1.A. Oberlin, M. Endo, and T. Koyana, “High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition”, J. Crys. Growth 32 (1976) 335.
2.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene”, Nature 318 (1985) 162.
3.S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991) 56.
4.D. S. Bethune, C. H. Klang, M. S. De Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls”, Nature 363 (1993) 605.
5.S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature 363 (1993) 603.
6.F. Kreup, A. P. Graham, M. Liebau, G. S. Duseburg, R. Seidel, and E. Unger, “Carbon nanotubes for interconnect applications,” Electron Devices Meeting (2004) IEDM Technical Digest, IEEE International 683.
7.H. Peng, N. T. Alvarez, C. Kittrell, R. H. Hauge, and H. K. Schmidt, “Dielectrophoresis field flow fractionation of single-walled carbon nanotubes”, J. Am. Chem. Soc. 128 (2006) 8396.
8.D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi, “Single-walled carbon nanotube growth from highly activated metal nanoparticles”, Nano Lett. 6 (2006) 2642.
9.X. Wang, Y. Liu, G. Yu, C. Xu, J. Zhang, and D. Zhu, “ Anisotropic electrical properties of aligned carbon nanotube films,” J. Phys. Chem. B 105 (2001) 9422.
10.J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal properties of magnetically aligned single wall carbon nanotube films”, Appl. Phys. Lett. 77 (2000) 666.
11.T. Borca-Tasciuc, S. Vafaei, D. A. Borca-Tasciuc, B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays”, J. Appl. Phys. 98 (2005) 054309.
12.X. B. Wang, Y. Q. Liu, G. Yu, C. Y. Xu, J. B. Zhang, and D. B. Zhu, “ Anisotropic electrical transport properties of aligned carbon nanotube films”, J. Phys. Chem. B 105 (2001) 9422.
13.P. L. Dickrell, S. B. Sinnott, D. W. Hahn, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, and W. G. Sawyer, “Frictional anisotropy of oriented carbon nanotube surfaces”, Tribology Lett. 18 (2005) 59.
14.Y. Murakami, S. Chiashi, Y. Miyauchi, M. H. Hu, M. Ogura, T. Okubo, and S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy”, Chem. Phys. Lett. 385 (2004) 298.
15.W. I. Miline, K. B. T. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien Binh, and O. Groening, “Carbon nanotubes as field emission sources”, J. Mater. Chem. 14 (2004) 933.
16.J. Hedberg, L. Dong, and J. Jiao, “Air flow technique for large scale dispersion and alignment of carbon nanotubes on various substrates”, Appl. Phys. Lett. 86 (2005) 143111.
17.M. D. Lay, J. P. Novak, and E. C. Snow, “Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes”, Nano Lett. 4 (2004) 603.
18Y. T. Jang, S. I. Moon, J. H. Ahn, Y. H. Lee, and B. K. Ju, “A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes”, Sensors and Actuators B 99 (2004) 118.
19.V. I. Merkulov, A. V. Melechko, M. A. Guillorn, M. L. Simpson, D. H. Lowndes, J. H. Whealton, and R. J. Raridon, “Controlled alignment of carbon nanofibers in a large-scale synthesis process”, Appl. Phys. Lett. 80 (2002) 4816.
20.B. Sun and H. Sirringhaus, “Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods”, Nano Lett. 5 (2005) 2408.
21.趙化橋,“等離子體化學與工藝”,中國科技技術大學出版社,合肥,1993,p.112.
22.梁國超,“以中空陰極化學氣相沉積法成長鑽石膜及碳微管”,國立成功大學化學工程研究所博士論文,2000,p.17.23.A. D. White, “New hollow cathode glow discharge”, Appl. Phys Lett. 30 (1959) 711.
24.M. T. Ngo, K. H Schoenbach, G. A. Gerdin, and J. H.Lee, “The temporal development of hollow cathode discharges”, IEEE Trans. Plasma Sci. 18 (1990) 669.
25.郭有斌,“微中空陰極陣列常壓電漿與低溫成長碳奈米結構”,國立成功大學化學工程研究所博士論文,2003,p.70.26.M. Meyyappan, “Carbon nanotubes: science and application”, CRC PRESS, New York 2005, pp.4-5 and p.111.
27.R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotube-the route toward applications”, Science 297 (2002) 787.
28.M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon 33 (1995) 883.
29.R. T. K. Baker and P.S. Harries, “Chemistry and physics of carbon”, Marcel Dekker, New York 1978, p.83.
30.S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chem. Phys. Lett. 315 (1999) 25.
31.R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite,“Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene”, J. Catal. 30 (1973) 86.
32.A. Oberlin, M. Endo, and T. Koyama, “High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition”, Jap. J. Appl. Phys. 16 (1997) 1519.
33.R. T. Yang and K. L. Yang, “Evidence for temperature-driven carbon diffusion mechanism of coke deposition on catalysts", J. Catal. 93 (1985) 182.
34.J. R. Nielsen and D. L. Trimm, “Mechanisms of carbon formation on nickel-containing catalysts”, J. Catal. 48 (1977) 155.
35.Y. Avigal and R. Kalish, “Growth of aligned carbon nanotubes by biasing during growth”, Appl. Phys. Lett. 78 (2001) 2291.
36.Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenlimez, J. Kong, and H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett. 79 (2001) 3155.
37.M. Tanemura, K. lwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip,“Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition : Optimization of growth parameters”, J. Appl. Phys. 90 (2001) 1529.
38.Y. H. Wang, J. Lin, C. H. A. Huan, and G. S. Chen,“Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition”, Appl. Phys. Letts. 79 (2001) 680.
39.V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M L Simpson, “Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett. 79 (2001) 2970.
40.C. Bower, W. Zhu, S. Jin, and O. Zhou, “Plasma-induced alignment of carbon nanotubes”, Appl. Phys. Lett. 77 (2000) 830.
41.Y. Hayashii, T. Negishi, and S. Nishino,“Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted dc plasma chemical vapor deposition”, J. Vac. Sci. Technol. A 194 (2001) 1796.
42.Y. Chen, D. T. Shaw, and L. Guo,“Field emission of different oriented carbon nanotubes”, Appl. Phys. Lett. 76 (2000) 2469.
43.D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication”, J. Vac. Sci. Technol. B 21 (2003) 2624.
44.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-nm vias and trenches on polymers”, Appl. Phys. Lett. 67 (1995) 3114.
45.C. G. Willson, M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Tailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, and J. G. Ekerdt, “Step and flash imprint lithography: A new approach to high-resolution printing”, Proc. SPIE 3676 (1999) 379.
46.Y. Xia and G. M. Whitesides, “Soft lithography”, Annu. Rev. Mater. Sci. 28 (1998) 153.
47Y. Chen, O. Zhou, “Field emission from carbon nanotubes”, C. R. Physique 4 (2003) 1021.
48.R. H. Fowler and L. W. Nordfeim, “Electron emission intense electric fields”, Proceedings of of the Royal Society of London-A 119 (1928) 173.
49.W. A. de Heer, A. Ch�繑elain, and D. Ugarte, “A carbon nanotube field emission electron source”, Science 270 (1995) 1179.
50.T. Utsumi, “Vacuum microelectronics: what's new and exciting”, IEEE Trans. Electron Dev. 38 (1991) 2276.
51.M. Endo, K. Takeuchi, K. Takahashi, H. W. Kroto, and A. Sakar, “Pyrolytic carbon nanotubes from vapor-grown carbon fibers”, Carbon 33 (1995) 873.
52.Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett. 76 (2000) 2367.
53.Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot”, Appl. Phys. Lett. 75 (1999) 1086.
54.Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Huang, “Growth of aligned carbon nanotubes with controlled site density”, Appl. Phys. Lett. 80 (2002) 4018.
55.Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth”, J. Am. Chem. Soc. 123 (2001) 3165.
56.P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles”, Phys. Rev. A. 13 (1976) 2287.
57.Y. Homma, Y. Kobayachi, T. Ogino, D. Takagi, R. Ito, Y. J. Jung, and P. M. Ajayan, “Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition”, J. Phys. Chem. B 107 (2003) 12161.
58Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, “Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes”, J. Phys. Chem. B 105 (2001) 11424.
59.T. I. Kamins, R. Stanley Williams, D. P. Basile, T. Hesjidal, and J. S. Harris, “Ti-catalyzed Si nanowire by chemical vapor deposition: microscopy and growth mechanism”, J. Appl. Phys. 89 (2001) 1008.
60.Y. Yuan and J. Pan, “The effect of vapor phase on the growth of TiC whiskers prepared by chemical vapor deposition”, J. Crystal Growth 193 (1998) 585.
61.Y. Chen, J. Pan, and X. Huang, “The effect of deposition temperature on the growth of TiC whiskers by the vapor-liquid-solid mechanism”, J. Crystal Growth 172 (1997) 171.
62.C. H. Liang, G. W. Meng, W. Chen, Y. W. Wang, and L. D. Zhang, “Growth and characterization of TiC nanorods activated by nickel nanoparticles”, J. Crystal Growth 220 (2000) 296.
63.G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim, “Carbon nanotubes synthesized by Ni-assisted atatmospheric pressure thermal chemical vapor deposition”, J. Appl. Phys. 91 (2002) 3847.
64.J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. L. Cho, and K. S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays”, Appl. Phys. Letts. 78 (2001) 901.
65.J. G. Wen, Z. P. Huang, D. Z. Wang, J. H. Chen, S. X. Yang, Z. F. Ren, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed, “Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films”, 2001 J. Mater. Res. 16 3246.
66.B. Wolf , “Handbook of Ion Sources CRC Press”, New York 1995, p. 42
67.C. Journet, S. Moulinet, C. Ybert, S. T. Purcell, and L. Bocquet, “Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure”, Europhys. Lett. 71 (2005) 104.
68.A. Huczko, H. Lange, M. Sioda, Y. Q. Zhu, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, “Hollow cathode plasma synthesis of carbon nanofiber arrays at low temperature”, J. Phys. Chem. B 106 (2002) 1534.
69.B. Chapman, “Glow Discharge Processes”, Wiley, New York 1980, p.52. and p. 56.
70.E. M. Purcell, “Electricity and Magnetism”, McGraw-Hill, Singapore 1985, p. 76.
71.V. I. Merkulov, A. V. Melechko, M. A. Guillorn, M. L. Simpson, D. H. Lowndes, J. H. Whealton, and R, J, Raridon, “Controlled alignment of carbon nanofibers in a large-scale synthesis process”, Appl. Phys. Lett. 80 (2002) 4816.
72.K. Yukimura, “Plasma-based ion implantation and its application to three-dimensional materials”, Surf. Coat. Technol. 136 (2001) 1.
73.B. C. Satishkumar, P. John Thomas, A. Govindaraj, and C. N. R. Rao, “Y-junction carbon nanotubes”, Appl. Phys. Lett. 77 (2000) 2530.
74.L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, “Pure carbon nanoscale devices: Nanotube heterojunctions”, Phys. Rev. Lett. 76 (1995) 971.
75.Z. Yao, H. W. Ch. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions”, Nature 402 (1999) 273.
76.J. H. Cho and G. H. Kim, “Etching of multi-walled carbon nanotubes using energetic plasma ions”, Jpn. J. Appl. Phys. 45 (2006) 8317.
77.D. A. Walters, M. J. Casavant, X. C. Qin, C. B. Huffman, P. J. Boul, L. M. Ericson, E. H. Haroz, M. J. O’Connell, K. Smith, D. T. Colbert, and R. E. Samlley, “In-plane-aligned membranes of carbon nanotubes”, Chem. Phys. Lett. 338 (2001) 14.
78.H. Shimoda, S. J. Oh, H. Z. Geng, R. J. Walker, X. B. Zhang, L. E. NcNeil, and O. Zhou, “Self-assembly of carbon nanotubes”, Adv. Mater. 14 (2002) 899.
79.S. M. Jung, J. Hahn, H. Y. Jung, and J. S. Suh, “Clean carbon nanotube aligned horizontally”, Nano Lett. 6 (2006) 1569.
80.K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin, and W. W. Byszewski, “Microhollow cathode discharges”, Appl. Phys. Lett. 68 (1996) 13.
81.Q. Yang, C. Xiao, W. Chen, A. K. Singh, T. Asai, and A. Hirose, “Growth mechanism and orientation control of well-aligned carbon nanotubes”, Diam. Relat. Mater. 12 (2003) 1482.
82.J. F. AuBuchon, L. H. Chen, A. I. Gapin, D. W. Kim, C. Daraio, and S. Jin, “Multiple sharp bendings of carbon nanotubes during growth to produce zigzag morphology”, Nano Lett. 4 (2004) 1781.
83.S. Huang, M. Woodson, R. Smalley, and J. Liu, “Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process”, Nano Lett. 4 (2004) 1025.
84.A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of single-walled carbon nanotubes on surfaces”, Appl. Phys. Lett. 81 (2002) 3464.
85.T. J. Somerer, W. N. G. Hitchon, and J. E. Lawler, “Self-consistent kinetic model of the cathode fall of a glow discharge”, Phys. Rev. A 39 (1989) 6356.
86.N. Baguer, A. Bogaerts, and R. Gijbels, “Hollow cathode glow discharge in He: Monte Carlo-fluid model combined with a transport model for the metastable atoms”, J. Appl. Phys. 93 (2003) 47.
87.N. Baguer, A. Bogaerts, and R. Gijbels, “Hybrid model for a cylindrical hollow cathode glow discharge and comparison with experiments”, Spectrochimica Acta Part B 57 (2002) 311.
88.D. J. Sturges and H. J. Oskam, “Studies of properties of hollow cathode glow discharge in Helium + Neon”, J. Appl. Phys. 35 (1964) 2887.
89.K. H. Schoenbach, M. Moselhy, W. Shi, and R. Bentley, “Microhollow cathode discharges”, J. Vac. Sci. Technol. A 21 (2003) 1260.
90.J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, “Highly-ordered carbon nanotube arrays for electronic applications”, Appl. Phys. Lett. 75 (1999) 367.
91.R. Krishnan, H. Q. Nguyen, C. V. Thompson, W. K. Choi, and Y. L. Foo, “Wafer-level ordered arrays of aligned carbon nanotubes with controlled size and spacing on silicon”, Nanotechnology 16 (2005) 841.
92.H. N Lin, Y. H. Chang, J. H. Yen, J. H. Hsu, I. C. Leu, and M. H. Hon, “Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force microscopy nano-oxidation”, Chem. Phys. Lett. 399 (2004) 422.
93.Z. P. Huang, D. L. Carnahan, J. Rybczynsky, M. Giersig, M. Sennett, D. Z. Wang, J. G. Wen, K. Kempa, and Z. F. Huang, “Growth of large periodic arrays of carbon nanotubes”, Appl. Phys. Lett. 82 (2003) 460.
94.K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic crystal based on periodic arrays of aligned carbon nanotbes”, Nano Lett. 3 (2003) 13.
95.S. M. C. Vieira, K. B. K. Teo, W. I. Milne, O. Gr�圢ing, L. Gangloff, E. Minoux, and P. Legagneux, “Investigation of field emission properties of carbon nanotube arrays defined using nanoimprint lithography”, Appl. Phys. Lett. 89 (2006) 022111.
96.W. J. Dauksher, N. V. Le, E. S. Ainley, K. J. Nordquist, K. A. Gehoski, S. R. Young, J. H. Baker, D. Convey, and P. S. Mangat, “Nano-imprint lithography: templates, imprinting, and wafer pattern transfer”, Microelectronic Engineering 83 (2006) 929.
97.S. J. Choi, P. J. Yoo, S. J. Bake, T. W. Kim, and H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography”, J. Am. Chem. Soc. 126 (2004) 7744.
98P. M. Parthangal, R. E. Cavicchi, and M. R. Zachariah, “A generic process of growing aligned carbon nanotube arrays on metals and metal alloys”, Nanotechnology 18 (2007) 185605.
99.S. J. Randolph, J. D. Fowlkes, A. V. Melechko, K. L. Klein, H. M. Meyer III, M. L. Simpson , and P D Rack, “Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth”, Nanotechnology 18 (2007) 465304.
100W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, “Effect of a titanium cap in reducing interfacial oxides in the formation of nickel silicide”, J. Appl. Phys. 91 (2002) 2901.
101.H. Ohno, D. Takagi, K. Yamada, S. Chiashi, A Tokura, and Y. Homma, “Growth of vertically aligned single-walled carbon nanotubes on alumina and sapphire substrates”, Jpn. J. Appl. Phys. 47 (2008) 1956.
102.L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett. 76 (2000) 2071.
103.Y. Yan, M. B. Chan-Park, and Q. Zhang, “Advances in carbon-nanotube assembly”, Small 3 (2007) 24.
104.I. Dierking, G. Scalia, and P. Morales, “Liquid crystal-carbon nanotube dispersions”, J. Appl. Phys. 97 (2005) 044309.
105.C. J. Strobl, C. Sch�矚lein, U. Beierlein, J. Ebbecke, and A. Wixforth, “Carbon nanotube alignment by surface acoustic waves”, Appl. Phys. Lett. 23 (2004) 1427.
106.L. Huang, X. Cui, G. Dukovic, and S. P. O’Brien, “Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions”, Nanotechnology 15 (2004) 1450.
107.O. Li, Y. T. Zhu, I. A. Kinloch, and A. H. Windle, “Self-organization of carbon nanotubes in evaporating droplets”, J. Phys. Chem. B. 110 (2006) 13926.
108.J. Hedberg, L. Dong, and J. Jiao, “Air flow technique for large scale dispersion and alignment of carbon nanotubes on various substrates”, Appl. Phys. Lett. 86 (2005) 143111.
109.D. Mattia, M. P. Rossi, B. M. Kim, G. Korneva, H. H. Bau, and Y. Gogotsi, “Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotube and films”, J. Phys. Chem. B. 110 (2006) 9850.
110.T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, and M. Yumura, “Polymer composites of carbon nanotubes aligned by a magnetic field”, Adv. Mater. 14 (2002) 1380.
111.H. Garmestani, M. S. Al-Haki, K. Dahmen, R. Tannenbaum, D. Li, S. S. Sablin, and M. Y. Hussaini, “Polymer-mediated alignment of carbon nanotubes under high magnetic fields”, Adv. Mater. 15 (2003) 1918.
112.M. A. Correa-Duarte, M. Grzelczak, V. Salgueiri�瓨-Maceira, M. Giersig, L. M. Liz-Marz�鴨, M. Farle, K. Sierazdki, and R. Diaz, “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles”, J. Phys. Chem. B. 109 (2005) 19060.
113.G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. C. Bradley, and K. G. Kornev, “Carbon nanotubes loaded with magnetic particles”, Nano Lett. 5 (2005) 879.
114.K. Kord�龍, T. Mustonen, G. T�瀟h, J. V�鑷�驥angas, A. Uusim�驥i, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions”, Chem. Mater. 19 (2007) 787.
115.D. P. Long, J. L. Lazorcik, and R. Shashidhar, “Magnetically directed self-assembly of carbon nanotube devices”, Adv. Mater. 16 (2004) 814.
116.S. Niyogi, C. Hangarter, R. M. Thamankar, Y. F. Chiang, R. Kawakami, N. V. Myung, and R. C. Haddon, “Magnetically assembled multiwalled carbon nanotubes on ferromagnetic contacts”, J. Phys. Chem. B. 108 (2004) 19818.
117.J. Tumpane, N. Karousis, N. Tagmatarchis, and B. Nord�聲, “Alignment of carbon nanotubes in weak magnetic fields”, Angew. Chem. Int. Ed. 47 (2008) 5148.
118.C. Gao, W. Li, H. Morimoto, Y. Nagaoka, and T. Naekawa, “Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and applications in biomanipulations”, J. Phys. Chem. B. 110 (2006) 7213.
119.A. K. Bentley, J. S. Trethewey, A. B. Ellis, and W. C. Crone, “Magnetic manipulation of copper-tin nanowires capped with nickel ends”, Nano Lett. 4 (2004) 487.
120.H. Ko and V. V. Tsukruk, “Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors”, Nano Lett. 6 (2006) 1443.
121.C. Kittel, “Introduction to Solid State Physics 8th edition”, John Wiley & Sons Inc 2005, p.348 and p. 354.
122.M. Tanase, D. M. Silevitch, A. Hultgren, L. A. Bauer, P. C. Searson, G. J. Meyer, and D. H. Reich, “Magnetic trapping and self-assembly of multicomponent nanowires”, J. Appl. Phys. 91 (2002) 8549.
123.Y. H. Shin and S. Hong, “Carbon diffusion around the edge region of nickel nanoparticles”, Appl. Phys. Lett. 92 (2008) 043103.
124.M. Lin, J. P. Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok, and Y. L. Foo, “Dynamic observation of bamboo-like carbon nanotube growth”, Nano Lett. 7 (2007) 2234.
125.S. Helveg, C. L�櫝ez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. N�廨skov, “Atomic-scale imaging of carbon nanofiber growth”, Nature 427 (2004) 426.
126.M. H. Kuang, Z. L. Wang, X. D. Bai, J. D. Guo, and E. G. Wang, “Catalytically active nickel {110} surfaces in growth of carbon tubular structures”, Appl. Phys. Lett. 76 (2000) 1255.
127.K. H. Lee, J. M. Cho, and W. Sigmund, “Control of growth orientation for carbon nanotubes”, Appl. Phys. Lett. 82 (2003) 448.
128.N. Kumar, W. Curtis, and J. I. Hahm, “Laterally aligned, multiwalled carbon nanotube growth using Magnetospirillium magnetotacticum”, Appl. Phys. Lett. 86 (2005) 173101.
129.V. Pichot, P. Launois, M. Pinault, M. Mayne-L’Hermite, and C�繁ile Reynaud, “Evidence of strong nanotube alignment and for iron preferential growth axis in multiwalled carbon nanotube carpets”, Appl. Phys. Lett. 85 (2004) 473.
130.L. Yue, R. Sabiryanov, E. M. Kirkpatrick, and D. L. Leslie-Pelecky, “Magnetic properties of disordered Ni3C”, Phys. Rev. B 62 (2000) 8969.
131.X. X. Zhang, G. H. Wen, S. M. Huang, L. M. Dai, R. P. Gao, and Z. L. Wang, “Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes”, J. of Magnetism and Magnetic Materials 231 (2001) L9-L12.
132.B. Yoo, Y. Rheem, W. P. Beyermann, and N. V. Myung, “Magnetically assembled 30 nm diameter nickel nanowire with ferromagnetic electrodes”, Nanotechnology 17 (2006) 2512.
133.M. Liu, J. Lagdani, H. Imrane, C. Pettiford, J. Lou, S. Yoon, V. G. Harris, C. Vittoria, and N. X. Sun, “Self-assembled magnetic nanowire arrays”, Appl. Phys. Lett. 90 (2007) 103105.
134.V. Semet, V. T. Binh, D. Guillot, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, P. Legagneux, and D. Pribat, “Reversible electromechanical characteristics of individual multiwall carbon nanotubes”, Appl. Phys. Lett. 87 (2005) 223103.
135.P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carobn nanotubes and nanotube circuits using electrical breakdown”, Science 292 (2001) 706.
136.J. Luo, Z. Huang, Y. Zhao, Lu Zhang, and J. Zhu, “Arrays of heterojunctions of Ag nanowires and amorphous carbon nanotubes”, Adv. Mater., 16, 1512 (2004).
137.Y. M. Choi, D. S. Lee, R. Czerw, P. W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, H. Terrones, J. C. Charlier, P. M. Ajayan, S. Roth, D. L. Carroll, and Y. W. Park, “Nonlinear behavior in the thermalpower of doped carbon nanotubes due to strong, localized states”, Nano Lett. 3 (2003) 839.
138.M. Penza, G. Cassano, R. Rossi, A. Rizzo, M. A. Signore, M. Alvisi, N. Lisi, E. Serra, and R. Giorgi, “Effect of growth catalysts on the gas sensitivity in carbon nanotube film based chemiresistive sensors”, Appl. Phys. Lett. 90 (2007) 103101.
139.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, “Nanotube molecular wires as chemical sensors”, Science 287 (2000) 622.
140.P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes”, Science 287 (2000) 1801.
141.P. C. P. Watts, N. Mureau, Z. Tang, Y. Miyajima, J. D. Carey, and S. R. P. Silva, “The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation”, Nanotechnology 18 (2007) 175701.
142.C V. Nguyen, L. Delzeit, A. M. Cassell, J. Li, J. Han, and M. Meyyappan, “Preparation of nucleic acid functionalized carbon nanotube arrays”, Nano Lett. 2 (2002) 1079.
143.H. Liu, J. Zhai, and L. Jiang, “Wetting and auti-wetting on aligned carbon nanotube films”, Soft Matter 2 (2006) 811.
144.K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, “Superhydrophobic carbon nanotube forests”, Nano Lett. 3 (2003) 1701.
145.S. Fujii, S.I. Honda, H. Marchida, H. Kawai, H. Furuta, T. Hirao, and K. Oura, “Efficient field emission from an individual carbon nanotube bundle enhanced by edge effect ”, Appl. Phys. Lett., 90 (2007) 153108.
146.P. Liu, L. Liu, Y. Wei, L. Sheng, and S. Fan, “Enhanced field emission from imprinted carbon nanotube arrays”, 89 (2006) 073101.