跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/29 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧宗衡
研究生(外文):Tzung-Heng Lu
論文名稱:摻雜矽與鈰之YAG螢光粉的擴散與發光性質研究
論文名稱(外文):Diffusion and Luminescence Property of Si and Ce Doped Y3Al5O12 Phosphors
指導教授:陳引幹陳引幹引用關係
指導教授(外文):In-Gann Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:發光擴散
外文關鍵詞:YAG
相關次數:
  • 被引用被引用:1
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究於高溫將SiO2之矽離子擴散進入YAG:Ce螢光體中,目的為是探討矽離子的摻雜對釔鋁柘榴石(Y3Al5O12:Ce,YAG:Ce)發光強度、晶體結構與對鈰離子擴散的影響。研究成果顯示,摻雜SiO2之YAG:Ce螢光粉經過高溫熱處理後,由X光繞射(XRD)、紅外線吸收光譜儀(FTIR)以及核磁共振(NMR)可以得知,當SiO2添加量增加時,YAG:Ce晶格常數會因為Si4+取代Al3+的四面體晶格位置而變小,同時產生將YAG:Ce之鋁離子空位缺陷(VAl),使活化中心更有效地在YAG:Ce主體中擴散取代Y3+的十二面體晶格位置,提高其發光性質約20~35%。前人研究指出SiO2的共燒結會抑制YAG之晶粒成長,因此本實驗摻雜0~5wt%不同量SiO2於YAG:Ce塊材燒結時,經過980~1400℃(持溫8小時)熱處理。由掃描式電子顯微鏡(SEM)觀察到980℃、1100℃之處理因為溫度不是非常高,所以晶粒成長並不明顯,所以SiO2抑制晶粒成長的情形並不明顯;然而當溫度提高至1200℃或更高,晶粒尺寸有明顯增大的趨勢,而且確實可以看出摻雜SiO2可提高YAG塊材的緻密度。高倍率SEM可以觀察添加SiO2與沒有添加SiO2之局部的微觀結構之中,晶粒完整排列性有所差異。經過摻雜SiO2的YAG塊材經過1400℃燒結之後,因為發生液相燒結,所以除了可以增加塊材的緻密度,也可以抑制晶粒成長,進而讓稀土元素可以有效於YAG主體晶格中擴散。同時由分析等結果顯示SiO2之中的Si4+可取代Al3+之後可以更有效讓稀土元素位於Y3+的晶格位置,證明SiO2確實有效提高其發光效率。已經知道SiO2可以有效提高YAG的緻密性,讓稀土元素有效擴散,所以將Ce擴散進入YAG/YAG:Si進行比較。經過擴散後,可以從YAG: Si觀察到顏色有明顯的變化,證明SiO2確實因為在增加緻密性之後而有效助於稀土元素的擴散。
In the present work, Yttrium aluminum garnet doped cerium (YAG:Ce) phosphors co-doped with Si4+ ions were synthesized by a solid-state method. The effect of co-dopant on the photoluminescence, microstructure and diffusion activation energy of YAG:Ce were studied systematically. The resulting materials were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR) and Photoluminescence. Those spectra reveal that by adding SiO2 to YAG:Ce precursor, the lattice constant decreases while vacancies are generate due to the co-dopant ions (Si4+) replaces in the place of Al3+ sites of YAG:Ce system. YAG:Ce phosphors with Y3+ dodecahedral site replaced by Ce3+ and diffused effectively as an activator, as a result the photoluminescence intensity increased about ~20-30%. From the literature, it was found that the addition of silica to YAG:Nd makes it possible to greatly improve the grain growth because of SiO2 inhibits exaggerated coalescence. From the SEM images of following samples YAG:Ce with 0~5wt% silica addition sintered by 980oC~1400oC/8hrs and YAG/YAG:Si sintered at 1650oC/8hrs, we observed that the grain growth is not obvious in the temperature range between 980oC~1100oC due to the insufficient temperature. As the temperature is higher than 1100oC, we can see the significant grain growth and the higher grain density of YAG due to the adding of SiO2 to the system YAG:Ce. In addition to that we also observed the different microstructures of grain distribution between YAG:Ce containing SiO2 and pure YAG:Ce. The analysis spectra confirms that the presence of Si4+, it was replaced in Al3+ sites of YAG:Ce, then the Ce3+ might be occupied the luminescence centre easily. As well as it proves that the enhancement of PL intensity of YAG:Ce containing with SiO2. By comparing the diffusivities of Ce3+ into YAG/YAG:Si bulk samples, we concluded that by adding the SiO2 to the system YAG:Ce, the PL intensity enhanced significantly due to the increasing the density of YAG and the diffusing of rare-earth element (Ce3+) through the grain boundaries.
摘要 I
Abstract III
致謝 IV
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1前言 1
1.2 研究動機與目的 2
第二章 理論基礎與文獻回顧 4
2-1發光機制簡介 4
2-2螢光材料之分類應用 4
2-2.1螢光材料之分類 4
2-2.2螢光材料之應用 5
2-2.3螢光體能量的激發與吸收 5
2-2.4史托克位移(Stokes Shift)與反史托克位移(Anti-Stokes Shift) 5
2-3 YAG型螢光材料的簡介 6
2-3.1 歷史沿革 6
2-3.2 釔鋁柘榴石晶體結構介紹 7
2-3.3 YAG: Ce3+ 的發光光譜 7
2-4 材料擴散的簡介 8
2-4.1 擴散機制 8
2-4.2 穩態擴散 9
2-4.3 非穩態擴散 10
2-4.4影響擴散的因素 11
2-5 分析儀器簡介 11
2-5.1 XRD分析 11
2-5.2 傅利葉轉換紅外光譜,FTIR 12
2-5.3 核磁共振,NMR( Nuclear magnetic resonance spectrometer) 13
2-5.4放射光譜的量測 13
2-5.5 Scanning Electron Microscopy與Auger Electron Spectroscpy[23][24] 14
2-6 文獻回顧 16
第三章 實驗方法及步驟 27
3-1實驗藥品 27
3-2儀器設備 28
3-3實驗流程 29
3-3.1 摻雜SiO2於YAG:Ce螢光粉體 29
3-3.2 YAG主體摻雜Si之後微觀結構的變化 30
3-3.3 稀土元素Ce擴散進入YAG與YAG:Si主體晶格 30
第四章 結果與討論 37
4-1 摻雜SiO2於YAG:Ce螢光粉之結晶結構與發光性質 37
4-1-1 XRD結晶相分析與晶格常數比較 37
4-1-2 FTIR鍵結分析 39
4-1-3 NMR結構分析 40
4-1-4光致發光分析(PL) 42
4-1-5時間鑑別光激螢光(TRPL) 44
4-1-6 SEM與EDS元素成份分析 46
4-2摻雜Si之YAG螢光粉的微觀結構觀察 47
4-2-1 YAG:Ce塊材摻雜Si之密度分析 47
4-2-2 YAG:Ce塊材摻雜Si之粒徑分析 48
4-2-3 YAG塊材摻雜Si以1650℃持溫8小時之微觀結構分析 49
4-2-4 YAG:Ce塊材摻雜Si經980℃~1650℃持溫8小時之趨勢綜合分析與PL強度比較 49
4-3 將稀土元素擴散進入YAG主體晶格 51
4-3-1擴散距離估算 51
4-3-2 XRD結晶相分析與晶格常數比較 52
4-3-3 FTIR鍵結分析 52
4-3-4 SEM/EDS元素成份分析 52
4-3-5 AES元素分析 53
第五章 結論 94
5-1 研究結論 94
5-2 後續研究及建議 95
參考文獻 96
[1]許榮宗,“白光 LED 製作技術”,工業材料雜誌,220, 148-151 (2005)
[2]康佳正、劉如熹、廖秋峰,“LED 照明光源展望(六);可被 UVLED 激發之螢光體介紹”,工業材料雜誌,232,145 (2006)
[3]陳昱霖,”柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料學及工程學系碩士論文,民國90年。
[4]陳琨明,” 釔鋁石榴石螢光體(Y3Al5O12:Ce)之合成與發光特性研究”,國立成功大學材料學及工程學系碩士論文,民國96年。
[5] D.J. Cherniak, “Rare earth element and gallium diffusion in yttrium aluminum garnet”, Phys. Chem. Miner. 26, 156-163 (1998)
[6] Y.T. Nien, K.M. Chen and I.G. Chen, “Photoluminescence Enhancement of Y3Al5O12:Ce Nanoparticles Using HMDS”, J. Am. Ceram. Soc. 91, 3599–3602 (2008)
[7] R. Boulesteix, A.Maitre, J.F. Baumard, Y. Rabinovitch, C. Salle, S. Weber and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms”, J. Eur. Ceram. Soc. 29, 2517–2526 (2009)
[ 8]楊俊英,“電子產業用螢光材料之應用調查”,工研院,民國81年。
[ 9] S. Shionoya and W.M. Yen, “Phosphor handbook”, CRC Press LLC, New York, USA, 1998, p7
[10] 王書任,林仁鈞,“讓LED發光的功臣—螢光粉”,科學發展435 期2009年3月
[11] G.. Blasse and B.C. Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, Germany, 1994
[12] S. Geller and M.A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets”, Acta crystallogr. 10, 239 (1957)
[13] J.E. Geusic and L.G. Van Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Appl. Phys. Lett. 4, 182 (1964)
[14] E.M. Levin, C.R. Robbins and H.F. McMurdie ; Margie K. Reser, “Phase diagrams for ceramists”, 1964.
[15] S. Geller, “Crystal chemistry of the garnets”, Z. Kristallogr 125,1 (1967).
[16] R.C. Ropp, “The Chemistry of Artificial Lighting Devices”, Elsevier, New York, 1993
[17]黃榮茂,”化學化工百科辭典”,曉園出版社,台北,1987 .
[18 ] R.R. Jacobs, W.F. Krupke and M.J. Weber, “Measurement of excited state absorption loss for Ce in YAG and implications for tunable 5d-4f rare earth lasers”, Appl. Phys. Lett. 33, 410 (1978),

[19] V. Pankratov, L. Grigorjeva,” Luminescence Properties and Energy Transfer Processes in Nanosized Cerium Doped YAG”, IEEE. T. NUCL. SCI., 55, 2008, 3
[20] L. Grigorjeva, D. Millerset. A. Kalinko, V. Pankratov and K. Smits, “Time-Rolved cathodoluminescence and photoluminescence of nanoscale oxides”, J. Eur. Ceram. Soc., 29, 255–259 (2009)
[21] Robert E. Reed-Hill, “Physical Metallurgy Principles”, Baker and Taylor Books, 11 (1991)
[22]http://upload.wikimedia.org/wikipedia/commons/thumb/f/f1/EM_spectrum.svg/787px-EM_spectrum.svg.png
[23] 科儀新知第十七卷第三期,民國84年12月
[24] 汪建民 主編,’材料分析’,中國材料科學學會(2005)
[25] W. Y. Sun, X. T. Lee, L. T. Ma, and T. S. Yen, ‘‘Solubility of Si in YAG,’’ J.Solid State Chem. 51, 315–20 (1984)
[ 26] A. Bondar and F.Y. Galakhov, ‘‘Phase Equilibria in the System Y2O3–Al2O3–SiO2,’’ Izv. Akad. Nauk SSSR Ser. Khim. 7, 1325–6 (1964)
[27] M.M. Kuklja, “Defects in yttrium aluminium perovskite and garnet crystals:atomistic study” J. Phys.: Condens. Matter. 12, 2953–2967 (2000)
[28] J.M. Manuel and Hajime Haneda ,” Ytterbium Cation Diffusion in Yttrium Aluminum Garnet (YAG)—Implications for Creep Mechanisms” J. Am. Ceram. Soc. 84, 2356–60 (2001)
[29] Hajime Haneda et al. “A study of defect structures in oxide materials by secondary ion mass spectrometry” Appl. Sur. Sci. 203-204, 625-629 (2003)
[30]溫佑良,“不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究” 國立成功大學材料學及工程學系碩士論文,民國92年
[31] A. Maıtre, C. Salle′, R. Boulesteix, and J.F. Baumard,” Effect of Silica on the Reactive Sintering of Polycrystalline Nd: YAG Ceramics”, J. Am. Ceram. Soc. 91, 406–413 (2008)
[32] R. Boulesteix, A. Maître, J.F. Baumard, Y. Rabinovitch, C. Sallé, S. Weber and M. Kilo,” The effect of silica doping on neodymium diffusion in yttrium aluminumgarnet ceramics: implications for sintering mechanisms”, J. Eur. Ceram. Soc. 29, 2517–2526 (2009)
[33] K.S. Luslick, “Sonochemistry”, Science 23, 1439-1445 (1990)
[34] W.D. Callister, Jr. “Fundation of Material Science and Engineering” 2nd Edition, John Wiley and Sons, Inc. 2005
[35] http://www.olympusfluoview.com/theory/fluoroexciteemit.html
[36] M.M. Kuklja, ” Defects in yttrium aluminium perovskite and garnet crystals: atomistic study” J. Phys.: Condens. Matter. 12, 2953–2967 (2000)
[37] R. Dauce, M.L. Floch, J.C. Sangleboef, P. Verdier, “Irradiation-induced changes in the local environment of Si and Al in LnSiAlON glasses as probed by 27Al and 29Si NMR” , J. Non-Cryst Solids, 353, 390–397 (2007)
[38] M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer and V. Huch, “Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods” J. Mater. Chem.. 9, 3069-3079 (1999)
[39] L.J. Tian, Y.J. Sun, Y. Yu, X.G. Kong and H. Zhang, “Surface effect of nano-phosphors studied by time-resolved spectroscopy of Ce3+”, Chem. Phys. Lett. 452, 188–192 (2008)
[40] 何宗潁,”利用NMR探討Y3-xLuxAl5O12結構與鬆弛時間的機制” 國立成功大學物理研究所碩士論文,民國92年
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top