跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 14:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林奕安
研究生(外文):Yi-An Lin
論文名稱:鋅基高溫無鉛銲錫合金開發及其性質之研究
論文名稱(外文):Synthesis and characteristics of Zn-based alloys for high temperature solder application
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:104
中文關鍵詞:抗氧化高溫無鉛銲錫
外文關鍵詞:Lead free solderHigh temperature
相關次數:
  • 被引用被引用:3
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討高溫無鉛銲料的開發及其相關性質,以鋅錫系及鋅鋁系合金作為研究對象,除了研究鋅錫合金與鋅鋁合金其本身熱性質、微觀結構、機械性質、電性以及氧化行為,也利用添加第三元素(鎂、鋁以及鎵)來嘗試改善合金特性以符合高溫要求。
熱性質分析結果顯示,三元共晶Zn-4Al-3Mg具有最接近傳統高鉛(Pb-5Sn)的熔點範圍。而鋅錫系合金的固相線溫度過低(200℃),造成高溫可靠度不佳。機械性質測試以硬度量測為主,硬度值依序為Zn-4Al-3Mg > Zn-4Al > Zn-4Al-3Ga > Zn-45Sn > Zn-45Sn-4Al,高於傳統Pb-5Sn合金。導電性方面,以Zn-4Al及Zn-4Al-3Ga的表現最佳,其電阻率僅約傳統Pb-5Sn(19 μΩ.cm)的34.7 %,鋅的低電阻特性使得鋅基合金展現優異的導電性。高溫氧化試驗中,合金氧化速率依序為Zn-4Al-3Mg > Zn-45Sn > Zn-45Sn-4Al > Zn-4Al > Zn-4Al-3Ga,顯示Zn-4Al合金添加鎂元素會降低抗氧化能力,而添加鎵元素則能改善抗氧化能力。Zn-45Sn系統中,添加鋁元素具有加強抗氧化的效果。
綜合各項試驗結果,相對於傳統Pb-5Sn合金,Zn-4Al-3Ga合金具有較優異的導電性與相近的操作溫度,此外Zn-4Al-3Ga亦具有良好的抗氧化能力。
This study investigated the development of high-temperature lead-free solders and their properties after addition of third element in Zn-4Al and Zn-45Sn alloys. Magnesium and gallium were added to the Zn-4Al and aluminum was inserted in the Zn-45Sn for meeting the requirements of high temperature applications. Resultant solders were examined for the thermal properties, microstructure, mechanical properties, electrical properties and oxidation behavior.
The Melting range of Zn-4Al-3Mg closest to that of Pb-5Sn alloy among of the five alloys. Zn-45Sn alloys showed poor high temperature reliability because of too low solidus temperature. Mechanical property as micro-hardness of the alloys was decreased in the sequence of Zn-4Al-3Mg, Zn-4Al, Zn-4Al-3Ga, Zn-45Sn and Zn-45Sn-4Al, higher than the traditional Pb-5Sn alloy. Zn-4Al and Zn-4Al-3Ga exhibited excellent performance in electrical conductivity with resistivity of 6.6 μΩ.cm, 65.3 % less than traditional 95Pb-5Sn alloy (19 μΩ.cm). The oxidation rates of alloys were decreased in the order of Zn-4Al-3Mg, Zn-45Sn, Zn-45Sn-4Al, Zn-4Al and Zn-4Al-3Ga in the high temperature oxidation test. Addition of 3% magnesium reduced the oxidation resistance of Zn-4Al whereas 3% gallium enhanced. Moreover, 4% aluminum slowed down the oxidation rate of Zn-45Sn alloys.
Based on the results of study, Zn-4Al-3Ga alloy is more suitable for application because of excellent electrical conductivity, good oxidation resistance and similar operating temperature as 95Pb-5Sn alloy.
中文摘要..................................................I
Abstract.................................................II
致謝....................................................III
總目錄...................................................IV
表目錄...................................................VI
圖目錄..................................................VII
第壹章 簡介...............................................1
1-1 電子構裝技術.........................................1
1-2 無鉛銲錫的發展.......................................3
1-2-1 錫銀銅系合金......................................4
1-2-2 共晶錫鋅系合金....................................8
1-3 高溫無鉛銲錫的相關應用...............................8
1-4 高溫無鉛銲錫系統....................................12
1-4-1 鋅錫系合金.......................................12
1-4-2 金錫系合金.......................................12
1-4-3 鋅鋁系合金.......................................14
1-4-4 鉍銀系合金.......................................17
1-5 研究目的............................................20
第貳章 實驗方法與步驟....................................23
2-1 實驗構想............................................23
2-2 高溫無鉛銲錫的配製..................................25
2-3 高溫無鉛銲錫之熱性質量測............................25
2-4 高溫無鉛銲錫之金相與微觀組織的觀察..................27
2-5 高溫無鉛銲錫之電性量測..............................27
2-6 高溫無鉛銲錫之氧化行為..............................32
2-6-1 熱重分析.........................................32
2-6-2 表面氧化層之分析.................................32
第參章 結果與討論........................................33
3-1 高溫無鉛銲錫之熱性質分析............................33
3-1-1 熱差分析探討.....................................33
3-2 高溫無鉛銲錫微觀組織觀察............................40
3-2-1 微觀組織分析.....................................40
3-2-2 維式硬度值.......................................53
3-3 高溫無鉛銲錫之電性分析..............................60
3-3-1 電阻率之比較.....................................60
3-4 高溫無鉛銲錫之高溫氧化行為..........................64
3-4-1 高溫無鉛銲錫氧化行為之比較.......................65
3-4-2 氧化速率計算.....................................72
3-4-3 表面氧化物之分析.................................76
3-4-4 綜合討論.........................................95
3-5 高溫無鉛銲錫之綜合比較..............................97
第肆章 結論..............................................99
參考文獻................................................100
1. 謝宗雍,陳力俊,微電子材料與製程,中國材料科學學會,2000,pp. 386-387.
2. “Packaging”, Electronic Materials Handbook, Vol. 1, ed. By M.L. Minges et al., ASM International, Materials Park, Ohio, 1989.
3. B. Trumble, “Get the Lead Out!”, IEEE Spectrum, Vol. 35, No. 5, 1998 , pp. 55-60.
4. Directive 2002/95/EC of The European Parliament and of The Council of 27 January 2003 on The Restriction of The Use of Certain Hazardous Substances in Electrical and Electronic Equipment, 2003.
5. K. Suganuma, “Advances in Lead-free Electronics Soldering”, Current Opinion in Solid State and Materials Science, Vol. 5, 2001, pp. 55-64.
6. S. Choi, J. G. Lee, K. N. Subramanian, J. P. Lucas, and T. R. Bieler, “Microstructural Characterization of Damage in Thermomechanically Fatigued Sn-Ag Based Solder Joints”, Journal of Electronic Materials, Vol. 31, No. 4, 2002, pp. 292-297.
7. N. C. Lee, “Getting Ready for Lead-free solders”, Soldering & Surface Mount Technology, Vol. 9, 1997, pp. 65-69.
8. T. B. Massalski, “Binary alloy phase diagrams”, ASM , Ohio, 1986.
9. I. Karakaya, W. T. Thompson, Bull. Alloy Phase Diagrams 8, 340, 1987.
10. N. Saunders, A.P. Miodownik, Bull. Alloy Phase Diagrams 11, 278, 1990.
11. X. M. Xie, T. B. Wang, J. Z. Shi and R. Q. Ye, “A Novel High Performance Die Attach”, Soldering & Surface Mount Technology, Vol. 12, 2000, pp. 40-44.
12. S. Pinamaneni and D. A. Solomon, “Rapidly Solidified Soft Solder Die-Attach Technology”, IEEE Transactions on Components Hybrids and Manufacturing Technology, Vol. 9, 1986, pp. 416-422.
13. K. Suganuma, S. Kim, and K. S. Kim, “High-Temperature Lead-Free Solders: Properties and Possibilities”, JOM, Vol. 61, 2009, pp. 64-71.
14. J. E. Lee, K. S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, “Interfacial Properties of Zn-Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate”, Materials Transactions, Vol. 46, No. 11, 2005, pp. 2413-2418.
15. S. J. Kim, K. S. Kim, S. S. Kim, C. Y. Kang, and K. Suganuma, “Characteristics of Zn-Al-Cu Alloys for High Temperature Solder Application”, Materials Transactions, Vol. 49, No. 7, 2008, pp. 1531-1536.
16. J. E. Lee, K. S. Kim, K. Suganuma, M. Inoue and G. Izuta, “Thermal Properties and Phase Stability of Zn-Sn and Zn-In Alloys as High Temperature Lead-Free Solder”, Materials Transactions, Vol. 48, No. 3, 2007, pp. 584-593.
17. Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, Bull. Alloy Phase Diagrams 4, 330, 1985.
18. Y. C. Liu, J. W. R. Teo, S. K. Tung, and K. H. Lam, “High-temperature Creep and Hardness of Eutectic 80Au/20Sn Solder”, Journal of Alloys and Compounds, Vol. 448, 2008, pp. 340-343.
19. X. S. Liu, M. H. Hu, H. K. Nguyen, C. G. Caneau, M. H. Rasmussen, R. W. Davis, and C. E. Zah, “Comparison Between Epi-Down and Epi-Up Bonded High-Power Single-Mode 980-nm Semiconductor Lasers”, IEEE Transactions on Advanced Packaging, Vol. 27, 2004, pp. 640-646.
20. J. W. Yoon, H. S. Chun, J. M. Koo, and S. B. Jung, “Au-Sn Flip-chip Solder Bump for Microelectronic and Optoelectronic Applications”, Microsystem Technologies, Vol. 13, 2007, pp. 1463-1469.
21. M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, “Zn-Al Based Alloys as Pb-Free Solders for Die Attach”, Journal of Electronic Materials, Vol. 31, No. 4, 2002, pp. 278-285.
22. Y. Takaku, K. Makino, K. Watanabe, I. Ohnuma, R. Kainuma, Y. Yamada, Y. Yagi, I. Nakagawa, T. Atsumi, and K. Ishida, “Interfacial Reaction between Zn-Al-based High-Temperatrue Solders and Ni Substrate”, Journal of Electronic Materials, Vol. 38, No. 1, 2009, pp. 54-60.
23. Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, and K. Ishida, “Interfacial Reaction Between Cu Substrates and Zn-Al Base High-Temperature Pb-Free Solders”, Journal of Electronic Materials, Vol. 37, No. 3, 2008, pp. 314-323.
24. G. Petzow and G. Effenberg, eds., Ternary Alloys – A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Vol. 5, (Weinheim, Germany: VCH verlagsgesellschaft, 1992).
25. J. M. Song, H. Y. Chuang, and T. X. Wen, “Thermal and Tensile Properties of Bi-Ag Alloys”, Metallurgical and Materials Transactions A, Vol. 38A, 2007, pp. 1371-1375.
26. P. Villars, A. Prince, and H. Okamoto, Handbook of TernaryAlloy Phase Diagrams, ASM International, 1995.
27. K. L. Lin, L. H. Wen, and T. P. Liu, “The Microstructures of the Sn-Zn-Al Solder Alloys”, Journal of Electronic Materials, Vol. 27, 1998, pp. 97-105.
28. Y. S. Kim, K. S. Kim, C. W. Hwang, K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn-Zn-Bi Alloys”, Journal of Alloys and Compounds, Vol. 352, 2003, pp. 237-245.
29. K. S. Kim, T. Matsuura, and K. Suganuma, “Effects of Bi and Pb on Oxidation in Humidity for Low-Temperature Lead-Free Solder Systems”, Journal of Electronic Materials, Vol. 35, No. 1, 2006, pp. 41-47.
30. T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, “Zn-Al-Mg-Ga Alloys as Pb-Free Solder for Die-Attaching Use”, Journal of Electronic Materials, Vol. 28, No. 11, 1999, pp. 1172-1175.
31. K. I. Chen, and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys—The Effect of Ga”, Journal of Electronic Materials, Vol. 32, No. 10, 2003.
32. 劉乃碩,添加鎵元素對錫鋅銀鋁無鉛銲錫各種性質影響之研究,博士論文,成功大學材料系,2007。
33. K. L. Lin, K. I. Chen, and P. C. Shi, “A Potential Drop-In Replacement for Eutectic Sn-Pb Solder—The Sn-Zn-Ag-Al-Ga Solder”, Journal of Electronic Materials, Vol. 32, No. 12, 2003, pp. 1490-1495.
34. K. L. Lin, and T. P. Liu, “High-Temperature Oxidation of a Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 50, Nos. 3/4, 1998, pp. 255-267.
35. J. E. Lee, K. S. Kim, M. Inoue, J. Jiang, K. Suganuma, “Effects of Ag and Cu addition on Microstructural Properties and Oxidation Resistance of Sn-Zn Eutectic Alloy”, Journal of Alloys and Compounds, Vol. 454, 2008, pp. 310-320.
36. Y. H. Zhu, “General Rule of Phase Decomposition in Zn-Al Based Alloys (II)—On Effects of External Stresses on Phase Transformation—“, Materials Transactions, Vol. 45, No. 11, 2004, pp. 3083-3097.
37. J. C. Slater, “Atomic Radii in Crystals”, Journal of Chemical Physics, Vol. 41, 1964, pp. 3199-3204.
38. R. R. Tummala and E. J. Rymaszewski, Microelectronics Packaging Handbook, Van Nostrand Reinhold, 1989.
39. W. R. Weast, CRC Handbook of Chemistry and Physics, 1st Student ed., Boca Raton, FL : CRC Press, 1988.
40. N. Kang, H. S. Na, S. J. Kim, C. Y. Kang, “Alloy Design of Zn-Al-Cu Solder for Ultra High Temperatures”, Journal of Alloys and Compounds, Vol. 467, 2009, pp. 246-250.
41. M. Kamal, M. S. Meikhail, A. B. EL-BEDIWI, and E. Gouda, “Structure, Electrical, Mechanical and Wettability of Quenched Lead-free Solder Alloys”, Radiation Effects and Defects in Solids, Vol. 160, 2005, pp. 37-44.
42. H. Okamoto, “Comment on Mg-Zn (Magnesium-Zinc)”, Journal of Phase Equilibria, Vol. 15, 1994, pp. 129-130.
43. I. Barin, Thermochemical Data of Pure Substances, Vol. 1, VCH., New York, 1995.
44. I. Barin, Thermochemical Data of Pure Substances, Vol. 2, VCH., New York, 1995.
45. 黃家緯,錫鋅系無鉛銲錫(Sn-Zn-Al-Ag Solder)之研究,博士論文,成功大學材料系,2005。
46. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, J. Chasstain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, Minnesota, 1995.
47. S. W. Gaarenstroom and N. Winograd, “Initial and Final State Effects in the ESCA Spectra of Cadmium and Silver Oxides”, Journal of Chemical Physics, Vol. 67, 1977, pp. 3500-3506.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊