace elements in surface waters in hydrogeochemical surveys. Journal of Analytical Atomic Spectrometry 11, 779-786.
Hannigan, R. E. and Sholkovitz, E. R., 2001. The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals. Chemical Geology 175, 495-508.
Hart, S. R. and Cohen, A. L., 1996. An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Ac 60, 3075-3084.
Hausler, D. W. and Taylor, L. T., 1981. Non-Aqueous Online Simultaneous Determination of Metals by Size Exclusion Chromatography with Inductively Coupled Plasma Atomic Emission Spectrometric Detection. Analytical Chemistry 53, 1223-1227.
Hemming, N. G. and Hanson, G. N., 1992. Boron Isotopic Composition and Concentration in Modern Marine Carbonates. Geochimica Et Cosmochimica Acta 56, 537-543.
Ho, C.S., 1975. An Introduction to Geology of Taiwan. Ministry of Economic Affairs, Republic of China.
Houk, R. S. and Praphairaksit, N., 2001. Dissociation of polyatomic ions in the inductively coupled plasma. Spectrochimica Acta Part B-Atomic Spectroscopy 56, 1069-1096.
Hovius, N., Stark, C. P., Chu, H. T., and Lin, J. C., 2000. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. Journal of Geology 108, 73-89.
Huang, K. M. and Lin, S., 2003. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere 53, 1113-1121.
Inoue, M., Suzuki, A., Nohara, M., Hibino, K., and Kawahata, H., 2007. Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperatures. Geophys Res Lett 34, -.
Ip, Y. K., Lim, A. L. L., and Lim, R. W. L., 1991. Some Properties of Calcium-Activated Adenosine-Triphosphatase from the Hermatypic Coral Galaxea-Fascicularis. Mar Biol 111, 191-197.
IPCC, 2001. Climate change 2001: Climate change 2001: The scientific basis. Contribution of working group I.J.T.. In: Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson, Editors, Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton, Cambridge University Press, Cambridge
Jacks, G., Aberg, G., and Hamilton, P. J., 1989. Calcium Budgets for Catchments as Interpreted by Strontium Isotopes. Nordic Hydrology 20, 85-96.
Jacobson, A. D., Blum, J. D., Chamberlain, C. P., Craw, D., and Koons, P. O., 2003. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica Et Cosmochimica Acta 67, 29-46.
Johannesson, K. H., Farnham, I. M., Guo, C. X., and Stetzenbach, K. J., 1999. Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basin-fill aquifer, southern Nevada, USA. Geochimica Et Cosmochimica Acta 63, 2697-2708.
Johannesson, K. H., Tang, J. W., Daniels, J. M., Bounds, W. J., and Burdige, D. J., 2004. Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA. Chemical Geology 209, 271-294.
Keasler, K. M. and Loveland, W. D., 1982. Rare-Earth Elemental Concentrations in Some Pacific Northwest Rivers. Earth and Planetary Science Letters 61, 68-72.
Keeling, C.D. and Whorf, T.P., Atmospheric CO2 records from sites in the SIO air sampling network, Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn, USA.
Ketterer, M. E., 1992. Assessment of Overall Accuracy of Lead Isotope Ratios Determined by Inductively Coupled Plasma Mass-Spectrometry Using Batch Quality-Control and the Youden 2-Sample Method. Journal of Analytical Atomic Spectrometry 7, 1125-1129.
Ketterer, M. E., Peters, M. J., and Tisdale, P. J., 1991. Verification of a Correction Procedure for Measurement of Lead Isotope Ratios by Inductively Coupled Plasma Mass-Spectrometry. Journal of Analytical Atomic Spectrometry 6, 439-443.
Klinkhammer, G., German, C. R., Elderfield, H., Greaves, M. J., and Mitra, A., 1994. Rare-Earth Elements in Hydrothermal Fluids and Plume Particulates by Inductively-Coupled Plasma-Mass Spectrometry. Marine Chemistry 45, 179-186.
Krachler, M., Mohl, C., Emons, H., and Shotyk, W., 2002. Influence of digestion procedures on the determination of rare earth elements in peat and plant samples by USN-ICP-MS. Journal of Analytical Atomic Spectrometry 17, 844-851.
Lawrence, M. G., Greig, A., Collerson, K. D., and Kamber, B. S., 2006. Direct quantification of rare earth element concentrations in natural waters by ICP-MS. Applied Geochemistry 21, 839-848.
Lea, D. W., Mashiotta, T. A., and Spero, H. J., 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica Et Cosmochimica Acta 63, 2369-2379.
Lea, D. W., Pak, D. K., and Spero, H. J., 2000. Climate impact of late quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719-1724.
Lee, J. H. and Byrne, R. H., 1993. Complexation of Trivalent Rare-Earth Elements (Ce, Eu, Gd, Tb, Yb) by Carbonate Ions. Geochimica Et Cosmochimica Acta 57, 295-302.
Li, H. C., Gu, D. L., and Stott, L. D., 1998. Applications of interannual-resolution stable isotope records of speleothem: climatic changes in Beijing and Tianjin, China during the past 500 years - the delta O-18 record. Science in China Series D-Earth Sciences 41, 362-368.
Li, H. C., Ku, T. L., You, C. F., Cheng, H., Edwards, R. L., Ma, Z. B., Tsai, W. S., and Li, M. D., 2005. Sr-87/Sr-86 and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. Geochimica Et Cosmochimica Acta 69, 3933-3947.
Li, Y. H., 1976. Denudation of Taiwan Island since Pliocene Epoch. Geology 4, 105-108.
Li, Y. H., 1992. Seasalt and Pollution Inputs over the Continental United-States. Water Air and Soil Pollution 64, 561-573.
Li, Y.H., Chen, C.T., Hung, J.J., 1997. Aquatic chemistry of lakes and reservoirs in Taiwan, TAO, 8: 405-426.
Linsley, B. K., Messier, R. G., and Dunbar, R. B., 1999. Assessing between-colony oxygen isotope variability in the coral Porites lobata at Clipperton Atoll. Coral Reefs 18, 13-27.
Liu, C.C., Yu, S.B., 1990. Vertical crystal movements in eastern Taiwan and their tectonic implications. In: Angelier J. (Eds), Geodynamic Evolution of the Eastern Eurasian Margin. Tectonophysics, 183: 111-119.
Louvat, P. and Allegre, C. J., 1997. Present denudation rates on the island of Reunion determined by river geochemistry: Basalt weathering and mass budget between chemical and mechanical erosions. Geochimica Et Cosmochimica Acta 61, 3645-3669.
Louvat, P. and Allegre, C. J., 1998. Riverine erosion rates on Sao Miguel volcanic island, Azores archipelago. Chemical Geology 148, 177-200.
Malinovsky, D., Stenberg, A., Rodushkin, I., Andren, H., Ingri, J., Ohlander, B., and Baxter, D. C., 2003. Performance of high resolution MC-ICP-MS for Fe isotope ratio measurements in sedimentary geological materials. Journal of Analytical Atomic Spectrometry 18, 687-695.
Marshall, A. T., 1996. Calcification in hermatypic and ahermatypic corals. Science 271, 637-639.
Martin, J. M. and Meybeck, M., 1979. Elemental Mass-Balance of Material Carried by Major World Rivers. Marine Chemistry 7, 173-206.
Martin, J. M., Hogdahl, O., and Philippot, J. C., 1976. Rare-Earth Element Supply to Ocean. Journal of Geophysical Research-Oceans and Atmospheres 81, 3119-3124.
Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., and Frisia, S., 2008. A 53 year seasonally resolved oxygen and carbon isotope record from a modem Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth and Planetary Science Letters 269, 80-95.
McConnaughey, T. A. and Whelan, J. F., 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Reviews 42, 95-117.
McConnaughey, T. A., 1986. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology Ph. D. Thesis, University of Washington.
McConnaughey, T. A., 1993. Calcification, photosynthesis and golbal carbon cycles. . Rev Mineral Geochem 93.
Mcconnaughey, T., 1989. C-13 and O-18 Isotopic Disequilibrium in Biological Carbonates .2. Invitro Simulation of Kinetic Isotope Effects. Geochim Cosmochim Ac 53, 163-171.
McCulloch, M. T., Tudhope, A. W., Esat, T. M., Mortimer, G. E., Chappell, J., Pillans, B., Chivas, A. R., and Omura, A., 1999. Coral record of equatorial sea-surface temperatures during the penultimate deglaciation at Huon Peninsula. Science 283, 202-204.
Meybeck, M., 1983. Atmospheric iputs and river transport of dissolved substances. Proc. Hamburg Symp., IAHD publ.: 141p.
Meybeck, M., 1987. Global Chemical-Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science 287, 401-428.
Meybeck, M., Ragu, A., 1996. River Discharges to the Oceans. An assessment of suspended solids, major ions, and nutrients. Environment Information and Assessment Rpt. UNEP, Nairobi, 250 p.
Michard, A., 1989. Rare-Earth Element Systematics in Hydrothermal Fluids. Geochimica Et Cosmochimica Acta 53, 745-750.
Milliman, J. D. and Meade, R. H., 1983. World-Wide Delivery of River Sediment to the Oceans. Journal of Geology 91, 1-21.
Min, G. R., Edwards, R. L., Taylor, F. W., Recy, J., Gallup, C. D., and Beck, J. W., 1995. Annual Cycles of U/Ca in Coral Skeletons and U/Ca Thermometry. Geochimica Et Cosmochimica Acta 59, 2025-2042.
Minnich, M. G. and Houk, R. S., 1998. Comparison of cryogenic and membrane desolvation for attenuation of oxide, hydride and hydroxide ions and ions containing chlorine in inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 13, 167-174.
Mitsuguchi, T., Matsumoto, E., and Uchida, T., 2003. Mg/Ca and Sr/Ca ratios of Porites coral skeleton: Evaluation of the effect of skeletal growth rate. Coral Reefs 22, 381-388.
Murty, D. S. R. and Chakrapani, G., 1996. Preconcentration of rare earth elements on activated carbon and its application to groundwater and sea-water analysis. Journal of Analytical Atomic Spectrometry 11, 815-820.
Negrel, P., Allegre, C. J., Dupre, B., and Lewin, E., 1993. Erosion Sources Determined by Inversion of Major and Trace-Element Ratios and Strontium Isotopic-Ratios in River Water - the Congo Basin Case. Earth and Planetary Science Letters 120, 59-76.
Nesbitt, H. W., 1979. Mobility and Fractionation of Rare-Earth Elements during Weathering of a Granodiorite. Nature 279, 206-210.
Nurnberg, D., Bijma, J., and Hemleben, C., 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica Et Cosmochimica Acta 60, 803-814.
Omata, T., Suzuki, A., Kawahat, H., and Okamoto, M., 2005. Annual fluctuation in the stable carbon isotope ratio of coral skeletons: The relative intensities of kinetic and metabolic isotope effects. Geochim Cosmochim Ac 69, 3007-3016.
Omata, T., Suzuki, A., Sato, T., Minoshima, K., Nomaru, E., Murakami, A., Murayama, S., Kawahata, H., and Maruyama, T., 2008. Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: Long-term culture of Porites spp. Journal of Geophysical Research-Biogeosciences 113, -.
Oomori, T., Kaneshima, H., Maezato, Y., and Kitano, Y., 1987. Distribution Coefficient of Mg-2+ Ions between Calcite and Solution at 10-50-Degrees-C. Mar Chem 20, 327-336.
Orvini, E., Speziali, M., Salvini, A., and Herborg, C., 2000. Rare earth elements determination in environmental matrices by INAA. Microchemical Journal 67, 97-104.
Ozturk, M., 1995. Trends of Trace-Metal (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) Distributions at the Oxic-Anoxic Interface and in Sulfidic Water of the Drammensfjord. Marine Chemistry 48, 329-342.
Palmer, M. R. and Edmond, J. M., 1989. The Strontium Isotope Budget of the Modern Ocean. Earth and Planetary Science Letters 92, 11-26.
Palmer, M. R. and Edmond, J. M., 1992. Controls over the Strontium Isotope Composition of River Water. Geochimica Et Cosmochimica Acta 56, 2099-2111.
Piepgras, D. J. and Jacobsen, S. B., 1992. The Behavior of Rare-Earth Elements in Seawater - Precise Determination of Variations in the North Pacific Water Column. Geochimica Et Cosmochimica Acta 56, 1851-1862.
Platzner, I. T., Habfast, K., Walder, A. J., and Goetz, A., 1997. Modern isotope ratio mass spectrometry. J. Wiley, Chichester ; New York.
Poussel, E., Mermet, J. M., and Deruaz, D., 1994. Dissociation of Analyte Oxide Ions in Inductively-Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry 9, 61-66.
Probst, J. L., Mortatti, J., and Tardy, Y., 1994. Carbon River Fluxes and Weathering Co2 Consumption in the Congo and Amazon River Basins. Applied Geochemistry 9, 1-13.
Prohaska, T., Hann, S., Latkoczy, C., and Stingeder, G., 1999. Determination of rare earth elements U and Th in environmental samples by inductively coupled plasma double focusing sectorfield mass spectrometry (ICP-SMS). Journal of Analytical Atomic Spectrometry 14, 1-8.
Quinn, T. M. and Sampson, D. E., 2002. A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17, -.
Reynaud-Vaganay, S., Ferrier, C., Sambrotto, R., Juillet-Leclerc, A., and Gattuso, J. P., 2002. Effect of feeding on the carbon isotopic composition of the zooxanthellate coral Stylophora pistillata. Geochimica Et Cosmochimica Acta 66, A636-A636.
Reynaud-Vaganay, S., Gattuso, J. P., Cuif, J. P., Jaubert, J., and Juillet-Leclerc, A., 1999. A novel culture technique for scleractinian corals: application to investigate changes in skeletal delta O-18 as a function of temperature. Marine Ecology-Progress Series 180, 121-130.
Richter, F. M., Rowley, D. B., and Depaolo, D. J., 1992. Sr Isotope Evolution of Seawater - the Role of Tectonics. Earth and Planetary Science Letters 109, 11-23.
Rodushkin, I. and Ruth, T., 1997. Determination of trace metals in estuarine and sea-water reference materials by high resolution inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 12, 1181-1185.
Roe, J. E., Anbar, A. D., and Barling, J., 2003. Nonbiological fractionation of Fe isotopes: evidence of an equilibrium isotope effect. Chemical Geology 195, 69-85.
Rose, S. and Fullagar, P. D., 2005. Strontium isotope systematics of base flow in Piedmont Province watersheds, Georgia (USA). Applied Geochemistry 20, 1571-1586.
Rosenthal, Y., Field, M. P., and Sherrell, R. M., 1999. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal Chem 71, 3248-3253.
Rosenthal, Y., Lohmann, G. P., Lohmann, K. C., and Sherrell, R. M., 2000. Incorporation and preservation of Mg in Globigerinoides sacculifer: Implications for reconstructing the temperature and O-18/O-16 of seawater. Paleoceanography 15, 135-145.
Ross, B. S. and Hieftje, G. M., 1991. Alteration of the Ion-Optic Lens Configuration to Eliminate Mass-Dependent Matrix-Interference Effects in Inductively Coupled Plasma Mass-Spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy 46, 1263-1273.
Santos, A., Alonso, E., Callejon, M., and Jimenez, J. C., 2002. Heavy metal content and speciation in groundwater of the Guadiamar river basin. Chemosphere 48, 279-285.
Sanyal, A., Bijma, J., Spero, H., and Lea, D. W., 2001. Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. Paleoceanography 16, 515-519.
Schrag, D. P., 1999. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14, 97-102.
Shen, C. C., Lee, T., Chen, C. Y., Wang, C. H., Dai, C. F., and Li, L. A., 1996. The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochimica Et Cosmochimica Acta 60, 3849-3858.
Shen, G. T. and Boyle, E. A., 1988. Determination of Lead, Cadmium and Other Trace-Metals in Annually-Banded Corals. Chemical Geology 67, 47-62.
Shen, G. T. and Dunbar, R. B., 1994. Environmental Controls on Uranium in Reef Corals. Geochimica Et Cosmochimica Acta 59, 2009-2024.
Shen, G. T., Linn, L. J., Campbell, T. M., Cole, J. E., and Fairbanks, R. G., 1992. A Chemical Indicator of Trade-Wind Reversal in Corals from the Western Tropical Pacific. Journal of Geophysical Research-Oceans 97, 12689-12697.
Sholkovitz, E. R., 1993. The Geochemistry of Rare-Earth Elements in the Amazon River Estuary. Geochim Cosmochim Ac 57, 2181-2190.
Sholkovitz, E.R., 1995. The aquatic chemistry of rare earth elements in rivers and estuaries. Aquatic Geochemi., 1: 1-34
Smedley, P. L., 1991. The Geochemistry of Rare-Earth Elements in Groundwater from the Carnmenellis Area, Southwest England. Geochimica Et Cosmochimica Acta 55, 2767-2779.
Smolders, A. J. P., Hudson-Edwards, K. A., Van der Velde, G., and Roelofs, J. G. M., 2004. Controls on water chemistry of the Pilcomayo river (Bolivia, South-America). Applied Geochemistry 19, 1745-1758.
Smolders, A. J. P., Lock, R. A. C., Van der Velde, G., Hoyos, R. I. M., and Roelofs, J. G. M., 2003. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Archives of Environmental Contamination and Toxicology 44, 314-323.
Spivack, A. J., You, C. F., and Smith, H. J., 1993. Foraminiferal Boron Isotope Ratios as a Proxy for Surface Ocean Ph over the Past 21-Myr. Nature 363, 149-151.
Stallard, R. F. and Edmond, J. M., 1981. Geochemistry of the Amazon .1. Precipitation Chemistry and the Marine Contribution to the Dissolved-Load at the Time of Peak Discharge. Journal of Geophysical Research-Oceans and Atmospheres 86, 9844-9858.
Stallard, R. F. and Edmond, J. M., 1983. Geochemistry of the Amazon .2. The Influence of Geology and Weathering Environment on the Dissolved-Load. Journal of Geophysical Research-Oceans and Atmospheres 88, 9671-9688.
Stallard, R.F., 1980. Major element chemistry of the Amazon River system. Ph.D. dissertation, MIT/WHOI: 365 pp.
Stallard, R.F., 1995. Relating chemical and physical erosion. In: White, A. F., Brantley, S. L. (Eds.). Chemical weathering Rates of Silicate Minerals, Rev. Mineral Geochem., 31: 543-564.
Stanley, J. K. and Byrne, R. H., 1990. The Influence of Solution Chemistry on Ree Uptake by Ulva-Lactuca L in Seawater. Geochimica Et Cosmochimica Acta 54, 1587-1595.
Stephans, C. L., Quinn, T. M., Taylor, F. W., and Correge, T., 2004. Assessing the reproducibility of coral-based climate records. Geophysical Research Letters 31, -.
Stetzenbach, K. J., Amano, M., Kreamer, D. K., and Hodge, V. F., 1994. Testing the Limits of Icp-Ms - Determination of Trace-Elements in-Ground Water at the Part-Per-Trillion Level. Ground Water 32, 976-985.
Stordal, M. C. and Wasserburg, G. J., 1986. Neodymium Isotopic Study of Baffin-Bay Water - Sources of Ree from Very Old Terranes. Earth and Planetary Science Letters 77, 259-272.
Sung, Q.C., Lin, C.W, Lin, W.H., Lin, W.C., 2000. Geological map of Taiwan—Sheet 51, Central Geological Survey, MOEA.
Suzuki, A., Hibino, K., Iwase, A., and Kawahata, H., 2005. Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: Temperature-controlled experiments. Geochim Cosmochim Ac 69, 4453-4462.
Suzuki, A., Yukino, I., and Kawahata, H., 1999. Temperature-skeletal delta O-18 relationship of Porites australiensis from Ishigaki Island, the Ryukyus, Japan. Geochem J 33, 419-428.
Swoboda, S., Brunner, M., Boulyga, S. F., Galler, P., Horacek, M., and Prohaska, T., 2008. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS. Analytical and Bioanalytical Chemistry 390, 487-494.
Tambutte, R., Allemand, D., Mueller, E., and Jaubert, J., 1996. A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199, 1029-1041.
Tanner, S. D., Baranov, V. I., and Bandura, D. R., 2002. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochimica Acta Part B-Atomic Spectroscopy 57, 1361-1452.
Taylor, S. R. and McLennan, S. M., 1985. The continental crust : its composition and evolution : an examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific ; Distributors, USA and Canada, Blackwell Scientific, Oxford ; Boston Palo Alto, Calif.
Tranter, M., Brown, G., Raiswell, R., Sharp, M., and Gurnell, A., 1993. A Conceptual-Model of Solute Acquisition by Alpine Glacial Meltwaters. Journal of Glaciology 39, 573-581.
Treble, P. C., Harrisoin, T. M., Shelley, J. M. G., McKeegan, K., Grove, M., and McCulloch, M. T., 2002. High resolution trace element and oxygen isotope analyses of a modern speleothem. Geochimica Et Cosmochimica Acta 66, A784-A784.
Tricca, A., Stille, P., Steinmann, M., Kiefel, B., Samuel, J., and Eikenberg, J., 1999. Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater. Chemical Geology 160, 139-158.
Tu, K., Flower, M. F. J., Carlson, R. W., Xie, G. H., Chen, C. Y., and Zhang, M., 1992. Magmatism in the South China Basin .1. Isotopic and Trace-Element Evidence for an Endogenous Dupal Mantle Component. Chemical Geology 97, 47-63.
Uchida, S., Tagami, K., Tabei, K., and Hirai, I., 2006. Concentrations of REEs, Th and U in river waters collected in Japan. Journal of Alloys and Compounds 408, 525-528.
Umashankar, V., Radhamani, R., Ramadoss, K., and Murty, D. S. R., 2002. Simultaneous separation and preconcentration of trace elements in water samples by coprecipitation on manganese dioxide using D-glucose as reductant for KMnO4. Talanta 57, 1029-1038.
Vaks, A., Bar-Matthews, M., Ayalon, A., Schilman, B., Gilmour, M., Hawkesworth, C. J., Frumkin, A., Kaufman, A., and Matthews, A., 2003. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quaternary Research 59, 182-193.
Vanhaecke, F., VanHolderbeke, M., Moens, L., and Dams, R., 1996. Evaluation of a commercially available microconcentric nebulizer for inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 11, 543-548.
Veron, J. E. N., 1986. Corals of Australia and the Indo-Pacific. Angus & Robertson, North Ryde, NSW, Australia.
Verplanck, P. L., Antweiler, R. C., Nordstrom, D. K., and Taylor, H. E., 2001. Standard reference water samples for rare earth element determinations. Applied Geochemistry 16, 231-244.
Viers, J., Dupre, B., Braun, J. J., Deberdt, S., Angeletti, B., Ngoupayou, J. N., and Michard, A., 2000. Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments. Chemical Geology 169, 211-241.
Viers, K. and Wasserburg, G. J., 2004. Behavior of Sm and Nd in a lateritic soil profile. Geochimica Et Cosmochimica Acta 68, 2043-2054.
Walder, A. J. and Freedman, P. A., 1992. Isotopic Ratio Measurement Using a Double Focusing Magnetic-Sector Mass Analyzer with an Inductively Coupled Plasma as an Ion-Source. Journal of Analytical Atomic Spectrometry 7, 571-575.
Water Resource Agency Hydrological Yearbook, 2004. E-book, Water Resource Agency, Ministry of Economic Affair, Taiwan, R.O.C.
Weber, J. N. and White, E. W., 1974. Activation-Energy for Skeletal Aragonite Deposited by Hermatypic Coral Platygyra Spp. Mar Biol 26, 353-359.
Weber, J. N. and Woodhead, P. M., 1972. Temperature Dependence of Oxygen-18 Concentration in Reef Coral Carbonates. Journal of Geophysical Research 77, 463-&.
Wei, G. J., Sun, M., Li, X. H., and Nie, B. F., 2000. Mg/Ca, Sr/Ca and U/Ca ratios of a porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeogr Palaeocl 162, 59-74.
West, A. J., Bickle, M. J., Collins, R., and Brasington, J., 2002. Small-catchment perspective on Himalayan weathering fluxes. Geology 30, 355-358.
West, A. J., Galy, A., and Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters 235, 211-228.
White, A. F., Bullen, T. D., Vivit, D. V., Schulz, M. S., and Clow, D. W., 1999. The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica Et Cosmochimica Acta 63, 1939-1953.
White, W. M., Albarede, F., and Telouk, P., 2000. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology 167, 257-270.
Wiederin, D. R., Houk, R. S., Winge, R. K., and Dsilva, A. P., 1990. Introduction of Organic-Solvents into Inductively Coupled Plasmas by Ultrasonic Nebulization with Cryogenic Desolvation. Analytical Chemistry 62, 1155-1160.
Wieser, M. E., 2006. Atomic weights of the elements 2005 - (IUPAC technical report). Pure and Applied Chemistry 78, 2051-2066.
Wolf-Gladrow, D. A., Riebesell, U., Burkhardt, S., and Bijma, J., 1999. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus Series B-Chemical and Physical Meteorology 51, 461-476.
Xie, Z. Q., Sun, L. G., Zhang, P. F., Zhao, S. P., Yin, X. B., Liu, X. D., and Cheng, B. B., 2005. Preliminary geochemical evidence of groundwater contamination in coral islands of Xi-Sha, South China Sea. Applied Geochemistry 20, 1848-1856.
Yeghicheyan, D., Carignan, J., Valladon, M., Le Coz, M. B., Le Cornec, F., Castrec-Rouelle, M., Robert, M., Aquilina, L., Aubry, E., Churlaud, C., Dia, A., Deberdt, S., Dupr, B., Freydier, R., Gruau, G., Henin, O., de Kersabiec, A. M., Mace, J., Marin, L., Morin, N., Petitjean, P., and Serrat, E., 2001. A compilation of silicon and thirty one trace elements measured in the natural river water reference material SLRS-4 (NRC-CNRC). Geostandards Newsletter-the Journal of Geostandards and Geoanalysis 25, 465-474.
You, C. F., Lee, T., Brown, L., Shen, J. J. S., and Chen, J. C., 1988. Be-10 Study of Rapid Erosion in Taiwan. Geochimica Et Cosmochimica Acta 52, 2687-2691.
Yuan, F. S. and Miyamoto, S., 2005. Dominant processes controlling water chemistry of the Pecos River in American southwest. Geophysical Research Letters 32, -.
Zhang, J. and Nozaki, Y., 1998. Behavior of rare earth elements in seawater at the ocean margin: A study along the slopes of the Sagami and Nankai troughs near Japan. Geochimica Et Cosmochimica Acta 62, 1307-1317.
Zhang, T. H., Shan, X. Q., Liu, R. X., Tang, H. X., and Zhang, S. Z., 1998. Preconcentration of rare earth elements in seawater with poly(acrylaminophosphonic dithiocarbamate) chelating fiber prior to determination by inductively coupled plasma mass spectrometry. Analytical Chemistry 70, 3964-3968.
Zheng, J. and Yamada, M., 2005. Vertical distributions of Pu239+240 activities and Pu-240/Pu-239 atom ratios in sediment cores: implications for the sources of Pu in the Japan Sea. Science of the Total Environment 340, 199-211.
Zhu, Y. B., Itoh, A., Fujimori, E., Umemura, T., and Haraguchi, H., 2006. Determination of rare earth elements in seawater by ICP-MS after preconcentration with a chelating resin-packed minicolumn. Journal of Alloys and Compounds 408, 985-988.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top