跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡純逢
研究生(外文):Chuen-Feng Hu
論文名稱:薄管元件受軸向衝擊之動態行為研究
論文名稱(外文):A Study of the Dynamic Progressive Buckling of Hollow Thin-Walled Tubes subjected to Axial Impact Loading Test
指導教授:鄭泗滄鄭泗滄引用關係
指導教授(外文):Syh-Tsang Jeng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:158
中文關鍵詞:動態撞擊分析軸向撞擊薄管元件有限元素分析頭部傷害標準
外文關鍵詞:HIC(Head injury criterion)Axial impactdynamic impact analysisthin-walled tubeenergy absorptionFEM analysis
相關次數:
  • 被引用被引用:4
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文之研究目的主要在於探討中空薄管元件受到軸向衝擊下之動態行為模式之研究。中空薄壁管件常見於各種結構體中,例如車體結構潰縮桿以及火車結構等等。而當管件結構遭受軸向衝擊時,是否有足夠的強度抵抗或吸收撞擊的能量一直是重要的研究方向。因此藉由瞭解中空薄壁管件在軸向撞擊下的動態行為模式,探討中空方形薄管遭受撞擊時,材料的受力、吸收能量與變形量多寡,可以用來預測中空薄壁管件的變形模式。
在挫曲變形動態行為中,瞭解撞擊過程中中空薄管位移的長短和能量吸收的多寡,對於設計上將會有很大的幫助。在理論分析方面,利用解析解求得平均力、位移、位移所需時間、能量及可生成之皺摺數目,並和實驗與模擬結果進行比較驗證。在數值分析方面,利用商用有限元素軟體LS-DYNA中explicit solver模擬動態實驗,並與衝擊實驗之結果數據以及理論數據進行驗證比較。進一步對薄管元件做幾何改變,研究不同外型結構對管件吸收能量的影響,並配合美國前方正面碰撞法規FMVSS208乘員安全法規之頭部傷害標準(Head Injury criterion),觀察探討幾何改變的薄管元件與造成人類腦部傷害的關係。
The major purpose of this research is based on analyzing dynamic impact response of hollow thin-walled tube component which is subjected to axial impact. Hollow thin-walled tube usually appears in several of structure such as cars, bumper, train and so on. Besides, the important intention of the thesis also focuses on whether the structure has ability to resist or absorb energy sufficiently during the impact process. When thin-walled tube is subjected to axial impact, the transformation mode could be predicted by studying dynamic impact response, force, energy absorption or stroke of the tube.
It will be a great assistance on designing by the way of knowing stroke and energy absorption of thin-walled cube while impact process. In view of theories analysis, using analytic solution to obtain average force, stroke, duration time, energy and the number of collapse, and compare with experimental and simulated result. In light of numerical solution, using the explicit solver of FEM simulation software LS-DYNA to simulate dynamic action, make comparison between the result of impact experiment and theories analysis. Through changing the geometric of thin-walled tube, it could investigate the tube of energy absorption in different construction. In the meantime, utilizing Head Injury criterion (HIC) of FMVSS208 observes the connection between geometrical deformation of thin-walled tube and causing brain damage for human.
全文中文摘要
全文英文摘要
目次
表目次Ⅰ
圖目次Ⅱ
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機及目的 8
1-4 研究方法 9
第二章 基礎理論背景 12
2-1 前言 12
2-2 圓管軸向挫屈模型 13
2-2-1 圓管靜態挫屈理論分析 14
2-2-2 圓管動態挫屈理論分析 20
2-3 方形薄管軸向挫屈模型 23
2-3-1 方形薄管靜態挫屈理論分析 24
2-3-2 方形薄管動態挫屈理論分析 35
2-4 結構防撞性 36
2-4-1 基本碰撞觀念 36
2-4-2 方形薄管元件潰縮距離與時間之預測 38
2-4-3 方形薄管元件形成之皺摺數目預測 42
2-5 頭部傷害標準(Head Injury Criterion) 44

第三章 有限分析元素模型與動態數值模擬驗證 57
3-1 LS-DYNA簡介 57
3-2 有限元素模型建立 59
3-3 元素收歛性測試(Convergence Test) 61
3-4 軸向撞擊方形薄管之動態數值模擬驗證 62
3-4-1 驗證動態行為反應 62
3-4-2 實驗之方管尺寸、材料性質和環境條件 63
3-4-3 與C. C. Chou文獻[17]實驗數據驗證 64
3-5 殼元素(Shell Element)與實體元素(Solid Element)模型比較驗證 65
3-5-1 殼元素(Shell Element)模型 66
3-5-2 實體元素(Solid element)模型 66
3-5-3 殼元素與實體元素模擬結果比較驗證 67
3-6 軸向撞擊件縮薄管(Tapered Thin-Wall Tube)之動態數值模擬驗證 68
3-6-1 模擬之方管尺寸和環境條件 69
3-6-2 與G. M. Nagel的資料[13]驗證 70
3-7 方形薄管動態數值模擬與理論預測驗證 71
3-7-1 定義方形薄管的幾何參數 71
3-7-2 模擬結果比較 71
3-7-3 模擬結果與理論預測結果比較 74
第四章 實驗與數值模擬驗證 103
4-1 靜態壓縮實驗 103
4-1-1 靜態壓縮實驗設備與試件介紹 103
4-1-2 靜態壓縮實驗流程 104
4-2 靜態壓縮實驗結果與數值模擬驗證 105
4-3 動態軸向撞擊實驗 106
4-3-1 動態軸向撞擊實驗設備與試件介紹 106
4-3-2 衝擊模組之概述 108
4-3-3 動態軸向撞擊實驗流程 109
4-4 動態軸向撞擊實驗結果與數值模擬驗證 110
第五章 凹陷機構對薄管的影響 118
5-1 凹陷機構介紹 118
5-2 頭部傷害標準(Head Injury Criterion)應用 119
5-3 不同幾何形狀凹陷機構比較 120
5-3-1 定義不同幾何及深度的凹陷機制和模擬環境 120
5-3-2 不同凹陷機制深度數值模擬結果討論 122
5-4 不同形式及個數的凹陷機構比較 124
5-4-1 定義不同形式及個數的凹陷機制和模擬環境 124
5-4-2 數值模擬結果討論 126
第六章 結果討論與未來展望 154
6-1 結論 154
6-2 未來展望 155
參考文獻 156
1. W. Abramowicz and N. Jones, “Dynamic axial crushing of square tubes”, International Journal Impact Engineering, Vol.2, No.2, pp.179-208, 1984.
2. W. Abramowicz and N. Jones, “Dynamic progressive buckling of circular and square tubes”, International Journal Impact Engineering, Vol.4, No.4, pp.243-270, 1986.
3. N. Jones, “Structural Impact”, Cambridge University Press, UK. 1989.
4. W. Abramowicz and N. Jones, “The effective crushing distance in axially compressed thin-walled metal columns”, International Journal Impact Engineering, Vol.1, pp.309-317, 1983.
5. T. Wierzbicki, W. Abramowicz, “On the crushing mechanics of thin-wall structures”, Journal of Applied Mechanics, Vol.50, pp727-34, 1983.
6. T. Wierzbicki, “Crushing analysis of metal honeycombs”, International Journal of Impact Engineering, Vol.1, No.2, pp.157-174, 1983.
7. T. Wierzbicki and N. Jones, “Structural Failure”, John Wiley & Sons, Inc., Canada, 1989.
8. T. Wierzbicki and N. Jones, “Structural Crashworthiness”, Butterworth & Co (Publishers) Ltd., England, 1983.
9. A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, P. K. Kostazos and G. Hassiotis, “Finite element simulation of the axial collapse of thin-wall square frusta”, International Journal of Crashworthiness, Vol.6, No.2, pp155-164, 2001.
10. A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, P. K. Kostazos and C. Dimitriou, “Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section”, Thin-Walled Structures, 41:891-900, 2003.
11. M. Silcock, W. Hall and B. Fox, ”Finite element modeling of metallic tubular crash structures with an explicit code”, International Journal Vehicle Safety, Vol.1, No.4, pp.292-303, 2006.
12. A. Otubushin, “Detailed validation of a non-linear finite element code using dynamic axial crushing of a square tube”, International Journal of Impact Engineering, Vol.21, No.5, pp.349-368, 1998.
13. G. M. Nagel and D. P. Thambiratnam, “A numerical study on the impact response and energy absorption of tapered thin-wall tubes”, International Journal of Mechanical Sciences; 46; pp201-216, 2004.
14. G. M. Nagel and D. P. Thambiratnam, “Dynamic simulation and energy absorption of tapered tubes under impact loading”, International Journal of Crashworthiness, Vol.9, No.4, pp389-399, 2004.
15. G. M. Nagel and D. P. Thambiratnam, “Computer simulation and energy absorption of tapered thin-walled rectangular tubes”, Thin-Walled Structures; 43; pp1225-42, 2005.
16. S. R. Reid and T. Y. Reddy, “Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section”, International Journal of Mechanical Sciences, Vol.28, No.9, pp623-37, 1986.
17. C. C. Chou, “The measurement of impact forces under dynamic crush using a drop tower test facility”, SAE Technical Paper Series, No. 830467, 1983.
18. Versace, J., “A review of the severity index”, SAE Technical Paper Series, No. 710881, 1971.
19. Matthew Huang, “Vehivle crash mechanics”, CRC press, UK, 2002.
20. Gadd, C.W., “Use of a weighted impulse criterion for estimating injury hazard” SAE Technical Paper Series, No. 660793, 1966.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top