(3.236.175.108) 您好!臺灣時間:2021/02/27 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林建志
研究生(外文):Chien-Chih Lin
論文名稱:電漿化學氣相沉積順向成長及組裝奈米碳管
論文名稱(外文):The growth characteristics and assembly of oriented carbon nanotubes prepared by PECVD
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:133
中文關鍵詞:奈米碳管順向性方向性成長直接成長組裝成長後組裝
外文關鍵詞:carbon nanotubesalignmentdirectional growthpost-growth assemblydirect-growth assembly
相關次數:
  • 被引用被引用:3
  • 點閱點閱:215
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
由於奈米碳管具備異向性質,為整合運用於各類元件並正確利用其異向性,必須於適當圖案位置上控制其方向,以獲得預期功能與效率。本論文研究電漿化學氣相沉積奈米碳管成長、方向性控制及組裝,其目的為開發成長過程中與成長後之碳管方向性及圖案組裝技術。除於成長過程中提供含鈦物種,定性探討低溫成長機制外,並以電漿中電場特性搭配觸媒奈米點製造技術,控制奈米碳管成長方向及位置,探討影響方向性成長及有序陣列成長的原因;此外,並分別以磁場及水分子毛細力組裝碳管排列方向與薄膜圖案型態,瞭解相關組裝機制與特性,以符合奈米碳管應用需求。
本研究所獲結論概述如下:在TiCl4/CH4/H2/N2電漿氣氛下,無觸媒之空白基板上可沉積TiCN鍍層,但於含鎳觸媒之基板上,僅藉觸媒輔助成長奈米碳管,表面則有含鈦非晶質層沉積。此同軸結構及觸媒電子繞射分析顯示鈦原子無法溶入觸媒並擴散析出。鈦與碳原子於鎳觸媒顆粒中之選擇性溶解與擴散差異,可證實本研究於580℃成長碳管時,觸媒顆粒仍維持固態。
可藉簡易之鞘層電場控制技術,操控單支離散奈米碳管(或纖維)的順向成長方向。鞘層中固定方向的電場可使碳管(或纖維)沿其方向順向排列成長,因此,於鞘層範圍內調整試片傾斜角度,碳管可組裝形成不同預定的排列方向。但成長高密度束狀碳管時則無法改變排列方向,傾斜基板上之束狀碳管仍垂直基板表面成長,其順向機制由高密度碳管間的凡得瓦力主導,而非電場控制。
在中空陰極電漿下,可獲得特殊且呈對稱方向成長的碳纖維型態,其原因為中空陰極電漿於基材表面施予特殊電場分佈所致。由於電場反轉特性,兩種順向成長趨勢共存,沿中空陰極橫軸方向之碳纖維為收斂方向成長,縱軸方向則呈現發散型態。
利用外加磁場組裝已成長之順向奈米碳管,並探討其組裝機制,其中碳管一端含殘留觸媒顆粒。由碳管薄膜之磁滯曲線鑑定,搭配觸媒顆粒的晶體方向分析,可確認碳管平行磁場方向排列的原因為頂端鐵磁顆粒之形狀磁異向性,而非由觸媒本質之晶體磁異向性產生。
結合奈米壓印技術製備週期性鎳奈米點,可成長有序碳管陣列。由於TiN中介層具低表面能,成長時圖案奈米點傾向分裂為更小顆粒,造成小直徑碳管團簇成長而降低有序程度。然而,可藉改變成長氣氛以調整觸媒的表面張力而避免分裂,達成有序成長。
最後提出以浸潤自組裝方式改善碳管薄膜之場發射性質。起始電場由組裝前5.75 V/μm降低至組裝後2.5 V/μm,其原因為潤濕後之碳管薄膜組裝為尖錐圖案型態,降低屏蔽效應。
To properly utilize the anisotropic properties of carbon nanotubes (CNTs) in device applications, the control of the CNT orientations on patterned positions is a necessity since this would largely determine the device funtionality and performance. The growth, orientation control, and related assembly of CNTs are explored in this study. The main purposes are to develop the direct-growth and post-growth assembly techniques to achieve orientation control and patterning. The growth mechanism of CNTs is qualitatively examined by simultaneously supplying Ti species for CNT growth. By employing the physical characteristics of electric fields in plasma and the fabrication of catalyst dots, the directional and patterned growth of CNTs are investigated. In addition, the self-assemblies of the CNT orientations and arrangemnts by external magnetic fields and capillary forces respectively are also described.
Under a TiCl4/CH4/H2/N2 plasma ambient, a continuous TiCN film is formed in the absence of catalysts; however, only CNTs are grown through the catalytic vapor growth, with the amorphous Ti-containing layers coated on their surfaces. The obtained coaxial structure and the electron diffraction analysis of catalysts support that Ti atoms hardly dissolve into the catalyst and pass through it. Selective dissolution and diffusion between the Ti and C atoms in Ni nanoparticles suggest that catalysts during the growth of CNTs at 580oC are in solid state.
The aligned growth of isolated CNTs and carbon nanofibers (CNFs) via a simple sheath-dependent technique for orientation control is demonstrated. The electric field within the plasma sheath contributes to the aligned growth with an absolute orientation, and can be used to direct the assembly of CNTs/ CNFs in a predetermined manner relative to the substrate by tilting the sample in a sheath region. However, the alignment of high-density CNT bundles grown on inclined substrates is always perpendicular to the surfaces. The alignment mechanism of CNT bundles is dominated by the van der Waals forces even under the electric fields.
CNFs with specific and symmetrically aligned configurations are grown on a flat surface during hollow cathode discharge (HCD). The alignment results from a unique electric field distribution imposed on the substrate surface in the HCD environment. Due to the field reversal characteristic, two alignment trends simultaneously occur. For the transverse direction of the channel, the grown CNFs on the substrate appear in a convergent manner, while those along the longitudinal direction exhibit a radiative arrangement.
Magnetic post-assembly of aligned CNTs only having catalyst nanoparticles capped at one end and the related assembly mechanisms are described. The reason why the CNT orientation aligns parallel to the field direction is mainly attributed to the magnetic shape anisotropy rather than the crystalline anisotropy, of the encapsulated ferromagnetic nanoparticle, based on the identification of the hysteresis loops for the as-grown CNT films as well as the analysis of the relative crystal orientations of catalysts with respect to the alignment axis.
Ordered arrays of aligned CNTs are grown from periodic arrays of Ni dots defined by nanoimprint lithography. Due to the low surface energy of the TiN interlayers employed, the patterned Ni dots tend to break into smaller nanoparticles during growth, thus resulting in the growth of smaller diameter nanotubes and the decrease in ordering. However, by adjusting the growth conditions with consequent modification of the surface tension of catalysts, isolated ordered CNT arrays can be prepared without the occurrence of catalyst breaking.
Finally, a wetting-induced self-assembly strategy is proposed to enhance the field emission properties of CNT films.�n The turn-on field reduces from 5.75 V/μm (for the as-grown CNT films) to 2.5 V/μm (for the re-arranged CNTs), where the improvement arises from the reduction of screening effect since the CNT films are assembled into patterned tower-like structures.
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅴ
總目錄 Ⅵ
表目錄 Ⅸ
圖目錄 Ⅹ
中英名詞與符號對照表 ⅩⅦ
第一章 緒論 1
第二章 理論基礎與文獻回顧 5
2-1 電漿原理 5
2-1-1 電漿化學與特性 5
2-1-2 電漿輔助化學氣相沉積 6
2-1-3 中空陰極電漿 7
2-2 奈米碳管結構與電性關係 8
2-2-1 單壁奈米碳管 8
2-2-2 多壁奈米碳管 10
2-3 奈米碳管氣相成長機制 10
2-3-1 頂部與底部成長模式 11
2-3-2 碳原子擴散路徑 12
2-3-3 擴散驅動力 12
2-4 電場輔助奈米碳管順向成長 13
2-5 奈米壓印技術 16
2-6 電子場發射特性 17
第三章 實驗方法與步驟 20
3-1 實驗流程 20
3-2 電漿化學氣相沉積系統設備 21
3-3 材料的選用 23
3-3-1 反應氣體 23
3-3-2 基板材料 23
3-3-3 製備觸媒之材料 23
3-3-4 壓印用材料 24
3-4 實驗參數與步驟 24
3-4-1 觸媒製備 24
3-4-2 電漿化學氣相沉積法成長奈米碳管 24
3-4-1 3-4-3 奈米碳管低溫成長機制研究 26
3-4-4 以外加磁場組裝奈米碳管 26
3-5 奈米碳管的分析與鑑定 27
第四章 奈米碳管低溫成長機構 30
4-1 前言 30
4-2 成長氣氛中TiCl4添加的效應 31
4-3 觸媒物理狀態的推測 37
第五章 直接成長組裝 40
--- 控制奈米碳管成長方向與位置
5-1 前言 40
5-2 以鞘層電場控制奈米碳管成長方向 42
5-2-1 鞘層中成長行為及方向性控制 42
5-2-2 改變碳管成長方向 49
5-2-3 束狀碳管於電漿環境中順向成長機制 51
5-2-4 方向性碳管偏極化拉曼分析 57
5-2-5 碳管排列方向對場發射性質之影響 57
5-3 中空陰極電漿方向性成長奈米碳纖維 61
5-4 結合奈米壓印技術成長有序碳管陣列 75
5-4-1 點狀圖案觸媒與碳管陣列製備 76
5-4-2 氣氛與基材表面能對成長碳管陣列的影響 81
5-4-3 高度/間距比值對場發射性質的影響 84
第六章 成長後組裝 88
--- 奈米碳管的方向性排列與薄膜型態組裝
6-1 前言 88
6-2 以外加磁場組裝含觸媒顆粒之奈米碳管 88
6-2-1 磁場與觸媒顆粒存在與否對組裝的影響 90
6-2-2 觸媒顆粒易磁化方向及方向性排列機制 95
6-2-3 磁組裝碳管之電性 103
6-3 奈米碳管浸潤自組裝 110
6-3-1 碳管薄膜潤濕特性 110
6-2-1 浸潤自組裝圖案對場發射性質之影響 114
第七章 總結論 119
參考文獻 121
自述 131
著作 131
1.A. Oberlin, M. Endo, and T. Koyana, “High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition”, J. Crys. Growth 32 (1976) 335.
2.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene”, Nature 318 (1985) 162.
3.S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991) 56.
4.D. S. Bethune, C. H. Klang, M. S. De Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls”, Nature 363 (1993) 605.
5.S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature 363 (1993) 603.
6.F. Kreup, A. P. Graham, M. Liebau, G. S. Duseburg, R. Seidel, and E. Unger, “Carbon nanotubes for interconnect applications,” Electron Devices Meeting (2004) IEDM Technical Digest, IEEE International 683.

7.H. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, and H. K. Schmidt, “Dielectrophoresis field flow fractionation of single-walled carbon nanotubes”, J. Am. Chem. Soc. 128 (2006) 8396.
8.D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi, “Single-walled carbon nanotube growth from highly activated metal nanoparticles”, Nano Lett. 6 (2006) 2642.
9.X. Wang, Y. Liu, G. Yu, C. Xu, J. Zhang, and D. Zhu, “ Anisotropic electrical properties of aligned carbon nanotube films,” J. Phys. Chem. B 105 (2001) 9422.
10.J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal properties of magnetically aligned single wall carbon nanotube films”, Appl. Phys. Lett. 77 (2000) 666.
11.T. Borca-Tasciuc, S. Vafaei, D. A. Borca-Tasciuc, B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays”, J. Appl. Phys. 98 (2005) 054309.
12.X. B. Wang, Y. Q. Liu, G. Yu, C. Y. Xu, J. B. Zhang, and D. B. Zhu, “ Anisotropic electrical transport properties of aligned carbon nanotube films”, J. Phys. Chem. B 105 (2001) 9422.

13.P. L. Dickrell, S. B. Sinnott, D. W. Hahn, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, and W. G. Sawyer, “Frictional anisotropy of oriented carbon nanotube surfaces”, Tribology Lett. 18 (2005) 59.
14.Y. Murakami, S. Chiashi, Y. Miyauchi, M. H. Hu, M. Ogura, T. Okubo, and S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy”, Chem. Phys. Lett. 385 (2004) 298.

15.W. I. Miline, K. B. T. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien Binh, and O. Groening, “Carbon nanotubes as field emission sources”, J. Mater. Chem. 14 (2004) 933.
16.J. Hedberg, L. Dong, and J. Jiao, “Air flow technique for large scale dispersion and alignment of carbon nanotubes on various substrates”, Appl. Phys. Lett. 86 (2005) 143111.

17.M. D. Lay, J. P. Novak, and E. C. Snow, “Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes”, Nano Lett. 4 (2004) 603.

18Y. T. Jang, S. I. Moon, J. H. Ahn, Y. H. Lee, and B. K. Ju, “A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes”, Sensors and Actuators B 99 (2004) 118.
19.V. I. Merkulov, A. V. Melechko, M. A. Guillorn, M. L. Simpson, D. H. Lowndes, J. H. Whealton, and R. J. Raridon, “Controlled alignment of carbon nanofibers in a large-scale synthesis process”, Appl. Phys. Lett. 80 (2002) 4816.
20.B. Sun and H. Sirringhaus, “Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods”, Nano Lett. 5 (2005) 2408.

21.趙化橋,“等離子體化學與工藝”,中國科技技術大學出版社,合肥,1993,p.112.
22.梁國超,“以中空陰極化學氣相沉積法成長鑽石膜及碳微管”,國立成功大學化學工程研究所博士論文,2000,p.17.
23.A. D. White, “New hollow cathode glow discharge”, Appl. Phys Lett. 30 (1959) 711.
24.M. T. Ngo, K. H Schoenbach, G. A. Gerdin, and J. H.Lee, “The temporal development of hollow cathode discharges”, IEEE Trans. Plasma Sci. 18 (1990) 669.
25.郭有斌,“微中空陰極陣列常壓電漿與低溫成長碳奈米結構”,國立成功大學化學工程研究所博士論文,2003,p.70.
26.M. Meyyappan, “Carbon nanotubes: science and application”, CRC PRESS, New York 2005, pp.4-5 and p.111.
27.R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotube-the route toward applications”, Science 297 (2002) 787.
28.M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon 33 (1995) 883.
29.R. T. K. Baker and P.S. Harries, “Chemistry and physics of carbon”, Marcel Dekker, New York 1978, p.83.
30.S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chem. Phys. Lett. 315 (1999) 25.
31.R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite,“Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene”, J. Catal. 30 (1973) 86.
32.A. Oberlin, M. Endo, and T. Koyama, “High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition”, Jap. J. Appl. Phys. 16 (1997) 1519.
33.R. T. Yang and K. L. Yang, “Evidence for temperature-driven carbon diffusion mechanism of coke deposition on catalysts", J. Catal. 93 (1985) 182.
34.J. R. Nielsen and D. L. Trimm, “Mechanisms of carbon formation on nickel-containing catalysts”, J. Catal. 48 (1977) 155.
35.Y. Avigal and R. Kalish, “Growth of aligned carbon nanotubes by biasing during growth”, Appl. Phys. Lett. 78 (2001) 2291.
36.Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenlimez, J. Kong, and H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett. 79 (2001) 3155.
37.M. Tanemura, K. lwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip,“Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition : Optimization of growth parameters”, J. Appl. Phys. 90 (2001) 1529.
38.Y. H. Wang, J. Lin, C. H. A. Huan, and G. S. Chen,“Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition”, Appl. Phys. Letts. 79 (2001) 680.
39.V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M L Simpson, “Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett. 79 (2001) 2970.
40.C. Bower, W. Zhu, S. Jin, and O. Zhou, “Plasma-induced alignment of carbon nanotubes”, Appl. Phys. Lett. 77 (2000) 830.
41.Y. Hayashii, T. Negishi, and S. Nishino,“Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted dc plasma chemical vapor deposition”, J. Vac. Sci. Technol. A 194 (2001) 1796.
42.Y. Chen, D. T. Shaw, and L. Guo,“Field emission of different oriented carbon nanotubes”, Appl. Phys. Lett. 76 (2000) 2469.
43.D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication”, J. Vac. Sci. Technol. B 21 (2003) 2624.
44.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-nm vias and trenches on polymers”, Appl. Phys. Lett. 67 (1995) 3114.
45.C. G. Willson, M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Tailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, and J. G. Ekerdt, “Step and flash imprint lithography: A new approach to high-resolution printing”, Proc. SPIE 3676 (1999) 379.
46.Y. Xia and G. M. Whitesides, “Soft lithography”, Annu. Rev. Mater. Sci. 28 (1998) 153.
47Y. Chen, O. Zhou, “Field emission from carbon nanotubes”, C. R. Physique 4 (2003) 1021.
48.R. H. Fowler and L. W. Nordfeim, “Electron emission intense electric fields”, Proceedings of of the Royal Society of London-A 119 (1928) 173.
49.W. A. de Heer, A. Ch�繑elain, and D. Ugarte, “A carbon nanotube field emission electron source”, Science 270 (1995) 1179.
50.T. Utsumi, “Vacuum microelectronics: what's new and exciting”, IEEE Trans. Electron Dev. 38 (1991) 2276.
51.M. Endo, K. Takeuchi, K. Takahashi, H. W. Kroto, and A. Sakar, “Pyrolytic carbon nanotubes from vapor-grown carbon fibers”, Carbon 33 (1995) 873.
52.Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett. 76 (2000) 2367.
53.Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot”, Appl. Phys. Lett. 75 (1999) 1086.
54.Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Huang, “Growth of aligned carbon nanotubes with controlled site density”, Appl. Phys. Lett. 80 (2002) 4018.
55.Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth”, J. Am. Chem. Soc. 123 (2001) 3165.
56.P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles”, Phys. Rev. A. 13 (1976) 2287.
57.Y. Homma, Y. Kobayachi, T. Ogino, D. Takagi, R. Ito, Y. J. Jung, and P. M. Ajayan, “Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition”, J. Phys. Chem. B 107 (2003) 12161.
58Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, “Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes”, J. Phys. Chem. B 105 (2001) 11424.
59.T. I. Kamins, R. Stanley Williams, D. P. Basile, T. Hesjidal, and J. S. Harris, “Ti-catalyzed Si nanowire by chemical vapor deposition: microscopy and growth mechanism”, J. Appl. Phys. 89 (2001) 1008.
60.Y. Yuan and J. Pan, “The effect of vapor phase on the growth of TiC whiskers prepared by chemical vapor deposition”, J. Crystal Growth 193 (1998) 585.
61.Y. Chen, J. Pan, and X. Huang, “The effect of deposition temperature on the growth of TiC whiskers by the vapor-liquid-solid mechanism”, J. Crystal Growth 172 (1997) 171.
62.C. H. Liang, G. W. Meng, W. Chen, Y. W. Wang, and L. D. Zhang, “Growth and characterization of TiC nanorods activated by nickel nanoparticles”, J. Crystal Growth 220 (2000) 296.
63.G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim, “Carbon nanotubes synthesized by Ni-assisted atatmospheric pressure thermal chemical vapor deposition”, J. Appl. Phys. 91 (2002) 3847.
64.J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. L. Cho, and K. S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays”, Appl. Phys. Letts. 78 (2001) 901.
65.J. G. Wen, Z. P. Huang, D. Z. Wang, J. H. Chen, S. X. Yang, Z. F. Ren, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, “Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films”, 2001 J. Mater. Res. 16 3246.

66.B. Wolf , “Handbook of Ion Sources CRC Press”, New York 1995, p. 42
67.C. Journet, S. Moulinet, C. Ybert, S. T. Purcell, and L. Bocquet, “Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure”, Europhys. Lett. 71 (2005) 104.
68.A. Huczko, H. Lange, M. Sioda, Y. Q. Zhu, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, “Hollow cathode plasma synthesis of carbon nanofiber arrays at low temperature”, J. Phys. Chem. B 106 (2002) 1534.
69.B. Chapman, “Glow Discharge Processes”, Wiley, New York 1980, p.52. and p. 56.
70.E. M. Purcell, “Electricity and Magnetism”, McGraw-Hill, Singapore 1985, p. 76.
71.V. I. Merkulov, A. V. Melechko, M. A. Guillorn, M. L. Simpson, D. H. Lowndes, J. H. Whealton, and R, J, Raridon, “Controlled alignment of carbon nanofibers in a large-scale synthesis process”, Appl. Phys. Lett. 80 (2002) 4816.
72.K. Yukimura, “Plasma-based ion implantation and its application to three-dimensional materials”, Surf. Coat. Technol. 136 (2001) 1.
73.B. C. Satishkumar, P. John Thomas, A. Govindaraj, and C. N. R. Rao, “Y-junction carbon nanotubes”, Appl. Phys. Lett. 77 (2000) 2530.

74.L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, “Pure carbon nanoscale devices: Nanotube heterojunctions”, Phys. Rev. Lett. 76 (1995) 971.

75.Z. Yao, H. W. Ch. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions”, Nature 402 (1999) 273.

76.J. H. Cho and G. H. Kim, “Etching of multi-walled carbon nanotubes using energetic plasma ions”, Jpn. J. Appl. Phys. 45 (2006) 8317.
77.D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O’Connell, K. Smith, D. T. Colbert, and R. E. Samlley, “In-plane-aligned membranes of carbon nanotubes”, Chem. Phys. Lett. 338 (2001) 14.
78.H. Shimoda, S. J. Oh, H. Z. Geng, R. J. Walker, X. B. Zhang, L. E. NcNeil, and O. Zhou, “Self-assembly of carbon nanotubes”, Adv. Mater. 14 (2002) 899.
79.S. M. Jung, J. Hahn, H. Y. Jung, and J. S. Suh, “Clean carbon nanotube aligned horizontally”, Nano Lett. 6 (2006) 1569.
80.K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin, and W. W. Byszewski, “Microhollow cathode discharges”, Appl. Phys. Lett. 68 (1996) 13.
81.Q. Yang, C. Xiao, W. Chen, A. K. Singh, T. Asai, and A. Hirose, “Growth mechanism and orientation control of well-aligned carbon nanotubes”, Diam. Relat. Mater. 12 (2003) 1482.

82.J. F. AuBuchon, L. H. Chen, A. I. Gapin, D. W. Kim, C. Daraio, and S. Jin, “Multiple sharp bendings of carbon nanotubes during growth to produce zigzag morphology”, Nano Lett. 4 (2004) 1781.
83.S. Huang, M. Woodson, R. Smalley, and J. Liu, “Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process”, Nano Lett. 4 (2004) 1025.
84.A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of single-walled carbon nanotubes on surfaces”, Appl. Phys. Lett. 81 (2002) 3464.

85.T. J. Somerer, W. N. G. Hitchon, and J. E. Lawler, “Self-consistent kinetic model of the cathode fall of a glow discharge”, Phys. Rev. A 39 (1989) 6356.
86.N. Baguer, A. Bogaerts, and R. Gijbels, “Hollow cathode glow discharge in He: Monte Carlo-fluid model combined with a transport model for the metastable atoms”, J. Appl. Phys. 93 (2003) 47.

87.N. Baguer, A. Bogaerts, and R. Gijbels, “Hybrid model for a cylindrical hollow cathode glow discharge and comparison with experiments”, Spectrochimica Acta Part B 57 (2002) 311.

88.D. J. Sturges and H. J. Oskam, “Studies of properties of hollow cathode glow discharge in Helium + Neon”, J. Appl. Phys. 35 (1964) 2887.
89.K. H. Schoenbach, M. Moselhy, W. Shi, and R. Bentley, “Microhollow cathode discharges”, J. Vac. Sci. Technol. A 21 (2003) 1260.
90.J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, “Highly-ordered carbon nanotube arrays for electronic applications”, Appl. Phys. Lett. 75 (1999) 367.
91.R. Krishnan, H. Q. Nguyen, C. V. Thompson, W. K. Choi, and Y. L. Foo, “Wafer-level ordered arrays of aligned carbon nanotubes with controlled size and spacing on silicon”, Nanotechnology 16 (2005) 841.
92.H. N Lin, Y. H. Chang, J. H. Yen, J. H. Hsu, I. C. Leu, and M. H. Hon, “Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force microscopy nano-oxidation”, Chem. Phys. Lett. 399 (2004) 422.
93.Z. P. Huang, D. L. Carnahan, J. Rybczynsky, M. Giersig, M. Sennett, D. Z. Wang, J. G. Wen, K. Kempa, and Z. F. Huang, “Growth of large periodic arrays of carbon nanotubes”, Appl. Phys. Lett. 82 (2003) 460.
94.K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic crystal based on periodic arrays of aligned carbon nanotbes”, Nano Lett. 3 (2003) 13.
95.S. M. C. Vieira, K. B. K. Teo, W. I. Milne, O. Gr�圢ing, L. Gangloff, E. Minoux, and P. Legagneux, “Investigation of field emission properties of carbon nanotube arrays defined using nanoimprint lithography”, Appl. Phys. Lett. 89 (2006) 022111.
96.W. J. Dauksher, N. V. Le, E. S. Ainley, K. J. Nordquist, K. A. Gehoski, S. R. Young, J. H. Baker, D. Convey, and P. S. Mangat, “Nano-imprint lithography: templates, imprinting, and wafer pattern transfer”, Microelectronic Engineering 83 (2006) 929.
97.S. J. Choi, P. J. Yoo, S. J. Bake, T. W. Kim, and H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography”, J. Am. Chem. Soc. 126 (2004) 7744.
98P. M. Parthangal, R. E. Cavicchi, and M. R. Zachariah, “A generic process of growing aligned carbon nanotube arrays on metals and metal alloys”, Nanotechnology 18 (2007) 185605.
99.S. J. Randolph, J. D. Fowlkes, A. V. Melechko, K. L. Klein, H. M. Meyer III, M. L. Simpson , and P D Rack, “Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth”, Nanotechnology 18 (2007) 465304.
100W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, “Effect of a titanium cap in reducing interfacial oxides in the formation of nickel silicide”, J. Appl. Phys. 91 (2002) 2901.
101.H. Ohno, D. Takagi, K. Yamada, S. Chiashi, A Tokura, and Y. Homma, “Growth of vertically aligned single-walled carbon nanotubes on alumina and sapphire substrates”, Jpn. J. Appl. Phys. 47 (2008) 1956.
102.L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett. 76 (2000) 2071.
103.Y. Yan, M. B. Chan-Park, and Q. Zhang, “Advances in carbon-nanotube assembly”, Small 3 (2007) 24.
104.I. Dierking, G. Scalia, and P. Morales, “Liquid crystal-carbon nanotube dispersions”, J. Appl. Phys. 97 (2005) 044309.
105.C. J. Strobl, C. Sch�矚lein, U. Beierlein, J. Ebbecke, and A. Wixforth, “Carbon nanotube alignment by surface acoustic waves”, Appl. Phys. Lett. 23 (2004) 1427.
106.L. Huang, X. Cui, G. Dukovic, and S. P. O’Brien, “Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions”, Nanotechnology 15 (2004) 1450.
107.O. Li, Y. T. Zhu, I. A. Kinloch, and A. H. Windle, “Self-organization of carbon nanotubes in evaporating droplets”, J. Phys. Chem. B. 110 (2006) 13926.
108.J. Hedberg, L. Dong, and J. Jiao, “Air flow technique for large scale dispersion and alignment of carbon nanotubes on various substrates”, Appl. Phys. Lett. 86 (2005) 143111.
109.D. Mattia, M. P. Rossi, B. M. Kim, G. Korneva, H. H. Bau, and Y. Gogotsi, “Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotube and films”, J. Phys. Chem. B. 110 (2006) 9850.
110.T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, and M. Yumura, “Polymer composites of carbon nanotubes aligned by a magnetic field”, Adv. Mater. 14 (2002) 1380.
111.H. Garmestani, M. S. Al-Haki, K. Dahmen, R. Tannenbaum, D. Li, S. S. Sablin, and M. Y. Hussaini, “Polymer-mediated alignment of carbon nanotubes under high magnetic fields”, Adv. Mater. 15 (2003) 1918.
112.M. A. Correa-Duarte, M. Grzelczak, V. Salgueiri�瓨-Maceira, M. Giersig, L. M. Liz-Marz�鴨, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles”, J. Phys. Chem. B. 109 (2005) 19060.
113.G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. C. Bradley, and K. G. Kornev, “Carbon nanotubes loaded with magnetic particles”, Nano Lett. 5 (2005) 879.
114.K. Kord�龍, T. Mustonen, G. T�瀟h, J. V�鑷�驥angas, A. Uusim�驥i, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions”, Chem. Mater. 19 (2007) 787.
115.D. P. Long, J. L. Lazorcik, and R. Shashidhar, “Magnetically directed self-assembly of carbon nanotube devices”, Adv. Mater. 16 (2004) 814.
116.S. Niyogi, C. Hangarter, R. M. Thamankar, Y. F. Chiang, R. Kawakami, N. V. Myung, and R. C. Haddon, “Magnetically assembled multiwalled carbon nanotubes on ferromagnetic contacts”, J. Phys. Chem. B. 108 (2004) 19818.
117.J. Tumpane, N. Karousis, N. Tagmatarchis, and B. Nord�聲, “Alignment of carbon nanotubes in weak magnetic fields”, Angew. Chem. Int. Ed. 47 (2008) 5148.
118.C. Gao, W. Li, H. Morimoto, Y. Nagaoka, and T. Naekawa, “Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and applications in biomanipulations”, J. Phys. Chem. B. 110 (2006) 7213.
119.A. K. Bentley, J. S. Trethewey, A. B. Ellis, and W. C. Crone, “Magnetic manipulation of copper-tin nanowires capped with nickel ends”, Nano Lett. 4 (2004) 487.
120.H. Ko and V. V. Tsukruk, “Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors”, Nano Lett. 6 (2006) 1443.
121.C. Kittel, “Introduction to Solid State Physics 8th edition”, John Wiley & Sons Inc 2005, p.348 and p. 354.
122.M. Tanase, D. M. Silevitch, A. Hultgren, L. A. Bauer, P. C. Searson, G. J. Meyer, and D. H. Reich, “Magnetic trapping and self-assembly of multicomponent nanowires”, J. Appl. Phys. 91 (2002) 8549.
123.Y. H. Shin and S. Hong, “Carbon diffusion around the edge region of nickel nanoparticles”, Appl. Phys. Lett. 92 (2008) 043103.
124.M. Lin, J. P. Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok, and Y. L. Foo, “Dynamic observation of bamboo-like carbon nanotube growth”, Nano Lett. 7 (2007) 2234.
125.S. Helveg, C. L�櫝ez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. N�廨skov, “Atomic-scale imaging of carbon nanofiber growth”, Nature 427 (2004) 426.
126.M. H. Kuang, Z. L. Wang, X. D. Bai, J. D. Guo, and E. G. Wang, “Catalytically active nickel {110} surfaces in growth of carbon tubular structures”, Appl. Phys. Lett. 76 (2000) 1255.
127.K. H. Lee, J. M. Cho, and W. Sigmund, “Control of growth orientation for carbon nanotubes”, Appl. Phys. Lett. 82 (2003) 448.
128.N. Kumar, W. Curtis, and J. I. Hahm, “Laterally aligned, multiwalled carbon nanotube growth using Magnetospirillium magnetotacticum”, Appl. Phys. Lett. 86 (2005) 173101.
129.V. Pichot, P. Launois, M. Pinault, M. Mayne-L’Hermite, and C�繁ile Reynaud, “Evidence of strong nanotube alignment and for iron preferential growth axis in multiwalled carbon nanotube carpets”, Appl. Phys. Lett. 85 (2004) 473.
130.L. Yue, R. Sabiryanov, E. M. Kirkpatrick, and D. L. Leslie-Pelecky, “Magnetic properties of disordered Ni3C”, Phys. Rev. B 62 (2000) 8969.
131.X. X. Zhang, G. H. Wen, S. M. Huang, L. M. Dai, R. P. Gao, and Z. L. Wang, “Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes”, J. of Magnetism and Magnetic Materials 231 (2001) L9-L12.
132.B. Yoo, Y. Rheem, W. P. Beyermann, and N. V. Myung, “Magnetically assembled 30 nm diameter nickel nanowire with ferromagnetic electrodes”, Nanotechnology 17 (2006) 2512.
133.M. Liu, J. Lagdani, H. Imrane, C. Pettiford, J. Lou, S. Yoon, V. G. Harris, C. Vittoria, and N. X. Sun, “Self-assembled magnetic nanowire arrays”, Appl. Phys. Lett. 90 (2007) 103105.
134.V. Semet, V. T. Binh, D. Guillot, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, P. Legagneux, and D. Pribat, “Reversible electromechanical characteristics of individual multiwall carbon nanotubes”, Appl. Phys. Lett. 87 (2005) 223103.
135.P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carobn nanotubes and nanotube circuits using electrical breakdown”, Science 292 (2001) 706.
136.J. Luo, Z. Huang, Y. Zhao, Lu Zhang, and J. Zhu, “Arrays of heterojunctions of Ag nanowires and amorphous carbon nanotubes”, Adv. Mater., 16, 1512 (2004).
137.Y. M. Choi, D. S. Lee, R. Czerw, P. W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, H. Terrones, J. C. Charlier, P. M. Ajayan, S. Roth, D. L. Carroll, and Y. W. Park, “Nonlinear behavior in the thermalpower of doped carbon nanotubes due to strong, localized states”, Nano Lett. 3 (2003) 839.
138.M. Penza, G. Cassano, R. Rossi, A. Rizzo, M. A. Signore, M. Alvisi, N. Lisi, E. Serra, and R. Giorgi, “Effect of growth catalysts on the gas sensitivity in carbon nanotube film based chemiresistive sensors”, Appl. Phys. Lett. 90 (2007) 103101.
139.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, “Nanotube molecular wires as chemical sensors”, Science 287 (2000) 622.
140.P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes”, Science 287 (2000) 1801.
141.P. C. P. Watts, N. Mureau, Z. Tang, Y. Miyajima, J. D. Carey, and S. R. P. Silva, “The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation”, Nanotechnology 18 (2007) 175701.
142.C V. Nguyen, L. Delzeit, A. M. Cassell, J. Li, J. Han, and M. Meyyappan, “Preparation of nucleic acid functionalized carbon nanotube arrays”, Nano Lett. 2 (2002) 1079.
143.H. Liu, J. Zhai, and L. Jiang, “Wetting and auti-wetting on aligned carbon nanotube films”, Soft Matter 2 (2006) 811.
144.K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests”, Nano Lett. 3 (2003) 1701.
145.S. Fujii, S.I. Honda, H. Marchida, H. Kawai, H. Furuta, T. Hirao, and K. Oura, “Efficient field emission from an individual carbon nanotube bundle enhanced by edge effect ”, Appl. Phys. Lett., 90 (2007) 153108.
146.P. Liu, L. Liu, Y. Wei, L. Sheng, and S. Fan, “Enhanced field emission from imprinted carbon nanotube arrays”, 89 (2006) 073101.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔