跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李立柔
研究生(外文):Li-Jou Lee
論文名稱:影響高空短暫發光現象分佈的綜觀尺度因素
論文名稱(外文):The Synoptic-Scale Factor of Transient Luminous Events distribution
指導教授:許瑞榮許瑞榮引用關係
指導教授(外文):Rue-Ron Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:間熱帶輻合區高空大氣閃電影像儀溫帶氣旋風暴路徑高空短暫發光現象
外文關鍵詞:ISUALTLEstorm tracksITCZ
相關次數:
  • 被引用被引用:1
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
  從1989年紀錄到第一個紅色精靈影像至今,約經過了二十年,在全球許多地方都已紀錄到高空短暫發光現象的影像,且已證實高空發光現象不只是特定區域的現象。藉由ISUAL的衛星觀測資料,我們可以了解高空短暫發光現象的全球分佈情形。從2004年7月至2008年8月間,ISUAL共紀錄到一萬多個高空短暫發光現象。由TLEs四季的全球分佈特性,我們發現TLEs的分佈約略可發成兩區,低緯度熱帶地區(25°S~25°N)及中緯度溫帶地區(30°以上)。我們分別探討影響這兩區TLEs分佈的綜觀尺度因素,並比較兩區內TLEs的發光強度差異。

  低緯度地區TLEs分佈隨著季節變化,在赤道附近南北移動的現象,我們推測可能與間熱帶輻合區(Inter-Tropical Convergence Zone,ITCZ)的季節移動有關。由分佈位置統計約有84%的TLEs發生於ITCZ範圍內,且不同區間的TLEs和ITCZ有相似的振盪特性,因此可以了解在熱帶地區中,ITCZ是影響TLEs分佈的綜觀尺度因素。

  中緯度地區的TLEs在冬季時大量出現,且有集中在特定區域的趨勢,所以發生於溫帶地區的TLEs又稱為winter TLEs。先由個案討論,接著比較每日溫帶氣旋中心與winter TLEs分佈位置,最後比較winter TLEs發生率及風暴路徑頻率。在由小至大的空間尺度下都可以發現,溫帶地區冬季TLEs的發生,與溫帶氣旋引發的天氣系統有關。

  分別分析淘氣精靈及紅色精靈的發光強度,比較熱帶地區及溫帶地區的事件發光強度。分析結果指出,熱帶地區由太陽輻射直接提供能量,造成的輻合對流,較容易引發發光強度較大的淘氣精靈及紅色精靈;溫帶冬季地區由兩種不同性質的氣團互相推擠,造成的動力抬昇對流,較不易引發的發光強度大的淘氣精靈及紅色精靈。
  It has been 20 years since the recording of the first sprite image in 1989. In the past 20 years, TLEs (transient luminous events) have been observed in many geographic locations around the world and these testify that the occurrence of TLEs is a global phenomenon. In this work, we investigate the global distributions of TLEs through analyzing the ISUAL recorded events. Between July 2004 and August 2008, ISUAL payload on the FORMOSAT-2 satellite has registered over ten thousands TLE events. From the seasonal distributions of ISUAL TLEs, they show two distinct distribution patterns; TLEs over the low-latitude tropical region (25°S~25°N) and those over the mid-latitude winter region (greater than 30°). In this work, the synoptic-scale factors of TLE distributions are studied and the luminous intensity of TLEs in the two regions is compared.

  In the low-latitude region, the distributions of TLEs exhibit seasonal variation and migrate north and south with respect to the equator. We suggest that the seasonal migration of TLE distributions is related to the movement of the ITCZ (inter-tropical convective zones). From correlating the location of TLEs and the distribution of ITCZ, we found that 84% of low-latitude TLEs occurred over the ITCZ and the migrating characteristics of the TLE distribution closely follows that of the ITCZ. Therefore, in the tropical region, we conclude that ITCZ is a key synoptic factor that controls the occurrence of TLE.

  In the mid-latitude region, the occurrence of TLEs congregates over some specific regions in the winter season. Therefore the TLEs that occur over the winter region are called the winter TLEs. From the case studies that compare the distributions of daily winter storm center and winter TLEs, we realized that winter TLEs are highly correlated to the winter storm. Moreover, the distribution pattern of the winter TLE occurrence density and the storm-track frequency are offset but shows similar pattern. The location analyses we performed all give indication that the occurrences of winter TLEs are correlated with the weather systems induced by winter storms.

  We also compare the luminous intensity of TLEs from the tropical and winter regions through analyzing the elve and sprite intensities. For TLE over the tropical regions, the events drew their energy from the convective systems that develop from convergence of the wind and, which in turn extract their energy indirectly from the solar radiation; whereas for the TLEs over the winter regions, cold and warm air masses with different properties collide and then the uplift convective systems are developed and eventually produce the winter TLEs. From our analyses, the convective systems in tropical region induce the high intensity TLEs more easily than in winter region.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
Chapter 1 緒論 1
1.1 大域電流(Global Electric Circuit, GEC) 1
1.2 高空短暫發光現象 2
1.2.1 紅色精靈(sprite) 3
1.2.2 淘氣精靈(elves) 4
1.2.3 噴流事件(jet) 5
1.3 全球天氣系統 7
1.3.1 三胞環流 7
1.3.2 間熱帶輻合區(ITCZ)及南太平洋輻合區(SPCZ) 9
1.3.3 溫帶氣旋 11
1.4 研究動機及目的 13
Chapter 2 儀器及資料來源 16
2.1 高空大氣閃電影像儀(The Imager of Sprites and Upper Atmospheric Lightning,ISUAL) 16
2.1.1 ICCD影像儀(Intensifier CCD Imager) 17
2.1.2 光譜光度儀(Spectrophotometer,SP) 19
2.1.3 陣列式光度儀(Array Photometer,AP) 20
2.2 使用資料 21
2.2.1 ISUAL 資料 21
2.2.2 氣象資料 21
Chapter 3 熱帶地區的TLEs與ITCZ 22
3.1 熱帶地區的TLEs季節性移動的現象 22
3.2 熱帶地區的TLEs與間熱帶輻合區的分佈關係 23
3.2.1 地球外逸長波輻射值意義 23
3.2.2 間熱帶輻合區的分佈定位 24
3.2.3 熱帶地區的TLEs與間熱帶輻合區的分佈比較及統計 27
3.3 熱帶TLEs 緯度上的分佈變化情形 31
3.3.1 ITCZ季節性變化 31
3.3.2 TLEs分佈及ITCZ的振盪特性比較 35
3.4 結論 41
Chapter 4 溫帶地區的TLEs與溫帶氣旋 42
4.1 溫帶地區的TLEs分佈情形 42
4.2 winter TLEs的個案討論 44
4.3 winter TLEs與溫帶氣旋中心的關係 46
4.3.1 利用海平面氣壓資料找出溫帶氣旋中心 46
4.3.2 資料分析及結果 47
4.4 winter TLEs發生率與風暴路徑頻率的關係 54
4.4.1 風暴路徑(storm track)
及風暴路徑頻率(storm track frequency) 54
4.4.2 資料分析及結果 55
4.5 結論 58
Chapter 5 發光強度分佈情形 59
5.1 引發對流的機制 59
5.2 淘氣精靈的發光強度 60
5.2.1 分析方法 60
5.2.2 分析結果 63
5.3 紅色精靈的發光強度 66
5.3.1 分析方法 66
5.3.2 分析結果 68
5.4 結論 70
Chapter 6 總結 71
參考資料 74
1.Adachi, T., H. Fukunishi, Y. Takahashi, M. Sato, A. Ohkubo, and a. K. Yamamoto (2005), Characteristics of thunderstorm systems producing winter sprites in Japan, J. Geophys. Res., 110(D11203).
2.Altaratz, O., Z. Levin, Y. Yair And, and B. Ziv (2003), Lightning Activity over Land and Sea on the Eastern Coast of the Mediterranean, Mon. Wea. Rev., 131, 2060.
3.Chang, S. C., C. Kuo, J. Chou, L. Tsai, L. Lee, A. B. Chen, H. Su, and R. Hsu (2008), Far-Ultraviolet Emission in ISUAL Recorded TLEs and Lightning Events, AGU Fall Meeting Abstracts, 13, 0317.
4.Chen, A. B., C. Chiang, C. Su, Y. Lee, C. Hu, L. Tsai, Y. Huang, J. Chou, L. Lee, S. Huang, R. Hsu, H. Su, T. Liu, and Y. Chang (2007), Distribution and seasonal variation of global lightning activities observed by ISUAL experiment, AGU Fall Meeting Abstracts, 23, 0888.
5.Chen, A. B., C.-L. Kuo, Y.-J. Lee, H.-T. Su, R.-R. Hsu, J.-L. Chern, H. U. Frey, S. B. Mende, Y. Takahashi, H. Fukunishi, Y.-S. Chang, T.-Y. Liu, and L.-C. Lee (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, 08306.
6.Chen, A. B., L. Tsai, L. Lee, J. Chou, H. Su, R. Hsu, C. Wu, P. Lin, S. B. Mende, H. U. Frey, and Y. Takahashi (2008), Meteorological aspects of elves and jets, AGU Fall Meeting Abstracts, 13, 0303.
7.Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, and L. C. Lee (2003), Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite, J. Atmos. Sol. Terr. Phys., 65(5), 647-659.
8.Chou, J., L. Tsai, C. Kuo, Y. Lee, Y. Chen, C. Hu, A. B. Chen, H. Su, R. Hsu, and L. Lee (2007), Blue And Gigantic Jets From Taiwan 2007 TLE Campaign, AGU Fall Meeting Abstracts, 42, 02.
9.Donald, A. C., Meteorology Today: An Introduction to Weather, Climate, and
Environment, Pacific Grove. CA: Thomson/Brooks, p.60,275,315-316,327, (2003)
10.Eichler, T., and W. Higgins (2006), Climatology and ENSO-Related Variability of North American Extratropical Cyclone Activity, J. Climate, 19(10), 2076-2093.
11.Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System, Science, 249, 48-51.
12.Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23, 2157-2160.
13.Ganot, M., Y. Yair, C. Price, B. Ziv, Y. Sherez, E. Greenberg, A. Devir, and R. Yaniv (2007), First detection of transient luminous events associated with winter thunderstorms in the eastern Mediterranean, Geophys. Res. Lett., 34, L12801.
14.Gu, G., and C. Zhang (2002), Cloud components of the Intertropical Convergence Zone, J. Geophys. Res., 107(D21), 4565.
15.Hardman, S. F., R. L. Dowden, J. B. Brundell, J. L. Bahr, Z.-i. Kawasaki, and C. J. Rodger (2000), Sprite observations in the Northern Territory of Australia, J. Geophys. Res., 105(D4), 4689-4698.
16.Hsu, R., A. B. Chen, C. Kuo, Y. Lee, H. Su, H. Fukunishi, Y. Takahashi, T. Adachi, K. Yamamoto, H. U. Frey, S. B. Mende, and L. Lee (2005), Gigantic jet observation by the ISUAL payload of FORMOSAT-2 satellite, AGU Fall Meeting Abstracts, 23, 0992.
17.Hu, Y., D. Li, and J. Liu (2007), Abrupt seasonal variation of the ITCZ and the Hadley circulation, Geophys. Res. Lett., 34, L18814.
18.Inan, U. S., T. F. Bell, and J. V. Rodriguez (1991), Heating and ionization of the lower ionosphere by lightning, Geophys. Res. Lett., 18, 705-708.
19.Kuo, C. L., A. B. Chen, S. Chang, L. Lee, J. Chou, L. Tsai, R. Hsu, H. Su, H. Frey, S. Mende, and Y. Takahashi (2008), Global energy deposition and chemical effect by transient luminous events in the upper atmosphere, AGU Fall Meeting Abstracts, 22, 05.
20.Kuo, C. L., A. B. Chen, J. K. Chou, L. Y Tsai, R. R. Hsu, H. T. Su, H. U. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2008), Radiative emission and energy deposition in transient luminous events, J. Phys. D: Appl. Phys., 41, 4014.
21.Kuo, C.-L., A. B. Chen, Y. J. Lee, L. Y. Tsai, R. K. Chou, R. R. Hsu, H. T. Su, L. C. Lee, S. A. Cummer, H. U. Frey, S. B. Mende, Y. Takahashi, and H. Fukunishi (2007), Modeling elves observed by FORMOSAT-2 satellite, J. Geophys. Res., 112, 11312.
22.Kuo, C.-L., R. R. Hsu, A. B. Chen, H. T. Su, L. C. Lee, S. B. Mende, H. U. Frey, H. Fukunishi, and Y. Takahashi (2005), Electric fields and electron energies inferred from the ISUAL recorded sprites, Geophys. Res. Lett., 32, 19103.
23.McHarg, M. G., H. C. Stenbaek-Nielsen, and T. Kammae (2007), Observations of streamer formation in sprites, Geophys. Res. Lett., 34, L06804.
24.Mende, S. B., H. U. Frey, R. R. Hsu, H. T. Su, A. B. Chen, L. C. Lee, D. D. Sentman, Y. Takahashi, and H. Fukunishi (2005), D region ionization by lightning-induced electromagnetic pulses, J. Geophys. Res., 110, A11312.
25.Neubert, T., T. H. Allin, H. Stenbaek-Nielsen, and E. Blanc (2001), Sprites over Europe, Geophys. Res. Lett., 28, 3585-3588.
26.Pasko, V. P., U. S. Inan, and T. F. Bell (1996), Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields, Geophys. Res. Lett., 23, 649-652.
27.Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood (2002), Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152-154.
28.Reynolds, R. W., and T. M. Smith (1994), Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation, J. Climate, 7, 929-948.
29.Rodger, C. J. (1999), Red sprites, upward lightning, and VLF perturbations, Rev. Geophys., 37, 317-336.
30.Rycroft, M. J., S. Israelsson, and C. Price (2000), The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Sol. Terr. Phys., 62, 1563-1576.
31.Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites, Geophys. Res. Lett., 22, 1205-1208.
32.Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers (1997), Icelandic Low Cyclone Activity: Climatological Features, Linkages with the NAO, and Relationships with Recent Changes in the Northern Hemisphere Circulation, J. Climate, 10, 453-464.
33.Su, H., R. Hsu, C. Kuo, A. B. Chen, Y. Lee, P. Chiang, H. U. Frey, S. B. Mende, Y. Takahashi, H. Fukunishi, and L. Lee (2005), Blue jets, blue starters and other blue luminous events observed by ISUAL payload on the FORMOSAT-2 satellite, AGU Fall Meeting Abstracts, 23, 0988.
34.Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974-976.
35.Suzuki, T., M. Hayakawa, Y. Matsudo, and K. Michimoto (2006), How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan?, Geophys. Res. Lett., 33, L10806.
36.Takahashi, Y., R. Miyasato, T. Adachi, K. Adachi, M. Sera, A. Uchida, and H. Fukunishi (2003), Activities of sprites and elves in the winter season, Japan, J. Atmos. Sol. Terr. Phys., 65, 551-560.
37.Tsai, L., C. Kuo, Y. Chen, Y. Lee, R. Chou, W. Lai, R. Hsu, A. Chen, and H. Su (2006), 2006 Taiwan TLE campaign, AGU Fall Meeting Abstracts, 41, 02.
38.Vincent, D. G. (1994), The South Pacific Convergence Zone (SPCZ): A Review, Mon. Wea. Rev., 122, 1949.
39.Waliser, D. E., and C. Gautier (1993), A Satellite-derived Climatology of the ITCZ, J. Climate, 6, 2162-2174.
40.Wescott, E. M., D. Sentman, D. Osborne, D. Hampton, and M. Heavner (1995), Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets, Geophys. Res. Lett., 22, 1209-1212.
41.Yano, H., S. Abe, and Y. Takahashi (2001), High-Definition TV Imagery of Elves and Sprites over the Mediterranean Sea during the 1999 Leonid Meteor Shower Peak (invited), paper presented at 2001 Asia-Pacific Radio Science Conference AP-RASC '01, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊