跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王逸中
研究生(外文):I-chung Wang
論文名稱:鎳鐵薄膜中後退火效應對磁阻尼行為的影響
論文名稱(外文):Effect of post-annealing on magnetic damping behavior in Ni84Fe16 thin film
指導教授:李尚凡陳宜君陳宜君引用關係
指導教授(外文):Shang-Fan Lee Yi-Chun Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:106
中文關鍵詞:鐵磁共振阻尼常數
外文關鍵詞:damping factorFMR
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們使用改變後退火效應來觀察濺鍍製程鎳鐵薄膜(Ni84Fe16)系列的磁性阻尼行為,濺鍍薄膜厚度範圍為10 nm ~ 100 nm,而鎳鐵薄膜後退火過程在真空度約10-7 torr中進行,達到標的溫度(範圍由室溫至700 ℃)後定溫30分鍾,自然冷卻取出。利用網路分析儀配合傳輸線和覆晶量測法(flip-chip)達到鐵磁共振吸收譜線的量測。而磁性阻尼常數α提取的部份,當達共振吸收頻率時,由掃場式鐵磁共振量測法測量出的吸收峰譜線,可以其半寬值與共振頻率線性擬合換算出阻尼常數,擬合頻率範圍由1GHz~4.5GHz。
  在改變後退火溫度(Ta)的樣品測量下,可明顯觀察到阻尼常數α會隨溫度(Ta)的提升而出現兩段阻尼增進的趨勢,第一段是退火溫度在250℃前的低溫退火區段,第二段則是高於250℃的高溫退火區段。為解釋阻尼常數α隨退火溫度增加而增進的機制,在樣品分析中,使用了掃描式電子顯微鏡(SEM)和X光繞射分析儀(XRD),觀察出在高溫後退火區段有晶粒成長(Grain growth)及內部缺陷消除現象,但也由於此原因表面過大的粗糙度變化增加了巨觀的表面缺陷,所以在高溫後退火區段的樣品,阻尼增進可能的主要貢獻來自於雙磁子散射機制;另一方面,呈現出平坦膜面與高密度缺陷的低溫退火區段樣品,其阻尼增進則推測來自與電子散射機制。
  由於雙磁子散射現象是外加場的函數,隨外加場變大,雙磁子效應明顯,也就是增加阻尼的效應,所以我們利用掃頻式鐵磁共振量測訊號下的阻尼常數與外加場關係趨勢中,可驗證高溫區段的阻尼增進主要由雙磁子效應所提供,而低溫退火區段主要由電子散射效應所提供。
In this study, we investigate the effect of post-annealing on magnetization damping in sputtering deposited NiFe thin films. The film thickness is ranged from 10 nm to 100 nm. Thin films were deposited at room temperature and a subsequent post-annealing was performed in vacuum better than 10-6 torr from room temperature to 700 0C for 30 minutes. The ferromagnetic resonance (FMR) spectrum was measured with a vector-network-analyzer (VNA) by flip-chip technique. Magnetization damping coefficient, α, was extracted from the linear fitting of dependence of absorption linewidth of field-scan spectrum on resonance frequency. The frequency range of the FMR measurement is from 1 GHz to 4.5 GHz.
The dependence of α on post-annealing temperature (Ta) indicates two increments in magnetic damping. One is at Ta lower than 250˚C, where α increases with the decrease of the Ta. Another damping enhancement is at Ta higher than 250˚C; contrary to the low Ta region, α increases with the increase of the Ta. Results of structural analysis including scanning electron microscopy (SEM) and X-ray diffractometry (XRD) reveal that high temperature annealing induces significant grain growth and defect elimination, resulting in large surface roughness of the films. This infers that the damping enhancement in those high-Ta annealed films may originate from the mechanism of magnon-magnon scattering. On the other hand, the flat surface and high density of defects suggest that the increase of α may come from the enhancement of electron scattering. The two different mechanisms show distinct external field dependence of α: α under two-magnon scattering is proportional to external field; α enhanced by electron scattering is independent with external field; we thus use this difference to identify them. Dependence of α on external field was extracted from the frequency-scan spectrum. The results confirms that the damping enhancement at high Ta arises from two-magnon scattering mechanism and at low Ta are caused by enhanced electron scattering effect.
誌謝 Ⅰ
中文摘要 Ⅲ
英文摘要 Ⅴ
目錄 Ⅶ
表目錄 Ⅹ
圖目錄 ⅩⅠ
第一章 緒論 1
第二章 磁性原理與文獻回顧 5
2.1 磁性物質簡介 5
2.2 鐵磁共振理論 8
2.2.1 鐵磁共振效應 8
2.2.2 鐵磁共振特色 8
2.2.3 鐵磁共振公式推導 9
2.2.4 阻尼常數α與線寬(ΔH和Δf)的關係 12
2.3 文獻回顧 14
2.3.1 參雜不同材料 16
2.3.2 變化材料結構 17
2.3.3 機制 18
第三章 實驗方法 23
3.1 樣品基板的選用與製程 24
3.2 薄膜濺鍍製程 27
3.2.1 濺鍍 27
3.2.2 磁控濺鍍 28
3.3 鐵磁共振量測系統(FMR) 30
3.3.1 傳輸線設計 30
3.3.2 傳輸線製程 32
3.3.3 夾具設計 34
3.3.4 網路分析儀 35
3.3.5 鐵磁共振電路量測系統 38
3.4 掃瞄式電子顯微鏡(SEM) 39
3.5 原子力顯微鏡(AFM) 40
3.6 震動樣品磁度儀 44
3.7 X光繞射分析儀(XRD) 45
3.7.1 X-ray的產生 45
3.7.2 X光繞射 45
第四章 結果與討論 48
4.1 鎳鐵薄膜定場掃頻的FMR效應 50
4.1.1 30 nm鎳鐵薄膜的掃頻式FMR量測訊號 50
4.1.2 不同鎳鐵薄膜厚度的阻尼增進趨勢 55
4.2 鎳鐵薄膜定頻掃場的FMR效應 61
4.2.1 鎳鐵薄膜的掃場式FMR量測訊號 62
4.2.2 不同鎳鐵薄膜厚度的阻尼增進趨勢 71
4.3 樣品特性分析 75
4.3.1 表面分析(SEM和AFM) 76
4.3.2 樣品缺陷分析(XRD) 88
4.3.3 樣品磁化強度(VSM) 92
4.4.4 統合比較 96
第五章 結論 101
第六章 參考文獻 103
[1]David M.Pozar,Microwave engineering 3rd,John Wiley & Sons,Inc.(2004)
[2]V. Kambersky´, Can. J. Phys. 48, 2906 (1970)
[3]J. Kunes and V. Kambersky, Phys. Rev. B 65, 212411 (2002)
[4]M. Fahnle and D. Steiauf, Phys. Rev. B 72, 064450 (2005)
[5]J. Ho, F. Khanna, and B. Choi, Phys. Rev. Lett. 92, 097601 (2004)
[6]A. Rebei and M. Simionato, Phys. Rev. B 71, 174415 (2005)
[7]Y. Tserkovnyak et al., Rev. Mod. Phys. 77, 1375 (2005)
[8]S. Ingvarsson, Appl. Phys. Lett. 85,4995 (2004)
[9]S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham,Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, J. Appl. Phys. 85, 5828 (1999).
[10]W. Reohr, H. Honigschmid, R. Robertazzi, D. Gogl, F. Pesavento, S. Lammers, K. Lewis, C. Arndt, Y. Lu, H. Viehmann, R. Scheuerlein, L. K. Wang, P. Trouilloud, S. Parkin, W. Gallagher, and G. Muller, IEEE Circuits Devices Mag. 18, 17 (2002)
[11]X. Liu and G. Xiao, J. Appl. Phys. 94, 6218 (2003)
[12]M. Tondra, J. M. Daughton, C. Nordman, D. Wang, and J. Taylor, J. Appl. Phys. 87, 4679 (2000).
[13]B. D. Schrag and G. Xiao, Appl. Phys. Lett. 82, 3272 (2003)
[14]B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994)
[15]J. M. L. Beaujour and A. D. Kent, J. Appl. Phys. 103, 07B519 (2008)
[16]J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 _1996_; L. Berger, Phys. Rev. B 54, 9353 (1996)
[17]See, for example, J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers,and D. C. Ralph, Phys. Rev. Lett. 84, 3149 (2000)
[18]B. Oezyilmaz, A. D. Kent, D. Monsma, J. Z. Sun, M. J. Rooks, and R. H. Koch, ibid. 91,067203 (2003)
[19]See, for example, G. D. Fuchs, N. C. Emley, I. N. Krivorotov, P. M.Braganca, E. M. Ryan, S. I. Kiselev, J. C. Sankey, D. C. Ralph, R. A.Buhrman, and J. A. Katine, Appl. Phys. Lett. 85, 1205 (2004)
[20]J. Z. Sun, Phys. Rev. B 62, 570 (2000)
[21]C. Scheck, L. Cheng, I. Barsukov, Z. Frait, and W. E. Bailey, Phys. Rev.Lett. 98, 117601 (2007)
[22]金重勳,磁性技術手冊,中華民國磁性技術協會,(2002)
[23]Charles Kiettel,Introduction to Solid State Physics 8th,John Wiley & Sons,Inc.(2007)
[24]K. Lenz, Phys. Rev. B 73, 144424 (2006)
[25]S. Ingvarsson, L. Ritchie, X. Y. Liu, G. Xiao, J. C. Slonczewski, P. L. Trouilloud, and R. H. Koch, Phys. Rev. B 66, 214416 (2002)
[26]L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)
[27]T. L. Gilbert, Ph.D. dissertation, Illinois Institute of Technology, (1956)
[28]B. Kuanr, R. Camley, and Z. Celinski, Appl. Phys. Lett. 87, 012502 (2005)
[29]V. Kambersky and C. E. Patton, Phys. Rev. B 11, 2668 (1975).
[30]Sangita S. Kalarical and Pavol Krivosik, J. Appl. Phys. 99, 093909 (2006)
[31]B. Heinrich, J. F. Cochran, and R. Hasegawa, J. Appl. Phys. 57, 3690 (1985)
[32]X. Liu, J. O. Rantschler, C. Alexander, and G. Zangari, IEEE Trans. Magn. 39, 2362 (2003)
[33]J. -M. L. Beaujour and A. D. Kent, Eur. Phys. J. B. 59, 475-483 (2007)
[34]See, for example, D.L. Mills, S.M. Rezende, in Spin Dynamics in Confined Magnetic Structures II, edited by B. Hillebrands, K. Ounadjela (Springer, Heidelberg, 2002),pp. 27–58
[35]W. Bailey, P. Kabos, F. Mancoff, and S. Russek, IEEE Trans. Magn. 37,1749 (2001)
[36]S. Ingvarsson, R. Koch, S. S. P. Parkin, and G. Xiao, U.S. Patent No.6,452,240 (2002)
[37]S. I. Woods, S. Ingvarsson, J. R. Kirtley, H. F. Hamann, and R. H. Koch, Appl. Phys. Lett. 81, 1267 (2002).
[38]S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys., Part 1 40,580 (2001).
[39]S. Ingvarsson, L. Ritchie, X. Y. Liu, G. Xiao, J. C. Slonczewski, P. L.Trouilloud, and R. H. Koch, Phys. Rev. B 66, 214416 (2002).
[40]C. Scheck, L. Cheng and W. E. Bailey, Phys. Rev. Lett. 98, 117601 (2007)
[41]Rodrigo Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999)
[42]Kh. Zakeri, Phys. Rev. B 76, 104416 (2007)
[43]Shigemi MIZUKAMI, Yasuo ANDO and Terunobu MIYAZAKI, Jpn. J. Appl. Phys. Vol. 40, pp. 580-585 (2001)
[44]Antonio Azevedo, Phys. Rev. B 62, No 9, 5331 (2002)
[45]鄭振東,“實用磁性材料學”,全華科技出版社 (1999)
[46]陳安隆 海洋大學光電所 碩士論文集(2006)
[47]嵇煥珮 成功大學物理所 碩士論文集(2005)
[48]Series Network Analyzers, Agilent 高科技教育學院PNA-L
[49]原子力顯微儀的原理(上), 科儀新知 第二十七卷第二期(2005)
[50]原子力顯微儀的原理(下) , 科儀新知 第二十七卷第三期(2005)
[51]http:www.gl.ntu.edu.tw/file/course/94_1/10-27-01.doc
[52]Yi-Chun Chen, J. Appl. Phys, 101, 09C104 (2007)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top