跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:池秋嬿
研究生(外文):Chiu-yen Chih
論文名稱:固溶退火處理之Ti-6Al-4V合金在鹽酸和硫酸混酸水溶液中鈍化與溶解行為之研究
論文名稱(外文):Passivation and Dissolution Behaviors of Solution Annealed Ti-6Al-4V Alloy in Mixed HCl + H2SO4 Solution
指導教授:蔡文達蔡文達引用關係
指導教授(外文):Wen-Ta Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:107
中文關鍵詞:XPS微觀組織腐蝕性質Ti-6Al-4VAES
外文關鍵詞:corrosion behaviormicrostructureAESTi-6Al-4VXPS
相關次數:
  • 被引用被引用:3
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討以熱處理改變Ti-6Al-4V雙相鈦合金微觀組織並研究其對鈍化行為之影響,並與無添加任何合金元素的商業用純鈦比較。將Ti-6Al-4V合金進行β相固溶溫度以上之退火處理後,以不同的冷卻法將試片冷卻至室溫,並進行微觀組織與電化學之分析測試。熱處理後顯微組織和化學組成的改變分別利用SEM及EDS進行觀察,經固溶處理後空冷和爐冷的試片可觀察出雙相(α + β)之微結構,而以退火/水淬處理的試片,其主要的顯微組織為麻田散的α’相;EDS分析結果得知,熱處理後爐冷試片β相的V含量可高達22 wt%。
在空氣中生成之鈍化膜,或在硫酸/鹽酸混酸水溶液中預鈍化處理後之鈍化膜,於硫酸/鹽酸混酸水溶液進行電位衰退試驗結果顯示其再活化性質有差別。利用AES及XPS分析空氣中及經預鈍化處理生成之鈍化膜的組成,結果顯示經退火/爐冷處理之試片,其表面鈍化膜之氧化鋁含量增加及組成相轉變,使其在硫酸/鹽酸混酸水溶液中較為穩定。
根據EIS的量測結果可知商用純鈦之阻抗值是較大的,經長時間浸漬之後Ti-6Al-4V原材阻抗值高於商業用純鈦;浸漬試驗結果發現熱處理後空冷及爐冷的試片於此混酸的水溶液中,富鋁之α相會發生優先腐蝕的現象。
The effect of cooling rate, following solution heat treatment, on the microstructure and passivation behavior of Ti-6Al-4V alloy was investigated, comparing with that of unalloyed commercial pure titanium. The air-formed passive film and that formed in mixed sulfuric acid and hydrochloric acid solution under pre-passivated treatment exhibited different reactivation behavior. The microstructure as well as the chemical composition changes after heat treatment was analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Dual phase (α + β) microstructure was obtained for the solution annealed alloy either cooled in air or in furnace, while martensite was obtained if it was water-quenched. EDS analysis showed that solution treatment followed by furnace cooled the vanadium content of β phase was reached 22 wt%.
AES and XPS analysis showed that the passive film formed via air-formed and pre-passivated treatment on the surface of the furnace-cooled heat treated alloy had a higher content of aluminum oxide in the passive film and the change of composition phase, which gave rise to a higher stability in the mixed acid solution.
EIS measurement indicated that Rp value of CP titanium was the largest one in our investigated alloys. However, the Rp value of the as-received Ti-6Al-4V was superior to CP titanium as the immersion time increased to a certain period in the mixed acid solution. Immersion test indicated selective dissolution of the Al-rich α phase occurred in duplex structured air-cooled and furnace-cooled alloys in 0.5 M H2SO4+1 M HCl solution.
摘要 I
Abstract II
誌 謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
第二章 理論基礎與文獻回顧 3
2.1 簡介 3
2.2 純鈦基本性質 3
2.3 添加不同的元素對鈦合金的影響 4
2.4 鈦合金之分類 5
2.4.1 α型鈦合金 5
2.4.2近α型 (near - α)鈦合金 5
2.4.3 α+β型鈦合金 5
2.4.4近β型 (near - β)鈦合金 6
2.4.5 β型鈦合金 6
2.5 固溶處理對Ti-6Al-4V顯微組織的影響 12
2.6 Ti-6Al-4V典型組織 13
2.7 歐傑電子能譜儀分析 19
2.7.1 歐傑電子能譜原理 19
2.7.2 縱深成分分析( Depth Profiling ) 22
2.8電化學阻抗頻譜法(Electrochemical Impedance Spectroscopy) 24
2.8.1 交流阻抗之基本原理 24
2.8.2 擴散阻抗 26
第三章 實驗步驟與方法 33
3.1 材料組成與試片製備 33
3.2 顯微組織觀察與分析 33
3.3 X光繞射光譜分析 33
3.4 電化學試驗 34
3.4.1 動電位極化測試 34
3.4.2 鈍化膜穩定性測試 34
3.5 歐傑電子能譜 (Auger Electron Spectrometer) 分析 35
3.6 鈍化膜成分分析 35
3.7 浸泡試驗 36
3.7.1 浸泡後之交流阻抗頻譜分析量測 36
3.7.2 浸泡後之顯微組織分析 36
第四章 實驗結果與討論 41
4.1 熱處理對Ti-6Al-4V合金之影響 41
4.1.1 顯微組織的觀察 41
4.1.2 EDS分析 42
4.1.3 結晶結構與相比例 43
4.2 電化學測試 55
4.2.1 動電位極化測試 55
4.2.2 鈍化膜穩定性評估 55
4.3 AES分析 71
4.3.1 空氣中生成之鈍化膜 71
4.3.2 預鈍化處理生成之鈍化膜 72
4.4 XPS分析 78
4.5浸漬試驗 84
4.5.1 交流阻抗頻譜分析 84
4.5.2 顯微組織的觀察 85
第五章 結論 97
參考文獻 99
自 述 107
1.Halit Arslan, "Galvanic corrosion of titanium-based dental implant materials," Journal of Applied Electrochemistry, Vol. 38, No. 6, p. 853-859, (2008).
2.P. Y. Lim, P. L. She, and H. C. Shih, "Microstructure effect on microtopography of chemically etched alpha + beta Ti alloys," Applied Surface Science, Vol. 253, No. 2, p. 449-458, (2006).
3.K. Bordji, J. Y. Jouzeau, D. Mainard, and E. Payan, "Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts," Biomaterials, Vol. 17, No. 9, p. 929-940, (1996).
4.Sérgio Luiz de Assis, "The effect of polarisation on the electrochemical behavior of Ti-13Nb-13Zr alloy," Materials Research, Vol. 10, No. 3, (2007).
5.M. T. Pham, I. Zyganow, W. Matz, H. Reuther, S. Oswald, E. Richter, and E. Wieser, "Corrosion behavior and microstructure of titanium implanted with and stabilizing elements," Thin Solid Films, Vol. 310, p. 251-259, (1997).
6.Sodhi RNS, Weninger A, and Davis JE, "X-ray photoelectron spectroscopic comparison of sputtered Ti, Ti6Al4V, and passivated bulk metals for use in cell culture techniques," J. Vac. Sci. Technol. A, Vol. 9, p. 1329-1333, (1991).
7.M. Ask, J. Lausmaa, and B. Kasemo, "Preparation and surface spectroscopic characterization of oxide films on Ti6Al4V," Applied Surface Science, Vol. 35, No. 3, p. 283-301, (1989).
8.Y. Okazaki, T. Tateishi, and Y. Ito, "Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying element in passive films," Material Transactions, JIM, Vol. 38, No. 1, p. 78-84, (1997).
9.T. Sundararajan, U. Kamachi Mudali, K. G. M. Nair, S. Rajeswari, and M. Subbiyan, "Surface characterization of electrochemically formed passive film on nitrogen ion implanted Ti-6Al-4V alloy," Material Transactions, JIM, Vol. 39, No. 7, p. 756-761, (1998).
10.I. Milosev, M. Metikos-Hukovic, and H. H. Strehblow, "Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy," Biomaterials, Vol. 21, No. 20, p. 2103-2113, (2000).
11.B. W. Callen, R.N.S. Sodhi, and K. Griffiths, "Examination of clinical surface preparations on titanium and Ti-6Al-4V by X-ray photoelectron spectroscopy and nuclear reaction analysis," Progress in Surface Science, Vol. 50, No. 1-4, p. 269-279, (1995).
12.M. Metikos-Hukovic, A. Kwokal, and J. Piljac, "The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution," Biomaterials, Vol. 24, No. 21, p. 3765-3775, (2003).
13.M. F. Lopez, A. Gutierrez, and J.A. Jimenez, "Surface characterization of new non-toxic titanium alloys for use as biomaterials," Surface Science, Vol. 482-485, p. 300-305, (2001).
14.M. Lewandowska, M. Pisarek, K. Rozniatowski, M. Gradzka-Dahlke, M. Janik-Czachor, and K.J. Kurzydlowski, "Nanoscale characterization of anodic oxide films on Ti-6Al-4V alloy," Thin Solid Films, Vol. 515, No. 16, p. 6460-6464, (2007).
15.F. Contu, B. Elsener, and H. Bohni, "A study of the potentials achieved during mechanical abrasion and the repassivation rate of titanium and Ti6Al4V in inorganic buffer solutions and bovine serum," Electrochimica Acta, Vol. 50, No. 1, p. 33-41, (2004).
16.F. Contu, B. Elsener, and H. Bohni, "Serum effect on the electrochemical behavior of titanium, Ti6Al-4V and Ti6Al7Nb alloys in sulphuric acid and sodium hydroxide," Corrosion Science, Vol. 46, p. 2241-2254, (2004).
17.M. Ruzickova, H. Hilderbrand, and S. Virtonen, "On the Stability of Passivity of Ti-Al Alloys in Acidic Environment," Zeitschrift für Physikalische Chemie, Vol. 219, p. 1447-1459, (2005).
18.L. Thair, U. Kamachi Mudali , R. Asokamani , and B. Raj, "Influence of microstructural changes on corrosion behaviour of thermally aged Ti-6Al-7Nb alloy," Materials and Corrosion, Vol. 55, No. 5, p. 358-366, (2004).
19.M. Geetha, U. Kamachi Mudali, A.K. Gogia, R. Asokamani, and B. Raj, "Influence of microstructure and alloying elements on corrosion behavior of Ti-13Nb-13Zr alloy," Corrosion Science, Vol. 46, No. 4, p. 877-892, (2004).
20.I. Hsuang Lo, Y. Fu, C. J. Lin, and W. T. Tsai, "Effect of electrolyte composition on the active-to-passive transition behavior of 2205 duplex stainless steel in H2SO4 /HCl solutions," Corrosion Science, Vol. 48, No. 3, p. 696-708, (2006).
21.W. T. Tsai and J.R. Chen, "Galvanic corrosion between the constituent phases in duplex stainless steel," Corrosion Science, Vol. 49, No. 9, p. 3659-3668, (2007).
22.J. L. Walter, M. R. Jackson, and C.T. Sims, "Titanium and its alloys: Priciples of Alloying Titanium," ASM International, Materials Park, (1988).
23.Christoph Leyens and Manfred Peters, "“Titanium and Titanium alloys, Fundamentals and Applications”," WILEY-VCH GmbH & Co. KGaA, p. 5-10, (2003).
24.Smith, "“Structure and Properties of Engineering Alloys”," McGraw -Hill, p. 433, (1993).
25.H.K.D.H. Bhadeshia, "“Metallurgy of Titanium and its Alloys”," (2004).
26.Christoph Leyens and Manfred Peters, "“Titanium and Titanium alloy, Fundamentals and Applications”," p. 18-23, (2003).
27.M. J. Donachie, "JR,“Titanium and Titanium Alloy”," Source Book, p. 10-14, (1982).
28.William F. Smith, "“Structure and Properties of Engineering Alloys”," McGraw-Hill Publishing Co., (1981).
29.Donachie, M.J., "“ Titanium, A Technical Guide 2nd Edition ASM International”, " (1989).
30.Y. T. Lee, M. Peters, and G. Welsch, "Elastic Moduli and Tensile and Physical Properties of Heat-Treated and Quenched Powder Metallurgical Ti-6AI-4V Alloy," Metallurgical and Materials Transaction A, Vol. 22A, p. 709-714, (1991).
31.G. Welsch, R. Boyer, E. W. Collings, "Materials Properties Handbook: Titanium Alloys, ASM International," p. 483-636, (1994).
32.S. L. Semiatin, V. Seetharaman, and I. Weiss, "Hot Working of TItanium Alloys - An Overview," Advances in the Science and Technology of Titanium Alloy Processing, Metals and Materails Society, (1997).
33.B. K. Damkroger and G. R. Edwards, "Continuous cooling transformation kinetics in alpha-beta titanium alloys," Metals and Materials Society, p. 129-150, (1990).
34.T. Ahmed and H. J. Rack, "Phase transformations during cooling in α+β titanium alloys," Materials Science and Engineering, Vol. A243, p. 206-211, (1998).
35.L. Qian, J. Mei, J. Liang, and X. Wu, "Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti-6Al-4V samples," Material Science and Engineering, Vol. 21, No. 5, p. 597-605, (2005).
36.I. Weiss , F. H. Froes , D. Eylon , and G. E. Welsch, "Modification of Alpha Morphology in Ti-6Al-4V by Thermomechnical Processing," Metallurgical Transactions A, Vol. 17A, p. 1935-1947, (1986).
37.吳家豪, "AlxFeCoNiCrMo0.5 高熵合金之腐蝕及電化學性質," 國立清華大學材料科學與工程學系, (2006).
38.R. Pederson, "Microstructure and phase transformation of Ti-6Al-4V," Department of Applied physics and Mechnical Engineering Division of Engineering Materials, (2002).
39.S. L. SEMIATIN, T. M. BROWN, T. A. DOFF, and P. N. FAGIN, "Diffusion Coefficients for Modeling the Heat Treatment of Ti-6Al-4V," Metallurgical and Materials Transaction A, Vol. 35A, p. 3015-3018, (2003).
40.S. L. SEMIATIN, S. L. KNISLEY, P. N. FAGIN, and F. ZHANG, "Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V," Metallurgical and Materials Transaction A, Vol. 34A, p. 2377-2386, (2003).
41.M. T. Jovanovic, S. Tadic, S. Zec, Z. Miskovic, and I. Bobic, "The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy," Materials & Design, Vol. 27, No. 3, p. 192-199, (2006).
42.T. R. Beck, "Electrochemistry of freshly-generated titanium surfaces--I. Scraped-rotating-disk experiments," Electrochimica Acta, Vol. 18, No. 11, p. 807-814, (1973).
43.C. K. Dyer and J. S. L. Leach, "Reversible reactions within anodic oxide films on titanium electrodes," Electrochimica Acta, Vol. 23 p. 1387-1394, (1978).
44.J. G. Yu , J. L. Luo , and P. R. Norton, "Electrochemical investigation of the effects of hydrogen on the stability of the passive film on iron," Electrochimica Acta, Vol. 47, p. 1527-1536, (2002).
45.Q. Yang and J. L. Luo, "The hydrogen-enhanced effects of chloride ions on the passivity of type 304 stainless steel," Electrochimica Acta, Vol. 45, p. 3927-3937, (2000).
46.J. G. Yu, J. L. Luo, and P. R. Norton, "Effect of hydrogen on the eletronic propertied and stability of the passive films on iron," Applied Surface Science, Vol. 177, p. 129-138, (2001).
47.I. A. Ammar and I. Kamal, "Kinetics of anodic oxide-film growth on titanium-I. Acid media," Electrochimica Acta, Vol. 16, No. 9, p. 1539-1553, (1971).
48.P. Marcus, V. Maurice, and H. H. Strehblow, "Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure," Corrosion Science, Vol. 50, No. 9, p. 2698-2704, (2008).
49.D. J. Blackwood, L. M. Peter, and D. E. Williams, "Stability and open circuit breakdown of the passive oxide film on titanium," Electrochimica Acta, Vol. 33, No. 8, p. 1143-1149, (1988).
50.N. D. Tomashov, G. P. Chernova, Y. S. Ruscol, and G. A. Ayuyan, "The passivation of alloys on titanium bases," Electrochimica Acta, Vol. 19, No. 4, p. 159-172, (1974).
51.D. J. Blackwood, L. M. Peter, and D. E. Williams, "Stability and Open Circuit Breakdown of the Passive Oxide Film on Titanium," Electrochimica Acta, Vol. 33, No. 8, p. 1143 -1149, (1988).
52.D. J. Blackwood, R. Greef, L. M. Peter, and D. E. Williams, "An ellipsometric study of the growth and open-circuit dissolution of the anodic oxide film on titanium, " Electrochimica Acta, Vol. 34, No. 6, p. 875 -800, (1989).
53.D. J. Blackwood and S. K. M. Chooi, "Stability of protective oxide films formed on a porous titanium," Corrosion Science, Vol. 44, No. 3, p. 395-405, (2002).
54.B. Grosgogeat, M. Boint, F. Dalard, and M. Lissac, "Electrochemical studies of the corrosion behaviour of titanium and the Ti-6Al-4V alloy using electrochemical impedance spectroscopy," Bio-Medical Materials and Engineering Vol. 14, p. 323-331, (2004).
55.A. H. Bridges, "A study of the oxygenation and electro-deoxygenation of the Ti-6Al-4V alloy," Department of Materials Science & Metallurgy, University of Cambridge.
56.R. D. Armstrong, J. A. Harrison, H. R. Thirsk, and R. Whitfield, "The Anodic Dissolution of Titanium in Sulfuric Acid," Journal of the Electrochemical Society, Vol. 117, No. 8, p. 1003-1006, (1970).
57.E. J. Kelly, "Anodic Dissolution and Passivation of Titanium in Acidic Media," J. Electrochemical Society, Vol. 126, No. 12, p. 2064-2074, (1979).
58.J. Krysa, R. Mraz, and I. Rousar, "Corrosion rate of titanium in H2SO4," Materials Chemistry and Physics, Vol. 48, No. 1, p. 64-67, (1997).
59.V. V. Andreeva and V. I. Kazarin, "The Influence of Quadrivalent Titanium Ions On The Electrochemical Properties and Corrosion Behavior of This Element," Doklady Akad. Nauk S.S.S.R. , vol. 123, p. 577, (1958).
60.S. Y. Yu and J. R. Scully, "Corrosion and passivity of Ti–13Nb–13Zr in comparison to other biomedical implant alloys," Corrosion, Vol. 53, No. 12, p. 965-976, (1997).
61.J. P. Frayret, A. Caprani, T. Jaszay, and F. Priem, "Influence of aluminum and vanadium on the anodic dissolution of Ti-Al and Ti-V binary alloys in concentrated hydrochloric acid," Corrosion, Vol. 41, No. 11, p. 656-664, (1985).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊