跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡登安
研究生(外文):Deng-An Tsai
論文名稱:次微米晶粒透光氧化鋁製備及其性質之研究
論文名稱(外文):Preparation and Properties of Sub-Micron Translucent Alumina
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Chii-Shyang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:64
中文關鍵詞:膠體成型製程常壓燒結粒徑窄化透光氧化鋁透光陶瓷
外文關鍵詞:translucent aluminanarrow size distributiontransparent ceramiccolloidal forming processpressureless sintering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試以膠體成型製程於常壓環境下製備出次微米晶粒之透光氧化鋁燒結體。實驗是以離心分級法收集粒徑分布均一之次微米α-Al2O3粉末,其粒徑分布為80-200 nm,平均粒徑為130 nm。該粉末是以超音波攪拌法使粉末顆粒均勻分散於水中形成漿料,其中未添加有機添加劑。之後再以緩慢的蒸發乾燥過程,最終使粉末顆粒規整堆排成為乾燥之生坯,生坯之相對密度達71.8%。生坯於空氣氣氛中1250°C燒結4小時即成為具有透光性質的之燒結體,其晶粒平均尺寸為531 nm,在可見光波長範圍之總穿透率為79%。
This study performed with colloidally processed narrow-size-distributed sub-micron alumina powders to prepare translucent alumina by pressureless sintering. Narrow-size-distributed powder with an average particle size of 0.13 μm was collected by centrifugal classification. The powders were dispersed by stirring with ultrasonification in a water-based suspension without organic additive. Homogeneous green bodies with relative density of 71.8% were prepared by drying at slow evaporation rates. Samples sintered at 1250°C in air showed a total forward transmittance of 79% in visible wavelength and an average grain size of 0.53 μm.
摘要.....................................................I
Abstract................................................II
誌謝...................................................III
目錄....................................................IV
表目錄..................................................VI
圖目錄..................................................VII
第一章 緒論...............................................1
1-1前言..................................................1
1-2研究方法...............................................2
第二章 相關文獻回顧與整理.................................3
2-1 氧化鋁的性質與晶體結構介紹............................3
2-1-1 氧化鋁基本性質與應用................................3
2-1-2 α相氧化鋁的晶體結構.................................4
2-2 透光氧化鋁的發展與透光理論............................5
2-2-1 透光陶瓷燒結體之研究發展............................5
2-2-2 透光氧化鋁燒結體之研究與發展........................6
2-2-3 透光氧化鋁之透光機制................................8
2-3 陶瓷製程.............................................11
2-3-1 粉末尺寸效應 .......................................11
2-3-2 生坯成型與燒結行為.................................12
第三章 實驗方法與步驟....................................25
3-1 實驗材料.............................................25
3-2 實驗流程.............................................25
3-2-1 研究方法...........................................25
3-2-2 氧化鋁漿料的製備...................................26
3-2-3 粉末離心分級 .......................................27
3-2-4 生坯之製備與燒結...................................27
3-3 樣品分析方法.........................................27
3-3-1 粉末表面型態 .......................................27
3-3-2 粒徑分布...........................................28
3-3-3顯微結構觀察........................................28
3-3-4 燒結體平均晶粒尺寸計算.............................29
3-3-5 燒結體密度量測.....................................29
3-3-6 透光性質量測 .......................................30
第四章 結果與討論........................................33
4-1 粉末粒徑分布.........................................33
4-2 生坯結構............................................33
4-2-1 生坯顯微結構.......................................33
4-2-2 生坯外觀..........................................35
4-3 生坯燒結行為分析.....................................36
4-3-1 燒結體密度.........................................36
4-3-2 顯微結構之演變.....................................37
4-3-3 燒結體晶粒尺寸之觀察...............................39
4-4 燒結體透光性質.......................................39
第五章 結論.............................................60
參考文獻................................................61
1. G. L. Messing and A. J. Stevenson, “Toward Pore-Free Ceramics,” Science, 322 [17], 383-384 (2008).
2. R. Apetz and Michel P. B. van Bruggen, “Transparent Alumina: A Light-Scattering Model,” J. Am. Ceram. Soc., 86[3], 480-86 (2003).
3. O. H. Kwon, X. C. Scott Nordahl and G. L. Messing, “Submicrometer Transparent Alumina by Sinter Forging Seeded γ-Al2O3 Powders” J. Am. Ceram. Soc., 78 [21], 491-94 (1995).
4. A. Krell, P. Blank, H. Ma and T. Hutzler, “Transparent Sintered Corundum with High Hardness and Strength,” J. Am. Ceram. Soc., 86[1], 12–18 (2003).
5. H. Mizuta, K. Oda, Y. Shibasak, M. Maeda, M. Machida and K. Ohshima, “Preparation of High-Strength and Translucent Alumina by Hot Isostatic Pressing,” J. Am. Ceram. Soc., 75[2], 469-473 (1992).
6. M. Nagashima, K. Motoik and M. Hayakawa, “Fabrication and Optical Characterization of High-Density Al2O3 Doped with Slight MnO Dopant,” J. Ceram. Soc. Jpn., 166[5], 645-648 (2008).
7. B. N. Kim, K. Hiraga and H. Yoshida, “Spark Plasma Sintering of Transparent Alumina,” Scr. Mater., 57, 607–610 (2007).
8. L. C. Lim, P. M. Wong and J. Ma, “Colloidal Processing of Sub-Micron Alumina Powder Compacts,” J. Mater. Process. Technol., 67, 137-42 (1997).
9. J. Ma and L. C. Lim, “Effect of Particle Size Distribution on Sintering of Agglomerate-Free Submicron Alumina Powder Compacts,” J. Eur. Ceram. Soc., 22, 2197–2208 (2002).
10. T. S. Yeh and M. D. Sacks, “Low-Temperature Sintering of Aluminum Oxide,” J. Am. Cerum. Soc., 71[10], 841-44 (1988).
11. G. L. Messing and M. Kumagai, “Low Temperature Sintering of α-Alumina-Seeded Boehmite Gel,” Am. Ceram. Soc. Bullet., 73(10), 88 (1994).
12. D. Godlinski, M. Kuntz, G. Grathwohl, “Transparent Alumina with Submicrometer Grains by Float Packing and Sintering,” J. Am. Ceram. Soc., 85 [10], 2449–56 (2002).
13. J. S. Reed, Introduction of the Principles of Ceramic Processing, John Wiley and Sons, New York, (1995).
14. K. Wefer and M. G. Bell, “Oxides and Hydroxides of Alumina, ” Technical Paper, 19 (1972).
15. Y. M. Chiang, D. P. Birnie III and W. D. Kingery, “Physical Ceramics- Principles for Ceramic Science and Engineering,” John Wiley & Sons, New York (1997).
16. G. C. Wei, “Transparent Ceramic Lamp Envelope,” J. Phys. D: Appl. Phys., 38, 3057–3065 (2005).
17. R. L. Coble, Transparent Alumina and Method of Preparation U.S. Patent 3026210 (1962).
18. P. F. Becher “Press-Forged Al2O3-Rich Spinel Crystals for IR application” J. Am. Ceram. Soc., 56[11], 1015-1017 (1977).
19. G. de With and H. J. A. van Dijk, “Translucent Y3Al5O12 Ceramics,” Mater. Res. Bull, 19[12], 1669-1674 (1984).
20. J. M. McCauley and N. D. Corbin, “Phase Relations and Reaction Sintering of Transparent Cubic Aluminum Oxynitride (AlON) Spinel,” J. Am. Ceram. Soc., 62, 476-479 (1979).
21. G. C. Wei and W. H. Rhodes, “Sintering of Translucent Alumina in a Nitrogen–Hydrogen Gas Atmosphere,” J. Am. Ceram. Soc., 83[7], 1641–48 (2000).
22. Q. H. Yang, Z. J. Zeng, J. Xu and H. G. Zhang. “Effect of La2O3 on Microstructure and Transmittance of Transparent Alumina Ceramics,” J. Rare Earths, 24, 72-75 (2006).
23. A. Krell, T. Hutzler and J. Klimke, “Transmission Physics and Consequences for Materials Selection, Manufacturing and Applications,” J. Eur. Ceram. Soc., 29, 207–221 (2009).
24. X. Mao, S. Shimai, M. J. Dong and S. W. Wang, “Gelcasting and Pressureless Sintering of Translucent Alumina Ceramics,” J. Am. Ceram. Soc., 91[5], 1700–1702 (2008).
25. 楊秋紅, 徐軍, 宋平新, 趙志偉, 曾智江, “Al2O3透明陶瓷顯微結構的研究,” 功能材料與器件學報, 14[3], 299-302 (2003).
26. X. J. Mao, S. W. Wang, S. Z. Shimai and J. K. Guoz, “Transparent Polycrystalline Alumina Ceramics with Orientated Optical Axes,” J. Am. Ceram. Soc., 91 [10], 3431–3433 (2008).
27. T. S. Suzuki, Y. Sakka, and K. Kitazawa, “Orientation Amplification of Alumina by Colloidal Filtration in a Strong Magnetic Field,” Adv. Eng. Mater., 3,490–492 (2001).
28. Y. Zhou, K. Hirao, Y. Yamauchi and S. Kanzaki, “Densification and Grain Growth in Pulse Electric Current Sintering of Alumina,” J. Eur. Ceram. Soc., 24, 3465–3470 (2004).
29. M. Born and E. Wolf, “Principles of Optics. Pergamon Press,” Oxford, U.K. (1975).
30. I. Yamashita, H. Nagayama and K. Tsukuma, “Transmission Properties of Translucent Polycrystalline Alumina,” J. Am. Ceram. Soc., 91[8], 2611–2616 (2008).
31. M. N. Rahaman, “Ceramic Processing and Sintering,” M. Dekker, New York (1995).
32. C. R. Veale, Fine Powders: Preparation, Properties and Uses, Applied Science Publishers Ltd, London (1972).
33. M. F. Yan, R. M. Cannon, U. Chowdhry, and H. K. Bowen, “Effect of Grain Size Distribution on Sintered Density”Mater. Sci. Eng., 60, 275-80 (1983).
34. A. Roosen and H. K. Bowen, “Influence of Various Consolidation Techniques on the Green Microstructure and Sintering Behavior of Alumina Powders,” J. Am. Ceram. Soc., 71 [11], 970-77 (1988).
35. J. P. Smith and G. L. Messing, “Sintering of Bimodally Distributed Alumina Powders,” J. Am. Ceram. Soc., 67 [4], 238-242, (1984).
36. G. L. Messing and J. L. McArdle, “Seeding with γ-Alumina for Transformation and Microstructure Control in Boehmite-Derived α-Alumina,” J. Am. Ceram. Soc., 69[5], 98-101 (1986).
37. P. A. Badkar and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina,” J. Mater. Sci., 11, 1794-1806 (1976).
38. G. L. Messing and J. L. McArdle, “Transformation, Microstructure Development, and Densification in α-Fe2O3 Seeded Boehmite-Derived Alumina,” J. Am. Ceram. Soc., 76[1], 214-222 (1993).
39. F. F. Lange and B. I. Davis, “Sinterability of ZrO2 and Al2O3 Powders: The Role of Pore Coordination Number Distribution,” in Science and Technology of Zirconia II, Ed. By N. Claussen, M. Ruble, and A. H. Heuer, Am. Ceram. Soc., (1984).
40. J. W. Halloran, “Role of Powder Agglomerates in Ceramic Processing,” in Advances in Ceramics, 9, Forming of Ceramics, Eds. J. A. Mange and G. L. Messing, Am. Ceram. Soc., (1984).
41. F. D. Dynys and J. W. Halloran, “Influence of Aggregates on Sintering,” J. Am. Ceram. Soc., 67 [9], 596-601 (1984).
42. A. Krell, P. Blank, H. Ma, T. Hutzler and M. Nebelung, “Processing of High-Density Submicrometer Al2O3 for New Applications,” J. Am. Ceram. Soc., 86[4], 546–53 (2003).
43. A. Krell and J. Klimke, “Effects of the Homogeneity of Particle Coordination on Solid-State Sintering of Transparent Alumina,” J. Am. Ceram. Soc., 89[6], 1985–1992 (2006).
44. R. C. Chiu, T. J. Garino and M. J. Cima, “Drying of Granular Ceramic Films: I, Effect of Processing Variables on Cracking Behavior,” J. Am. Ceram. Soc., 76[9], 2257-64 (1993).
45. P. A. Kralchevskyt and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir, 10, 23-26 (1994).
46. J. Aizenberg, P. V. Braun and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett., 84[13], 2997-3000 (2000).
47. G. W. Scherer, “Theory of Drying,” J. Am. Ceram. Soc., 73 [1], 3-14 (1990).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top