(3.235.108.188) 您好!臺灣時間:2021/03/07 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何彥宏
研究生(外文):Yen-Hung Ho
論文名稱:雙層碳相關系統的物理性質
論文名稱(外文):Physical properties of bilayer carbon systems
指導教授:林明發林明發引用關係
指導教授(外文):Ming-Fa Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:98
中文關鍵詞:激發性質電子性質碳微管石墨
外文關鍵詞:excitation propertiescarbon nanotubesgrapheneelectronic properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
我們利用緊束模型來研究雙層碳相關系統的電子性質,包含有雙層碳微管、AB堆疊的雙層石墨以及微管-石墨層複合系統。可直接反應主要能帶特徵的光學及電子激發譜,則分別在梯度近似及RPA近似下來計算。層與層間交互作用顯著地改變低能電子態,將線性能帶轉換成拋物線能帶,也因此豐富了本身的激發性質。內外層微管間的相對平移和旋轉以及微管於石墨層上的堆疊情況,皆明顯地影響能隙、費米動量能態、能帶的色散關係及簡併度。於雙層手椅狀碳微管中,新邊界態間的光學躍遷會產生受溫度調制的吸收峰。此外,變動後的能帶提供了更多單電子庫侖激發途徑。電漿子的數目、強度、頻率及存在與否將強烈受到幾何結構及轉換角動量的影響。微管-石墨層複合系統的低頻能帶則是取決於微管的幾合結構及排列週期。至於在均勻磁場下的雙層石墨平面,層與層間交互作用相當程度地改變藍道能階的頻率及波函數,且進一步引發第二群藍道能態。這兩群藍道能階之間的電子躍遷會造成四組光學吸收峰。這些理論預測將有效來驗證層狀碳相關材料的實驗量測結果。
The electronic properties of bilayer carbon systems (double-walled nanotubes, nanotube-graphene composite systems, and AB-stacked bilayer graphene) are studied within the tight-binding model. The optical and electronic excitation spectra, directly reflecting the main characteristics of subbands, are evaluated within the gradient approximation and random-phase approximation, respectively. The intertube atomic hoppings significantly alter low energy states, change linear bands into parabolic ones, and thus enrich the intrinsic excitation properties. Energy dispersion relations, energy gap, subband degenercy, and Fermi-momentum states are strongly modulated in accordance with the translation and rotation between inner and outer nanotubes as well as the alignment of nanotubes on graphene sheet. In double-walled armchair carbon nanotubes, the optical transitions between new band-edge states result in temperature-dependent absorption peaks. Besides, the modified low energy bands provide more single-particle excitation channels during the Coulomb interactions. The number, existence, strength, and frequency of plasmon modes closely depend on the geometric configurations and the transferred momentum. Band structures of the nanotube-graphene hybrid systems are examined as well in terms of different nanotube sizes and alignment periods. As for bilayer AB-stacked graphene subjected to a uniform magnetic field, interlayer interactions substantially vary the energy and wave function of Landau states, and most importantly, bring about the second group of Landau levels. The optical excitations between the two groups of Landau levels with valence and conduction states lead to four kinds of absorption peaks. The predicted results would be useful in identifying the experimental measurements on stacked carbon materials.
Abstract....................... 3
Chapter 1. Introduction...................... 4
References..........................15
Chapter 2. Effects of geometric structures and temperature on electronic properties of double-walled armchair carbon nanotubes
2.1 Introduction.....................24
2.2 Theoretical calculation........25
2.3 Electronic and optical properties
2.3.1 Effects of goemetric structures....27
2.3.2 Effects of temperature...............30
2.4 Concluding remarks..............34
References.........................36
Chapter 3. Low-frequency excitation spectra in double-walled armchair carbon nanotubes
3.1 Introduction..........................38
3.2 Low-energy electronic structures.....................40
3.3 Electronic excitation spectra..............42
3.4 Summary................................52
References............................53
Chapter 4. Electronic structures of carbon nanotubes adsorbed on graphene
4.1 Introduction......................57
4.2 Tight-binding calculation...............59
4.3 Band structures................62
4.4 Summary.............................70
References............................71
Chapter 5. Low-frequency magnetooptical spectrum of bilayer Bernal graphene
5.1 Introduction.....................74
5.2 Theory..............................76
5.3 Landau structures in bilayer graphene......78
5.4 Bilayer optical excitations.............80
5.5 Summary....................86
References............................87
Chapter 6. Summary and future research......90
Chapter 1
[1] J. C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).
[2] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[3] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, 1273 (2004).
[4] V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[5] B. Bourlon, C. Miko, L. Forro, D. C. Glattli, and A. Bachtold, Phys. Rev. Lett. 93, 176806 (2004).
[6] M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).
[7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[8] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. De Heer, Science 312, 1191 (2007).
[9] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2, 177 (2006).
[10] B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006).
[11] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. C. Huang, and M. F. Lin, Carbon 43, 1424 (2005).
[12] C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. F. Lin, Phys. Rev. B 73, 144427 (2006).
[13] J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).
[14] J.-C. Charlier and J.-P. Michenaud, Phys. Rev. B 46, 4531 (1992).
[15] R. C. Tatar and S. Rabii, Phys. Rev. B 25, 4126 (1982).
[16] T. Ohta, A. Bostwick, T. Seller, K. Horn, E. Rotenberg, Science 313, 951 (2006).
[17] T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 98, 206802 (2007).
[18] S. Iijima, Nature (London) 354, 56 (1991).
[19] E. B. Barros, A. Jorio, G. G. Samsonidze, R. B. Capaz, A. G. S. Filho, J. M. Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 431, 261 (2006).
[20] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).
[21] S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore, M. S. Strano, R. H. Hauge, R. E. Smalley, and X. Wei, Science 304, 1129 (2004).
[22] U. C. Coskun, T. C. Wei, S. Vishveshwara, P. M. Goldbart, and A. Bezryadin, Science 304, 1132 (2004).
[23] Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys. Rev. Lett. 94, 087402 (2005).
[24] L. Bellarosa, E. Bakalis, M. Melle-Franco, and F. Zerbetto, Nano Lett. 6, 1950 (2006).
[25] R. H. Baughman, A. A. Zakhidov, and W. A. d. Heer, Science 297, 787 (2002).
[26] C. Dekker, Phys. Today 52, 22 (1999).
[27] S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
[28] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997).
[29] C. T. White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B 47, 5485 (1993).
[30] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998).
[31] T. W. Odem, J. L. Huang, P. Kim, and C. M. Lieber, Nature 391, 62 (1998).
[32] M. F. Lin and K. W.-K. Shung, Phys. Rev. B 51, 7592 (1995).
[33] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
[34] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).
[35] J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).
[36] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).
[37] N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
[38] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, Science 298, 2361 (2002).
[39] L. C. Venema, V. Meunier, Ph. Lambin, and C. Dekker, Phys. Rev. B 61, 2991 (2000).
[40] M. Ouyang, J. L. Huang, C. L. Cheung, C. M. Lieber, Science 292, 702 (2001).
[41] T. Sugai, H. Yoshida, T. Okazaki, and H. Shinohara, Nano Lett. 3, 769 (2003).
[42] R. M. F. J. Costa, S. Friedrichs, J. Sloan, and M. L. H. Green, Carbon 42, 2527 (2004).
[43] M. Abe, H. Kataura, H. Kira, T. Kodama, S. Suzuki, Y. Achiba, K.-I. Kato, M. Takata, A. Fujiwara, K. Matsuda, and Y. Maniwa, Phys. Rev. B 68, 041405 (2003).
[44] M. P. Speed, Nature 396, 323 (1998).
[45] M. J. Lopez, A. Rubio, J. A. Alonso, L.-C. Qin, S. Iijima, Phys. Rev. Lett. 86, 3056 (2001).
[46] P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Nature 391, 466 (1998).
[47] J. L. Hutchison, N. A. Kiselev, E. P. Krinichnaya, A. V. Krestinin, R. O. Loutfy, A. P. Morawsky, V. E. Muradyan, E. D. Obraztsova, J. Sloan, S. V. Terekhov, and D. N. Zakharov, Carbon 39, 761 (2001).
[48] Z. Zhou. L. Ci, X. Chen, D. Tang, X. Yan, D. Liu, Y. Liang, H. Yuan, W. Zhou, G. Wang, and S. Xie, Carbon 41, 337 (2003).
[49] R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001).
[50] M. H. Park, J. W. Jang, C. E. Lee, and C. J. Lee, Appl. Phys. Lett. 86, 023110 (2005).
[51] W. Ren, F. Li, J. Chen, S. Bai, H. M. Cheng, Chem. Phys. Lett. 359, 196 (2002).
[52] L. Li, F. Li, C. Liu. H. M. Cheng, Carbon 43, 623 (2005).
[53] A. Hashimoto, K. Suenaga, K. Urita, T. Shimada, T. Sugai, S. Bandow, H. Shinogara, and S. Iijima, Phys. Rev. Lett. 94, 045504 (2005).
[54] J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, Science 300, 1419 (2003).
[55] J.-C. Charlier and J.-P. Michenaud, Phys. Rev. Lett. 70, 1858 (1993).
[56] Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and M. F. Lin, Carbon 42, 3159 (2004).
[57] S. Okada and A. Oshiyama, Phys. Rev. Lett. 91, 216801 (2003).
[58] S. Uryu, Phys. Rev. B 69, 075402 (2004).
[59] H. Kajiura, H. Huang, A. Bezryadin, Chem. Phys. Lett. 398, 476 (2004).
[60] M. Xia, S. Zhang, E. Zhang, S. Zhao, and X. Zuo, Phys. Rev. B 69, 233407 (2004).
[61] S. Bandow, G. Chen, G. U. Sumanasekera, R. Gupta, M. Yudasaka, S. Iijima, and P. C. Eklund, Phys. Rev. B 66, 075416 (2002).
[62] M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, M. Terrones, M. S. Dresselhaus, Nature 433, 476 (2005).
[63] S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, Iijima, Chem. Phys. Lett. 337, 48 (2001).
[64] M. Kalbac, L. Kavan, L. Juha, S. Civis, M. Zukalova, M. Bittner, P. Kubat, V. Vorlicek, and L. Dunsch, Carbon 43, 1610 (2005).
[65] F. Li, S. G. Chou, W. Ren, J. A. Gardecki, A. K. Swan, M. S. Unlu, B. B. Goldberg, H.-M. Cheng, and M. S. Dresselhaus, J. Mater. Res. 18, 1251 (2003).
[66] Y.-K. Kwon and D. Tomanek, Phys. Rev. B 58, R16001 (1998).
[67] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73, 494 (1993).
[68] S. Roche, F. Triozon, A. Rubio, and D. Mayou, Phys. Rev. B 64, 121401 (2001).
[69] K. Ahn, Y. H. Kim, J. Wiersig, and K. J. Chang, Phys. Rev. Lett. 90, 026601 (2003).
[70] Ph. Lambin, L. Philippe, J.-C. Charlier, and J.-P. Michenaud, Comp. Mat. Sci. 2, 350 (1994).
[71] G. W. Ho, Y. H. Ho, T. S. Li, C. P. Chang, and M. F. Lin, Carbon 44, 2323 (2006).
[72] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998).
[73] M. R. Falvo, R. M. Taylor II, A. Helser, V. Chi, F. P. Brooks Jr, S. Washburn, and R. Superfine, Nature 397, 236 (1999).
[74] S. Paulson, A. Helser, M. B. Nardelli, R. M. Taylor II, M. Falvo, R. Superfine, and S. Washburn, Science 290, 1742 (2000).
[75] M. R. Falvo, J. Steele, R. M. Taylor II, and R. Superfine, Phys. Rev. B 62, R10665 (2000).
[76] W. Orellana, R. H. Miwa, and A. Fazzio, Phys. Rev. Lett. 91, 166802 (2003).
[77] Y. H. Kim, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. 92, 176102 (2004).
[78] Y. Xue and S. Datta, Phys. Rev. Lett. 83, 4844 (1999).
[79] S. J. Sque, R. Jones, S. Oberg, and P. R. Briddon, Phys. Rev. B 75, 115328 (2007).
[80] S. Okada and A. Oshiyama, Phys. Rev. Lett. 95, 206804 (2005).
[81] A. Buldum and J. P. Lu, Phys. Rev. Lett. 83, 5050 (1999).
[82] A. N. Kolmogorov and V. H. Crespi, Phys. Rev. Lett. 92, 085503 (2004).
[83] Y. H. Ho, G. W. Ho, S. C. Chen, J. H. Ho, and M. F. Lin, Phys. Rev. B 76, 115422 (2007).
[84] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[85] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[86] G. Li and E. Y. Andrei, Nat. Phys. 3, 623 (2007).
[87] T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada, and H. Fukuyama, Phys. Rev. Lett. 94, 226403 (2005).
[88] R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 76, 081406 (2007).
[89] E. A. Henriksen, Z. Jiang, L.-C. Tung, M. E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, and H. L. Stormer, Phys. Rev. Lett. 100, 087403 (2008).
[90] D. S. L. Abergel and V. I. Fal'ko, Phys. Rev. B 75, 155430 (2007).
[91] For details of the geometric configuration and the Peierls tight-binding calculation of bilayer Bernal graphene, see Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Rev. B 77, 085426 (2008).
[92] S. Roche, G. Dresselhaus, M. S. Dresselhaus, and R. Saito, Phys. Rev. B 62, 16092 (2000).
[93] M. F. Lin and K. W.-K. Shung, Phys. Rev. B 50, 17744 (1994).
[94] M. F. Lin, Phys. Rev. B 62, 13153 (2000).
[95] F. L. Shyu and M. F. Lin, J. Phys. Soc. Jpn. 71, 1820 (2002).
[96] F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, Phys. Rev. B 67, 045405 (2003).
[97] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev. Lett. 98, 157402 (2007).
[98] M. Koshino and T. Ando, Phys. Rev. B 77, 115313 (2008).
[99] H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 1255 (1993).
[100] H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 65, 505 (1996).
[101] A. Ugawa, A. G. Tinzler, and D. B. Tanner, Phys. Rev. B 60, R11305 (1999).
[102] S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, Phys. Rev. B 62, 1643 (2000).
[103] B. Vasvari, Phys. Rev. B 55, 7993 (1996).
[104] C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 50, 7977 (1994).
[105] C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 53, 10225 (1996).
[106] G. Gumbs, A. Balassis, and P. Fekete, Phys. Rev. B 73, 075411 (2006).
[107] D. J. Mowbray, Z. L. Miskovic, and F. O. Goodman, Phys. Rev. B 74, 195435 (2006).
[108] M. F. Lin, D. S. Chuu, and K. W.-K. Shung, Phys. Rev. B 56, 1430 (1997).
[109] F. L. Shyu and M. F. Lin, Phys. Rev. B 62, 8508 (2000).
[110] B. Tanatar, Phys. Rev. B 55, 1361 (1997).
[111] A. M. Lunde, K. Flensberg, and A.-P. Jauho, Phys. Rev. B 71, 125408 (2005).
[112] M. F. Lin and K. W.-K. Shung, Phys. Rev. B 47, 6617 (1993).
[113] T. Pichler, M. Knupfer, M. S. Golden, and J. Fink, Phys. Rev. Lett. 80, 4729 (1998).
[114] X. Liu, T. Pichler, M. Knupfer, and J. Fink, Phys. Rev. B 70, 205405 (2004).
Chapter 2
[1] E. B. Barros, A. Jorio, G. G. Samsonidze, R. B. Capaz, A. G. S. Filho, J. M. Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 431, 261 (2006).
[2] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).
[3] S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore, M. S. Strano, R. H. Hauge, R. E. Smalley, and X. Wei, Science 304, 1129 (2004).
[4] U. C. Coskun, T. C. Wei, S. Vishveshwara, P. M. Goldbart, and A. Bezryadin, Science 304, 1132 (2004).
[5] Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys. Rev. Lett. 94, 087402 (2005).
[6] L. Bellarosa, E. Bakalis, M. Melle-Franco, and F. Zerbetto, Nano Lett. 6, 1950 (2006).
[7] C. T. White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B 47, 5485 (1993).
[8] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998).
[9] T. W. Odem, J. L. Huang, P. Kim, and C. M. Lieber, Nature 391, 62 (1998).
[10] J. C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).
[11] X. H. Yan, Y. Xiao, J. W. Ding, Z. H. Guo, Y. R. Yang, and D. L. Wang, Phys. Rev. B 75, 195442 (2007).
[12] Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, and S. Tsuda, Phys. Rev. Lett. 87, 127401 (2001).
[13] V. Meunier and Ph. Lambin, Phys. Rev. Lett. 81, 5588 (1998).
[14] S. Sanvito, Y. K. Kwon, D. Tomanek, and C. J. Lambert, Phys. Rev. Lett. 84, 1974 (2000).
[15] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73, 494 (1993).
[16] S. Roche, F. Triozon, A. Rubio, and D. Mayou, Phys. Rev. B 64, 121401 (2001).
[17] K. Ahn, Y. H. Kim, J. Wiersig, and K. J. Chang, Phys. Rev. Lett. 90, 026601 (2003).
[18] S. Uryu, Phys. Rev. B 69, 075402 (2004).
[19] M. F. Lin and K. W. K. Shung, Phys. Rev. B 50, 17744 (1994).
[20] Y. H. Ho, G. W. Ho, S. J. Wu, and M. F. Lin, J. Vac. Sci. Technol. B 24, 1098 (2006).
[21] F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, Science 308, 838 (2005).
[22] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. 92, 077402 (2004).
Chapter 3
[1] S. Iijima, Nature (London) 354, 56 (1991).
[2] R. H. Baughman, A. A. Zakhidov, and W. A. d. Heer, Science 297, 787 (2002).
[3] S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science 280, 1744 (1998).
[4] R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001).
[5] M. H. Park, J. W. Jang, C. E. Lee, and C. J. Lee, Appl. Phys. Lett. 86, 023110 (2005).
[6] T. Sugai, H. Yoshida, T. Okazaki, and H. Shinohara, Nano Lett. 3, 769 (2003).
[7] M. Abe, H. Kataura, H. Kira, T. Kodama, S. Suzuki, Y. Achiba, K.-I. Kato, M. Takata, A. Fujiwara, K. Matsuda, and Y. Maniwa, Phys. Rev. B 68, 041405 (2003).
[8] J. Wei, B. Jiang, X. Zhang, H. Zhu, and D. Wu, Chem. Phys. Lett. 376, 753 (2003).
[9] R. M. F. J. Costa, S. Friedrichs, J. Sloan, and M. L. H. Green, Carbon 42, 2527 (2004).
[10] A. Hashimoto, K. Suenaga, K. Urita, T. Shimada, T. Sugai, S. Bandow, H. Shinogara, and S. Iijima, Phys. Rev. Lett. 94, 045504 (2005).
[11] J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, Science 300, 1419 (2003).
[12] T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, S. Rosenthal, J. McBride, H. Ulbricht, and E. Flahaut, Nano Lett. 5, 511 (2005).
[13] L. C. Venema, V. Meunier, Ph. Lambin, and C. Dekker, Phys. Rev. B 61, 2991 (2000).
[14] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998).
[15] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London) 391, 62 (1998).
[16] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73, 494 (1993).
[17] Ph. Lambin, L. Philippe, J.-C. Charlier, and J.-P. Michenaud, Comp. Mat. Sci. 2, 350 (1994).
[18] Y.-K. Kwon and D. Tomanek, Phys. Rev. B 58, 16001 (1998).
[19] Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and M. F. Lin, Carbon 42, 3159 (2004).
[20] G. W. Ho, Y. H. Ho, T. S. Li, C. P. Chang, and M. F. Lin, Carbon 44, 2323 (2006).
[21] T. Pichler, M. Knupfer, M. S. Golden, and J. Fink, Phys. Rev. Lett. 80, 4729 (1998).
[22] X. Liu, T. Pichler, M. Knupfer, and J. Fink, Phys. Rev. B 70, 205405 (2004).
[23] M. F. Lin, D. S. Chuu, C. S. Huang, Y. K. Lin, and K. W.-K. Shung, Phys. Rev. B 53, 15493 (1996).
[24] M. F. Lin and K. W.-K. Shung, Phys. Rev. B 50, 17744 (1994).
[25] M. F. Lin, D. S. Chuu, and K. W.-K. Shung, Phys. Rev. B 56, 1430 (1997).
[26] F. L. Shyu and M. F. Lin, Phys. Rev. B 62, 8508 (2000).
[27] C. W. Chiu, F. L. Shyu, C. P. Chang, R. B. Chen, and M. F. Lin, Phys. Lett. A 311, 53 (2003).
[28] C. W. Chiu, C. P. Chang, F. L. Shyu, R. B. Chen, and M. F. Lin, Phys. Rev. B 67, 165421 (2003).
[29] B. Vasvari, Phys. Rev. B 55, 7993 (1996).
[30] C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 50, 7977 (1994).
[31] C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 53, 10225 (1996).
[32] G. Gumbs, A. Balassis, and P. Fekete, Phys. Rev. B 73, 075411 (2006).
[33] D. J. Mowbray, Z. L. Miskovic, and F. O. Goodman, Phys. Rev. B 74, 195435 (2006).
[34] B. Tanatar, Phys. Rev. B 55, 1361 (1997).
[35] A. M. Lunde, K. Flensberg, and A.-P. Jauho, Phys. Rev. B 71, 125408 (2005).
[36] M. F. Lin and K. W.-K. Shung, Phys. Rev. B 47, 6617 (1993).
[37] S. Roche, F. Triozon, A. Rubio, and D. Mayou, Phys. Rev. B 64, 121401 (2001).
[38] K. Ahn, Y. Kim, J. Wiersig, and K. J. Chang, Phys. Rev. Lett. 90, 026601 (2003).
[39] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).
Chapter 4
[1] S. Iijima, Nature (London) 354 56 (1991).
[2] R. H. Baughman, A. A. Zakhidov, and W. A. d. Heer, Science 297, 787 (2002).
[3] J. C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).
[4] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[5] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2, 177 (2006).
[6] B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006).
[7] N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
[8] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, Science 298, 2361 (2002).
[9] S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature (London) 393, 49 (1998).
[10] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998).
[11] M. R. Falvo, R. M. Taylor II, A. Helser, V. Chi, F. P. Brooks Jr, S. Washburn, and R. Superfine, Nature 397, 236 (1999).
[12] S. Paulson, A. Helser, M. B. Nardelli, R. M. Taylor II, M. Falvo, R. Superfine, and S. Washburn, Science 290, 1742 (2000).
[13] M. R. Falvo, J. Steele, R. M. Taylor II, and R. Superfine, Phys. Rev. B 62, R10665 (2000).
[14] W. Orellana, R. H. Miwa, and A. Fazzio, Phys. Rev. Lett. 91, 166802 (2003).
[15] Y. H. Kim, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. 92, 176102 (2004).
[16] Y. Xue and S. Datta, Phys. Rev. Lett. 83, 4844 (1999).
[17] S. J. Sque, R. Jones, S. Oberg, and P. R. Briddon, Phys. Rev. B 75, 115328 (2007).
[18] S. Okada and A. Oshiyama, Phys. Rev. Lett. 95, 206804 (2005).
[19] M. H. Park, J. W. Jang, C. E. Lee, and C. J. Lee, Appl. Phys. Lett. 86, 023110 (2005).
[20] A. Buldum and J. P. Lu, Phys. Rev. Lett. 83, 5050 (1999).
[21] A. N. Kolmogorov and V. H. Crespi, Phys. Rev. Lett. 92, 085503 (2004).
[22] Y. Miyamoto, S. Saito, and D. Tomanek, Phys. Rev. B 65, 041402 (2001).
[23] L. C. Venema, V. Meunier, Ph. Lambin, and C. Dekker, Phys. Rev. B 61, 2991 (2000).
[24] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998).
[25] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London) 391, 62 (1998).
[26] R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001).
[27] T. Hertel, R. E. Walkup, and Ph. Avouris, Phys. Rev. B 58, 13870 (1998).
[28] S. Roche, F. Triozon, A. Rubio, and D. Mayou, Rhys. Rev. B 64, 121401 (2001).
[29] K. H. Ahn, Y. H. Kim, J. Wiersig, and K. J. Chang, Phys. Rev. Lett. 90, 026601 (2003).
[30] Y. H. Ho, G. W. Ho, S. C. Chen, J. H. Ho, and M. F. Lin, Phys. Rev. B 76, 115422 (2007).
[31] Y.-K. Kwon and D. Tomanek, Phys. Rev. B 58, 16001 (1998).
[32] G. W. Ho, Y. H. Ho, T. S. Li, C. P. Chang, and M. F. Lin, Carbon 44, 2323 (2006).
[33] Y. H. Ho, G. W. Ho, S. J. Wu, and M. F. Lin, J. Vac. Sci. Technol. B 24, 1098 (2006).
[34] L. A. Chernozatonskii, P. B. Sorokin, and J. W. Bruning, Appl. Phys. Lett. 91, 183103 (2007).
[35] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 61, 2981 (2000).
Chapter 5
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[2] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. De Heer, Science 312, 1191 (2007).
[3] S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).
[4] B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006).
[5] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. C. Huang, and M. F. Lin, Carbon 43, 1424 (2005).
[6] C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. F. Lin, Phys. Rev. B 73, 144427 (2006).
[7] J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).
[8] J.-C. Charlier and J.-P. Michenaud, Phys. Rev. B 46, 4531 (1992).
[9] R. C. Tatar and S. Rabii, Phys. Rev. B 25, 4126 (1982).
[10] T. Ohta, A. Bostwick, T. Seller, K. Horn, E. Rotenberg, Science 313, 951 (2006).
[11] T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 98, 206802 (2007).
[12] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2, 177 (2006).
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[14] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[15] G. Li and E. Y. Andrei, Nat. Phys. 3, 623 (2007).
[16] T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada, and H. Fukuyama, Phys. Rev. Lett. 94, 226403 (2005).
[17] R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 76, 081406 (2007).
[18] E. A. Henriksen, Z. Jiang, L.-C. Tung, M. E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, and H. L. Stormer, Phys. Rev. Lett. 100, 087403 (2008).
[19] For details of the geometric configuration and the Peierls tight-binding calculation of bilayer Bernal graphene, see Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Rev. B 77, 085426 (2008).
[20] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev. Lett. 98, 157402 (2007).
[21] D. S. L. Abergel and V. I. Fal'ko, Phys. Rev. B 75, 155430 (2007).
[22] M. Koshino and T. Ando, Phys. Rev. B 77, 115313 (2008).
[23] Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, Phys. Rev. Lett. 98, 197403 (2007).
[24] P. Plochocka, C. Faugeras, M. Orlita, M. L. Sadowski, G. Martinez, M. Potemski, M. O. Goerbig, J.-N. Fuchs, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 100, 087401 (2008).
[25] M. Orlita, C. Faugeras, G. Martinez, D. K. Maude, M. L. Sadowski, and M. Potemski, Phys. Rev. Lett. 100, 136403 (2008).
[26] M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 97, 266405 (2006).
[27] L. G. Johnson and G. Dresselhaus, Phys. Rev. B 7, 2275 (1973).
[28] M. F. Lin and K. W.-K. Shung, Phys. Rev. B 50, 17744 (1994).
[29] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang, and M. F. Lin, Carbon 42, 2975 (2004).
[30] J. M. Luttinger, Phys. Rev. 84, 814 (1951).
[31] J. W. McClure, Phys. Rev. 108, 612 (1957).
[32] J. W. McClure, Phys. Rev. 119, 606 (1960).
[33] G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).
Chapter 6
[1] Y. H. Ho, C. P. Chang, F. L. Shyu, C. W. Chiu, S. C. Chen and M. F. Lin, "Electronic and optical properties of double-walled armchair carbon nanotubes", Carbon 42, 3159-3167 (2004).
[2] S. C. Chen, I. Y. Chen, Y. H. Ho, and M. F. Lin, "Optical properties of BC3 nanotubes", J. Vac. Sci. Technol. B 24, 46-49 (2006).
[3] C. W. Chiu, Y. H. Ho, S. C. Chen, C. H. Lee, C. S. Lue, and M. F. Lin, "Electronic decay rates in semiconducting carbon nanotubes", Physica E 34, 658-661 (2006).
[4] Y. H. Ho, G. W. Ho, T. S. Li, and M. F. Lin, "Electronic excitations of double-walled armchair carbon nanotubes", Physica E 32, 569-572 (2006).
[5] S. J. Wu, Y. H. Ho, C. P. Chang, and M. F. Lin, "Electronic properties of armchair carbon nanotube array", Physica E 32, 581-584 (2006).
[6] G. W. Ho, Y. H. Ho, T. S. Li, C. P. Chang, and M. F. Lin, "Band structure and absorption spectrum of double-walled zigzag carbon nanotubes in an electric field", Carbon 44, 2323-2329 (2006).
[7] Y. H. Ho, G. W. Ho, S. J. Wu, and M. F. Lin, "Band structures of double-walled carbon nanotubes", J. Vac. Sci. Technol. B 24, 1098-1102 (2006).
[8] C. H. Lee, Y. H. Ho, R. B. Chen, T. S. Li, and M. F. Lin, "Electronic structures of finite double-walled carbon nanotubes", Phys. Status Solidi C 4, 509-511 (2007).
[9] Y. H. Ho, G. W. Ho and M. F. Lin, "Low-frequency excitation spectra in double-walled armchair carbon nanotubes", Phys. Rev. B 76, 115422 (2007).
[10] Y. H. Ho, H. P. Lin, and M. F. Lin, "Effects of geometric structures and temperature on electronic properties of double-walled armchair carbon nanotubes", Dia. Rel. Mater. 17, 1550-1553 (2008).
[11] Y. H. Chiu, J. H. Ho, Y. H. Ho, D. S. Chuu, and M. F. Lin, "Effects of a modulated electric field on the optical absorption spectra", J. Nanosci. Nanotechnol (2009). (accepted)
[1] Y. H. Ho, C. P. Chang, F. L. Shyu, C. W. Chiu, S. C. Chen and M. F. Lin (APS March Meeting 2004)"Magnetoelectronic structures of double-walled armchair carbon nanotubes", Bulletin of American Physical Society, Vol. 49, 247 (2004).
[2] Y. H. Ho, C. P. Chang, F. L. Shyu, C. W. Chiu, S. C. Chen and M. F. Lin, "Magnetoelectronic structures of double-walled armchair carbon nanotubes", Annual Meeting of the Physical Society of the ROC (2004). (Oral)
[3] Y. H. Ho, G. W. Ho, and M. F. Lin, "Band structures of double-walled carbon nanotubes", The 1st International Conference on One-Dimensional Nanomaterials (2005).
[4] S. C. Chen, I. Y. Chen, Y. H. Ho, and M. F. Lin, "Optical properties of BC3 nanotubes", The 1st International Conference on One-Dimensional Nanomaterials (2005).
[5] C. W. Chiu, Y. H. Ho, S. C. Chen, C. H. Lee, C. S. Lue, and M. F. Lin, "Electron decay rate in semiconducting carbon nanotubes", The 16th International Conference on the Electronic Properties of Two-Dimensional Systems (2005).
[6] Y. H. Ho, G. W. Ho, T. S. Li, and M. F. Lin, "Electronic Excitations of Double-Walled Armchair Carbon Nanotubes", The 12th International Conference on the Modulated Semiconductor Structures (2005).
[7] S. J. Wu, Y. H. Ho, C. P. Chang, and M. F. Lin, "Electronic Properties of Armchair Carbon Nanotube Array", The 12th International Conference on the Modulated Semiconductor Structures (2005).
[8] Y. H. Ho, Y. H. Lai, H. P. Lin, and M. F. Lin, "Effects of geometric structures and temperature on electronic properties of double-walled armchair carbon nanotubes", Annual Meeting of the Physical Society of the ROC (2006). (Oral)
[9] Y. H. Ho, G. W. Ho, C. P. Chang, and M. F. Lin (APS March06 Meeting) "Band structure and absorption spectrum of double-walled zigzag carbon nanotubes in an electric field", Bulletin of American Physical Society, Vol. 51, 583 (2006).
[10] C. W. Chiu, Y. H. Ho, F. L. Shyu, and M. F. Lin (APS March06 Meeting) "Electronic excitations and deexcitations in narrow-gap carbon nanotubes", Bulletin of American Physical Society, Vol. 51, 584 (2006).
[11] Y. H. Ho, G. W. Ho, T. S. Li, and M. F. Lin, "Loss spectra of double-walled armchair carbon nanotubes", Proceeding of the 4th International Conference on Quantum Engineering Science, P.10-P.14 (2006)
[12] C. H. Lee, Y. H. Ho, R. B. Chen, and M. F. Lin, "Electronic structures of finite double-walled carbon nanotubes", International Conference on Superlattices, Nano-structures, and Nano-devices (2006).
[13] C. H. Lee, Y. H. Ho, R. B. Chen, Y. C. Hsue, and M. F. Lin, "Electronic properties of finite double-walled carbon nanotubes under external fields", Annual Meeting of the Physical Society of the ROC (2007).
[14] H. P. Lin, Y. H. Ho, S. C. Chen, C. Y. Lin, and M. F. Lin, "Electronic structures of monolayer and AB-staked bilayer graphemes under uniform deformations", The 17th International Conference on the Electronic Properties of Two-Dimensional Systems (2007).
[15] P. L. Lai, S. C. Chen, Y. H. Ho, and M. F. Lin, "Electronic properties of single-walled carbon nanotubes under electric fields", The 13th International Conference on the Modulated Semiconductor Structures (2007).
[16] J. Y. Wu, J. H. Ho, Y. H. Lai, Y. H. Ho, and M. F. Lin, "The low-energy electronic structures of nanographite ribbons in modulated magnetic fields", The 13th International Conference on the Modulated Semiconductor Structures (2007).
[17] Y. H. Ho, H. P. Lin, and M. F. Lin, "Effects of geometric structures and temperature on electronic properties of double-walled armchair carbon nanotubes", The 18th European Conference on Diamond, Diamond-Like Materials, Carbon nanotubes, and Nitrides (2007).
[18] Y. H. Ho, C. P. Chang, and M. F. Lin (APS March08 Meeting) "Electronic properties of nanotube-graphene composite carbon systems", Bulletin of American Physical Society, P. 800 (2008). (Oral)
[19] S. C. Chen, T. S. Wang, Y. H. Ho, and M. F. Lin, "Magneto-electonic properties of graphene nanoribbons in the spatially modulated electric field", The 2nd Conference on New Diamond and Nano Carbons (May, 2008).
[20] S. H. Lee, G. J. Tian, S. B. Lin, Y. H. Ho, and M. F. Lin, "Low-energy electronic and optical properties of the AB-stacked bilayer graphene under uniform deformations", The 2nd Conference on New Diamond and Nano Carbons (May, 2008).
[21] Y. H. Ho, H. P. Lin, and M. F. Lin, "Electronic structures of carbon nanotubes adsorbed on graphene", The 2nd Conference on New Diamond and Nano Carbons (May, 2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔