跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/14 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉雁欣
研究生(外文):Yen-Hsin Liu
論文名稱:高溫質子交換膜燃料電池用之含氟聚苯咪唑/磺酸化二氧化矽奈米複合材料合成與性質之研究
論文名稱(外文):Synthesis and properties of fluorine-containing polybenzimidazole/sulfonated silica nanocomposites for high-temperature proton exchange membrane fuel cells
指導教授:許聯崇
指導教授(外文):Steve Lien-Chung Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:磺酸化燃料電池聚苯咪唑奈米複合材料
外文關鍵詞:polybenzimidazolesulfonationnanocompositefuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用3,3’-diaminobenzidine、2,2-bis(4-carboxyphenyl) hexafluoropropane及5-hydroxyisophthalic acid三種單體合成分子結構中帶有含氟及OH基團之聚苯咪唑(Polybenzimidazole,PBI)共聚合物。以FTIR、XRD、1H-NMR分析鑑定此PBI共聚合物之組成與結構。由PBI共聚合物與silica前驅物phenethyl trimethoxysilane (PETMS)混摻,其中添加bonding agent以強化有機高分子與無機材之間的交互作用力,再經由溶膠-凝膠法(sol-gel)製備PBI/SiO2奈米複合材薄膜。由穿透式電子顯微鏡(TEM)分析可看出奈米silica粒子均勻分散在高分子基材中。此PBI複合膜材的機械性質與抗甲醇滲透能力皆能藉由奈米silica的添加而大幅的改善。含浸磷酸後的PBI/SiO2奈米複合材薄膜其導電率略低於未添加SiO2的PBI薄膜。
此外,PETMS與氯磺酸經磺酸化反應製備獲得磺酸化PETMS。將PBI共聚合物與磺酸化PETMS,經由溶膠-凝膠法(sol-gel)製備PBI/SiO2-SO3H奈米複合材薄膜,並於其中添加bonding agent。含浸磷酸後的PBI/SiO2-SO3H複合膜材的質子導電率因silica的磺酸化改質而大幅改善。但其甲醇滲透能力高於PBI/SiO2複合膜材。
An amorphous, fluorine-hydroxy containing polybenzimidazole (PBI) copolymer was synthesized from 3,3’-diaminobenzidine, 2,2-bis(4-carboxyphenyl) hexafluoropropane and 5-hydroxyisophthalic acid. The structures of the PBI copolymer was characterized by FTIR, XRD and 1H-NMR. PBI/SiO2 nanocomposite membranes were prepared via sol-gel process from the fluorine-hydroxy containing PBI copolymer with phenethyl trimethoxysilane (PETMS) precursor and a bonding agent. The introduction of the bonding agent results in the improvement of interfacial interaction between PBI chains and silica nanoparticles. Transmission electron microscopy (TEM) analyses showed that the silica particles were well dispersed in the PBI matrix on nanometer scale. The mechanical properties and the methanol barrier ability of the PBI/SiO2 films were improved by the addition of silica. The conductivities of the acid-doped PBI/SiO2 nanocomposites were slightly lower than the acid-doped pure PBI.
Sulfonated silica (SiO2-SO3H) was prepared via sulfonation reaction between PETMS and chlorlsulfonic acid. PBI/SiO2-SO3H nanocomposite membranes were prepared via sol-gel process from the fluorine-hydroxy containing PBI copolymer with sulfonated PETMS and the bonding agent. The conductivities of the acid-doped PBI/SiO2-SO3H nanocomposites were higher than the acid-doped pure PBI and PBI/SiO2 due to the addition of sulfonated silica. However, the addition of sulfonated silica increased the methanol permeability of PBI/SiO2-SO3H films.
摘要 I
Abstract II
誌謝 III
總目錄. IV
圖目錄. IX
表目錄. XI
Scheme 目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機及目的 2
第二章 文獻回顧與原理 4
2-1燃料電池簡介 4
2-2 PEMFC簡介 6
2-2-1 PEMFC操作原理 6
2-2-2 PEMFC電極觸媒之作用 8
2-3質子交換膜簡介 9
2-4 Polybenzimidazole (PBI) 之介紹 11
2-4-1 Polybenzazoles簡介 11
2-4-2 PBI之應用 13
2-5 PBI摻雜磷酸之質子傳導機制 14
2-6有機/無機奈米複合材料 22
2-6-1 有機/無機奈米複合材之簡介 22
2-6-2 有機/無機奈米複合材之製備方法 23
2-6-3 有機/無機奈米複合材之特性 24
2-7 溶膠-凝膠法(Sol- Gel method) 25
2-7-1 溶膠-凝膠法簡介 25
2-7-2 溶膠-凝膠法之反應條件 26
(1) PH值 26
(2) 溫度 27
(3) 水 27
2-7-3 溶膠-凝膠法之特性與型式 28
2-8 高分子之磺酸化 29
2-8-1 磺酸化簡介 29
2-8-2 磺酸化反應機制 29
2-8-3 磺化劑 31
2-8-4 磺酸化反應環境 32
2-8-5 高分子之磺酸化 32
第三章 實驗方法與步驟 34
3-1實驗材料 34
3-2實驗儀器 35
3-3實驗步驟 36
3-3-1含氟PBI/SiO2複材薄膜之合成與製備 36
(1)含氟 PBI共聚合物之合成 36
(2) PBI30OH/SiO2複材薄膜製備 37
3-3-2含氟PBI30OH/SiO2-SO3H複材薄膜之合成與製備 38
(1) PETMS之磺酸化反應 38
(2) PBI30OH/SiO2-SO3H複材薄膜製備 39
3-3-5 PBI薄膜酸質子化之製備 40
3-4 儀器分析原理與方法 42
3-4-1 固有黏度(Inherent viscosity)測定 42
3-4-2 傅利葉轉換紅外線光譜分析(FTIR) 42
3-4-3 核磁共振光譜分析(NMR) 43
3-4-4 X光繞射分析(XRD) 43
3-4-5 穿透式電子顯微鏡分析(TEM) 44
3-4-6 熱重損失分析(TGA) 44
3-4-7 熱機械分析(TMA) 45
3-4-8 機械性質分析 45
3-4-9 甲醇滲透分析 46
3-4-10 交流阻抗分析(AC impedance) 47
3-4-11 質子導電率分析 51
第四章 結果與討論 52
4-1 含氟PBI30OH合成結構之鑑定 52
4-1-1 PBI30OH固有黏度測定 53
4-1-2 傅利葉轉換紅外線光譜分析(FTIR) 53
4-1-3 核磁共振光譜分析(NMR) 54
4-1-4 PBI30OH之X光繞射分析(XRD) 55
4-2 PBI30OH/SiO2 奈米複合材薄膜性質之分析 56
4-2-1 PBI30OH/SiO2奈米複合材薄膜之熱性質分析 56
(1) 熱重損失分析(TGA) 56
(2) 熱機械分析(TMA) 58
4-2-2 PBI30OH/SiO2奈米複材薄膜之穿透式電子顯微鏡分析… 59
4-2-3 PBI30OH/SiO2奈米複合材薄膜之機械性質分析 60
4-2-4 PBI30OH/SiO2奈米複合材之甲醇滲透率分析 61
4-2-5 PBI30OH/SiO2奈米複合材之質子導電率分析 62
4-3 磺酸化PETMS之分析 64
4-3-1 傅利葉轉換紅外線光譜分析(FTIR) 64
4-4 PBI30OH/SiO2 –SO3H奈米複合材薄膜性質之分析 65
4-4-1 PBI30OH/SiO2-SO3H奈米複合材薄膜之熱性質分析 65
(1) 熱重損失分析(TGA) 65
4-3-3 PBI30OH/SiO2-SO3H奈米複合材薄膜之機械性質分析 66
4-3-4 PBI30OH/SiO2-SO3H奈米複合材薄膜之甲醇滲透率分析 67
4-3-5 PBI30OH/SiO2-SO3H奈米複合材薄膜之質子導電率分析 68
第五章 結論 82
參考文獻 84
1.G. Inzelt, M. Pineri, J.W. Schultze, M.A. Vorotyntsev, Electrochim. Acta 45 (2000) 2403.
2.M. Rikukawa, K. Sanui, Prog. Polym. Sci. 25 (2000) 1463.
3.L. Jorisen, V. Gogel, J. Kerres, J. Garche, J. Power Sources 105 (2002) 267.
4.D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, J. Power Sources 118 (2003) 205.
5.J.T. Wang, J.S. Wainright, R.F. Savinell, M. Litt, J. Appl. Electrochem. 26 (1996) 751.
6.Z.G. Shao, P. Joghee, I.M. Hsing, J. Membr. Sci. 229 (2004) 43.
7.V.V. Binsu, R.K. Nagarale, V.K. Shahi, J. Mater. Chem. 15 (2005) 4823.
8.P. Staiti, M. Minutoli, J. Power Sources 94 (2001) 9.
9.J.A. Asensio, S. Borros, P. Gomez-Romero, J. Polym. Sci. Part A Polym. Chem. 40 (2002) 3703.
10.L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.W. Choe, L.S. Ramanathan, S. Yu, B.C. Benicewicz, Fuel Cells 5 (2005) 287.
11.H.J. Kim, S.J. An, J.Y. Kim, J.K. Moon, S.Y. Cho, Y.C. Eun, H.K. Yoon, Y. Park, H.J. Kweon, E.M. Shin, Macromol. Rapid Commun. 25 (2004) 1410.
12.M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata, Electrochim. Acta 45 (2000) 1395.
13.J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Solid State Ionics 147 (2002) 189.
14.Y. A. Cengel, M. A. Boles, Thermodynamics: An engineering Approach, 2nd Edition, Mc Graw-hill, New York, (1994) 763.
15.李瑛,王林山,“燃料電池”,治金工業出版社(2000) 6.
16.吳千舜、諸伯仁,燃料電池質子交換膜的最新發展,第62卷,第一期(2004).
17.K.S. Jeong, B.S. Oh, J. Power Sources 105 (2002) 58.
18.X.H. Wang, Y. Chen, H.G. Pan, R.G. Xu, S.Q. Li, L.X. Chen, C.P. Chen, Q.D. Wang, J. Alloys Compd. 293 (1999) 833.
19.F. Alcaide, E. Brillas, P.L. Cabot, J. Electrochem. Soc. 145 (1998) 3444.
20.N.A. Popovich, R. Govind, J. Power Sources 112 (2002) 36.
21.K. Yamashita, T. Taniquchi, J. Electrochem. Soc. 145 (1998) 45.
22.R.H. Song, D.R. Shin, S. Dheenadayalan, J. Power Sources 107 (2002) 98.
23.K. Janowitz, M. Kah, H. Wendt, Electrochim Acta 45 (1999) 1025.
24.B. Fang, H. Chen, J. Electroanal. Chem. 501 (2001) 128.
25.S.F. Corbin, X. Qiao, J. Am. Ceram. Soc. 86 (2003) 401.
26.R.J. Gorte, S. Park, J.M. Vohs, C.H. Wang, Adv. Mater. 12 (2000) 1465.
27.H.F. Oetjen, V.M. Schmidt, U. Stimming, F. Trila, J. Electrochem. Soc. 143 (1996) 3838.
28.Y. Bultel, P. Ozil, R. Durand, J. Appl. Electrochem. 30 (2000) 1369.
29.Chemistry(The Chinese Chem. Soc., Taipei) March. 2004 Vol. 62, No. 1, pp. 149.
30.薛康琳,化學 62 (2004) 149.
31.R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, J. Electrochem. Soc. 141 (1994) L46.
32.G. Alberti, M. Casciola, L. Massinelli, B. Bauer, J. Membr. Sci. 185 (2001) 73.
33.C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A.B. Bocarsly, J. Power Sources 103 (2001) 1.
34.P. Costamagna, C. Yang, A.B. Bocarsly, S. Srinivasan, Electrochim. Acta 47 (2002) 1023.
35.B. Smitha, S. Sridhar, A.A. Khan, J. Membr. Sci. 259 (2005) 10.
36.R.F. Hutzler,D.L. Meurer, K. Kimura, P.E. Cassidy, High Perform. Polym. 4 (1992) 161.
37.陳志成,中山大學材料科學研究所碩士論文 (2000).
38.B.S. Pivovar, Polymer, 47 (2006) 4194.
39.S.M. Aharoni , A.J. Signorelli, J. Appl. Polym. Sci., 23, 9 (1979) 2653.
40.http://www.chem.rochester.edu/~chem424/bimid1.htm
41.B.S. Pivovar, Y. Wang, E.L. Cussler, J. Membr. Sci. 154 (1999) 155.
42.Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, J. Electrochem. Soc. 151 (2004) 8.
43.H.T. Pu, G.H. Liu, Polym. Adv. Technol. 15 (2004) 726.
44.R. Bouchet, S. Miller, M. Duclot, J.L. Souquet, Solid State Ionics 145 (2001) 69.
45.J.S. Wainright, J.T. Wang, D. Weng, R.F. Savinell, M. Litt, J. Electrochem. Soc. 142 (1995) L121.
46.J.D. Grotthuss, Ann. Chim. LVIII, 58 (1806) 54.
47.Z. Zhou, R. Liu, J. Wang, S. Li, M. Liu, J.L. Bredas, J. Phys. Chem. A, 110 (2006) 2323.
48.I. Alkorta, J. Elguero, Org. Biomol. Chem. 4 (2006) 3096.
49.M.F.H. Schuster, W.H. Meyer, Annu. Rev. Mater. Res. 33 (2003) 233.
50.X. Glipa, B. bonnet, B. Mula, D.J. Jones, J. Roziere, J. Mater. Chem. 9 (1999) 3045.
51.R. Bouchet, E. Siebert, Solid State Ionics 118 (1999) 287.
52.蔡中燕,化工資訊,1998, p.28.
53.P. B. Messersmith, E. P. Giannelis, J. Polym. Sci. Part A: polymer. Chem. 33 (1995) 1047.
54.S.D. Burnside, E.P. Giannelis, Chem. Mater. 7 (1995) 1597.
55.H. Ishida, S. Campbell, J. Blackwell, Chem. Mater. 12 (2000) 1260.
56.A. Usuki, M. Kawasumi, Y. Kojima, J. Mater. Res. 7 (1991) 856.
57.樂文禮,成功大學化學工程研究所碩士論文 (2002).
58.A.B. Morgan, J.W. Gilman, C.L. Jackson, Macromolecules 34 (2001) 2735.
59.H.L. Tyan, K.H. Wei, T.E. Hsieh, J. Polym. Sci. Patr B 38 (2000) 2873.
60.A. Gu, F.C. Chang, J. Appl. Polym. Sci. 79 (2001) 289.
61.T. Agag, T. Koga, T. Takeichi, Polymer 42 (2001) 3399.
62.K.A. Carrado, L. Xu, Chem. Mater. 10 (1998) 1440.
63.D.M. Delozier, R.A. Orwoll, J.F. Cahoon, Polymer 43 (2002) 813.
64.Z.M. Liang, J. Yin, H.J. Xu, Polymer 44 (2003) 1391.
65.J.H. Chang, M.P. Kwang, D. Cho, Polym. Eng. Sci. 41 (2001) 1514.
66.S.H. Hsiao, G.S. Liou, L.M. Chang, J. Appl. Polym. Sci. 80 (2001) 2067.
67.A.Gu, S.W. Kuo, F.C. Chang, J. Appl. Polym. Sci. 79 (2001) 1902.
68.廖建勛,工業材料125 (1997) 108.
69.H. Dislich, Glastech. Ber. 44 (1971) 1.
70.王鈴雅,成功大學化學工程學系碩士論文 (2002).
71.周俊諺,成功大學化學系碩士論文 (2004).
72.I. Matsuyama, S. Satoh, M. Katsumoto, K. Susa, J. Non. Cryst. Solids 135 (1991) 22.
73.A.M. Siouffi, J. Chromatogr. A 1000 (2003) 801.
74.陳暉、陳姿秀,化工技術 8 (2000) 166.
75.F. Kucera, J. Jancar, Polym. Eng. and Sci., May 1998, Vol. 38, No. 5.
76.張雅惠,雲林科技大學化學工程學系碩士論文 (2007).
77.J.A. Asensio, S. Borros, P.G. Romero, Electrochem. Commun. 5 (2003) 967.
78.Q.F. Li, C. Pan, J.O. Jensen, P. Noye, N.J. Bjerrum, Chem. Mater. 19 (2007) 350.
79.J.H. Kim, H.J. Kim, T.H. Lim, H.I. Lee, J. Power Sources 170 (2007) 275.
80.R.H. He, Q.F. Li, G. Xiao, N.J. Bjerrum, J. Membr. Sci. 226 (2003) 169.
81.D.A. Skoog, J.J. Leary, Saunders College Publishing US (1992) 252.
82.V. Tricoli, J. Electrochem. Soc. 145 (1998) 3798.
83.H.Y. Chang, C.W. Lin, J. Membr. Sci. 218 (2003) 295.
84.D. Rivin, C.E. Kendrick, P.W. Gibson, N.S. Schneider, Polymer 42 (2001) 148.
85.H.T. Pu, Q.H. Liu, G.H. Liu, J. Membr. Sci. 241 (2004) 169.
86.P. Mukoma, B.R. Jooste, H.C.M. Vosloo, J. Membr. Sci. 243 (2004) 293.
87.黃雅鈴,中央大學化學研究所碩士論文 (2001).
88.陳盈助,成功大學化學工程研究所碩士論文 (2002).
89.洪偉銘,朝陽科技大學應用化學系碩士論文 (2004).
90.J.P. Chen, F.E. Arnold, Polym. Mater. Sci. Eng. Proc. ACS Div. Polym. Mater. Sci. Eng. 70 (1993) 301.
91.P. Musto, F.E. Karasz, W. MacKnight, J. Polym. 34 (1993) 2934.
92.S.H. Hsiao, Y.H. Chang, Eur. Polym. J. 40 (2004) 1749.
93.K. Uno, K. Niume, Y. Iwata, F. Toda, Y. Iwakura, J Polym Sci Polym Chem Ed 15 (1977) 1309.
94.T. Sugama, Mater. Lett. 58 (2004) 1307.
95.K.Y. Wang, Y. Xiao, T.S. Chung, Chem. Eng. Sci. 61 (2006) 5807.
96.Y. Wang, S.H. Goh, T.S. Chung, Polymer 48 (2007) 2901.
97.M. Berrada, F. Carriere, Y. Abboud, A. Abourriche, A. Benamara, N. Lajrhed, M. Kabbaj, M. Berrada, J. Mater. Chem. 12 (2002) 3551.
98.Z.H. Huang, K.Y. Qiu, Polymer 38 (1997) 521.
99.Y. Wei, D.L. Jin, C.C. Yang, G. Wei, J. Sol Gel Sci. Technol. 7 (1996) 191.
100.J. Premachandra, C. Kumudinie, W. Zhao, J.E. Mark, T.D. Dang, J.P. Chen, F.E. Arnold, J. Sol Gel Sci. Technol. 7 (1996) 163.
101.W.J. Lin, W.C. Chen, Polym. Int. 53 (2004) 1245.
102.B.K. Chen, T.M. Chiu, S.Y. Tsay, J. Appl. Polym. Sci. 94 (2004) 382.
103.S.B. Qing, W. Huang, D.Y Yan, Eur. Polym. J. 41 (2005) 1589.
104.H.J. Xu, K.C. Chen, X.X. Guo, J.H. Fang, J. Yin, Polymer 48 (2007) 5556.
105.A. Sannigrahi, D. Arunbabu, R.M. Sankar, T. Jana, J. Phys. Chem. B 111 (2007) 12124.
106.H.H. Song, S. K. Hong, Polymer 38 (1997) 4241.
107.J. Cho, J. Blackwell, S.N. Chvalun, M. Litt, Y. Wang, J. Polym. Sci. Part B 42 (2004) 2576.
108.J. Zhang, B.K. Zhu, H.J. Chu, Y.Y. Xu, J. Appl. Polym. Sci. 97 (2005) 20.
109.Z. Ahmad, J.E. Mark, Chem. Mater. 13 (2001) 3320.
110.R.K. Nagarale, G.S. Gohil, V.K. Shahi, R. Rangarajan, Macromolecules 37 (2004) 10023.
111.M. Aparicio, Y. Castro, A. Duran, Solid State Ionics 176 (2005) 333.
112.O. Nishikawa, T. Sugimoto, S. Nomura, K. Doyama, K. Miyatake, H. Uchida, M. Watanabe, Electrochem. Acta 50 (2004) 667.
113.C.N. Li, G.Q. Sun, S.Z. Ren, J. Liu, Q. Wang, Z.M. Wu, H. Sun, W. Jin, J. Membr. Sci. 272 (2006) 50.
114.D.S. Kim, B.J. Liu, M D. Guiver, Polymer 47 (2006) 7871.
115.R.C. Jiang, H.R. Kunz, J.M. Fenton, J. Membr. Sci. 272 (2006) 116.
116.S.W. Chuang, S.L.C. Hsu, Y.H. Liu, J. Membr. Sci. 305 (2007) 353-363.
117.S.W. Chuang, S.L.C. Hsu, J. Polym. Sci.: Part A: Polym. Chem., 44 (2006) 4508.
118.R. He, Q. Li, G. Xiao, N.J. Bjerrum, J. Membr. Sci., 226 (2003) 169.
119.J. Jouanneau, R. Mercier, L. Gonon, G. Gebel, Macromolecules 40 (2007) 983.
120.Z. Bai, G.E. Price, M.Yoonessi, S.B. Juhl, M.F. Durstock, T.D. Dang, J. Membr. Sci. 305 (2007) 69.
121.H. Xu, K. Chen, X. Guo, J. Fang, J. Yin, Polymer 48 (2007) 5556.
122.J. Peron, E. Ruiz, D.J. Jones, J. Roziere, J. Membr. Sci. 314 (2008) 247.
123.X. Glipa, M.E. Haddad, D.J. Jones, J. Roziere, Solid State Ionics 97 (1997) 323
124.H.A. Szymanski, Interpreted Infrared Spectra, Vol. 1, Plenum Press, New York (1964).
125.C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York (1963).
126.C.M. Parler, J.A. Ritter and M.D. Amiridis, J. Non-Cryst. Solids 279 (2001) 119.
127.R. He, Q. Li, J.O. Jensen, N.J. Bjerrum, J. Polym. Sci. Part A: Polym. Chem. 45 (2007) 2989.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊