|
[1]馮慶芬, 粉末冶金學. 台北縣中和市: 新文京開發, 2002. [2]Dunkley, J. J., "Producing Metal Powders," Metals and Materials, vol. 6 ,No.6, p. 361, 1990. [3]A. Lawley, Atomization: the production of metal powders. New Jersey, 1992. [4]Dunkley, J. J., "Liquid Atomization," Powder Metall, vol. 32, p. 96, 1990. [5]Dombrowski, N., and Johns, W. R., 1963, “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets”, Chem. Eng. Sci., 18, pp. 203. [6]Klar, E., and Fesco, J., 1981, Prog. Powder Metall., 37, pp. 47. [7]Garci’a, R. C., Gala’n, A. S., Castrejo’n, J. R., and Pita, A. A., 2003, “The Fractal Dimension of an Oil Spray, Fractals”, 11(2), pp. 155-161. [8]Mazallon, J., Dai, Z., and Feath, G. M., 1999, “Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows”, Atomization and Sprays, 9, pp. 291-311. [9]Christophe, D., 2001, “Measurement of Breakup Length of Cylindrical Liquid Jet”, Application to Low-Pressure Car Injector, Atomization and Sprays, 11, pp. 201-226. [10]Mccreery, G. E., and Stoots, C. M., 1996, “Drop Formation Mechanism and Size Distributions for Spray Plate Nozzles”, Int. J. Multiphase Flow, 22(3), pp. 431-452. [11]Chou, W. H., Hsiang, L. P., Feath, G. M., 1997, “Temporal Properties of Drop Breakup in the Shear Breakup Regime”, Int. J. Multiphase Flow, 23(4), pp. 651-669. [12]Lane, W. R., 1951, “Shatter of Droplets in Stream of Air”, Ind. Eng. Chem., 43(6), pp. 1312-1317. [13]Hinze, J. O., 1955, “Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes”, AIChE J., 1(3), pp. 289-295. [14]Chigier, N. A., and Reitz, R. D., 1996, “Regimes of Jet Breakup Mechanism”, in K. Kuo (ed.), Prog. Astronaut. Aeronautics, 1, pp. 109-136. [15]Wu, P. K., and Faeth, G. M., 1993, “Aerodynamics Effects on Primary Breakup of Turbulent Liquids”, Atomization and Sprays, 3, pp. 265-289. [16]Liu, A. B., and Reitz, R. D., 1993, “Mechanism of Air Assisted Liquid Atomization”, Atomization and Spray, 3, pp. 55-75. [17]Dai, Z., and Feath, G. M., 2001, “Temporal Properties of Secondary Drop Breakup in the Multimode Breakup Regime”, Int. J. Multiphase Flow, 27, pp. 217-236. [18]Hsiang, L. P., and Faeth, G. M., 1992, “Near-Limit Drop Deformation and Secondary Breakup”, Int. J. Multiphase Flow, 18(5), pp. 635-652. [19]Lee, C. S., and Reitz, R. D., 2001, “Effect of Liquid Properties on the Breakup Mechanism of High-Speed Liquid Drops”, Atomization and Sprays, 11, pp. 1-19. [20]O’Rourke, P. J., and Bracco, F. V., 1980, “Modeling of Drop Interactions in Thick Sprays and a Comparison with Experiments”, Stratified Charge Automotive Engineering Conference, the Institute of Mechanical Engineering, London. [21]Asheim, J. P., Kirwan, J. E., and Peters, J. E., 1987, “Modeling of a hollow-cone liquid spray including droplet collisions”, AIAA-87-0135. [22]Sturgess, G. J., Syed, S. A., and McManus, K. R., 1985, “Calculation of a hollon-Cone Liquid Spray in a Uniform Air Stream”, J. Propulsion, 1(5), pp. 360-369. [23]Hong, C. H., 1991, “Dynamic Characteristics of the Continuous and Dispersed Phase in a Hollow Cone Spray Jet”, Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C. [24]Lai, W. H., Yang, K. H., Hong, C. H., and Wang, M. R., 1996, “Droplet Transport in Simplex and Air-Assisted Sprays”, Atomization and Sprays, 6, pp. 21-49. [25]Nguyen, Q. V., Rangel, R. H., and Rankin, D. D., 1991, “Measurement and Prediction of Trajectories and Collision of Droplets”, Int. J. Multiphase Flow, 10(2), pp. 159-177. [26]Lefebvre, A. H., 1989, Atomization and Sprays, Hemisphere Publishing Corporation, ISBN 0-89116-603-3, ISSN 1040-2765. [27]Yule, A. J. and Dunkley, J. J., 1994, Atomization of Melts for Powder Production and Spray Deposition, Oxford University Press Inc., New York, ISBN 0-19-856258-6. [28]Shigenori K., 2003, “Steady-State Paint Flow under High Centrifugal Force Atomization in Spray Painting”, JSAE Review, 24, pp. 489-494. [29]Lavernia, E. J., and Wu, Y., 1996, Spray Atomization and Deposition, John Wiley& Sons Ltd, ISBN 0-471-95477-2. [30]Tamaki, N., Sbimizu, M., and Hiroyasu, H., 2001, “Enhancement of the Atomization of a Liquid Jet by Cavitation in a Nozzle Hole”, Atomization and Sprays, 11, pp. 125-137. [31]Chang, J. C., Haung, S. B., Lin, C. M., 2006, Effects of Inlet Surface Roughness, Texture and Nozzle Material on Cavitation, Atomization & Sprays, 3. (in press) [32]Kufferath, A ., Wende, B., and Leuckel, W., 1999, “Influence of Liquid Flow Conditions on Spray Characteristics of Internal-Mixing Twin-Fluid Atomizers”, International Journal of Heat and Fluid Flow, 20, pp. 513-519. [33]Halder, M. R., Dash, S. K., and Som, S. K., 2002, “Initiation of Air Core in a Simplex Nozzle and the Effects of Operating and Geometrical Parameters on Its Shape and Size”, Experimental Thermal and Fluid Science, 26, pp. 871-878. [34]Wang, M. R., Kuo, C. C., Yang, J. R., Chiu, J. S., Chen, C. P., and Sheu, M. S., 2004, “Atomization Characteristics of Molten Metal in a Linear Atomizer with Low Aspect Ratio”, In Proc. ILASS-Asia 2004, pp. 193-201. [35]Rizkalla, A. A., and Lefebvre, A. H., 1975, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics”, J. Eng. Power, pp. 173-179. [36]Rizkalla, A. A., and Lefebvre, A. H., 1975, “The Influence of Air and Liquid Properties on Airblast Atomizer”, J. Fluids Eng., 97, pp. 316-320. [37]Beck, J. E., and Lefebvre, A. H., 1991, “Airblast Atomization at Conditions of Low Air Velocity”, J. Propulsion, 7(2), pp. 155-170. [38]Beck, J. E., Lefebvre, A. H., and Koblish, T. R., 1991, “Liquid Sheet Disintegration by Impinging Air Streams”, Atomization and Sprays, 1(2), pp. 155-170. [39]Rizk, N. K., and Lefebvre, A. H., 1983, “Influence of Atomizer Design Feature on Mean Drop Size”, J. AIAA, 21(8), pp. 1139-1142. [40]Aligner, M., and Wittig, S., 1980, “Swirl and Counter Swirl Effects in Prefilming Airblast Atomization”, Trans. ASME J. Eng. Power, 102, pp. 706-710. [41]Lefebvre, A. H., 1983, Gas Turbine Combustion, Hemisphere. [42]Lefebvre, A. H., Wang, X. F., and Martin, C. A., 1988, “Spray Characteristics of Aerated-Liquid Pressure Atomizers”, AIAA J. Prop. Power, 4(4), pp. 293-298. [43]Roesler, T. C., and Lefebvre, A. H., 1989, “Studies on Aerated-Liquid Atomization”, Int. J. Turbo Jet Engines, 6, pp. 221-230. [44]Wang, X. F., Chin, J. S., and Lefebvre, A. H., 1989, “Influence of Gas Injector Geometry on Atomization Performance of Aerated-Liquid nozzles”, Int. J. Turbo Jet Engines, 6, pp. 271-280. [45]Lund, M. T., Sojka, P. E., Lefebvre, A. H., and Gosselin, P. G., 1993, “Effervescent Atomization at Low Mass Flow Rates. Part 1: The Influence of Surface Tension”, Atomization and Sprays, 3, pp. 77-89. [46]Sutherland, J. J., Sojka, P. E., and Plesniak, M. W., 1997, “Ligament Controlled Effervescent Atomization”, Atomization and Sprays, 7(4), pp. 383-406. [47]Panchagnula, M. V., and Sojka, P. E., 1999, “Spatial Droplet Velocity and Size Profiles in Effervescent Atomizer-Produced Sprays”, Fuel, 78, pp. 729-741. [48]Whitlow, J. D., and Lefebvre, A. H., 1993, “Effervescent Atomizer Operation and Spray Characteristics”, Atomization and Sprays, 3, pp. 137-156. [49]Nguyen, D. A., and Rhodes, M. J., 1998, “Producing Fine Drops of Water by Twin-Fluid Atomisation”, Powder Technology, 99, pp. 285-292. [50]Guo, L. J., Li, G. J., Chen, B., Chen, X. J., Papailiou, D. D., and Panidis, T., 2002, “Study on Gas-Liquid Two-Phase Spraying Characteristics of Nozzles for the Humidification of Smoke”, Experimental Thermal and Fluid Science, 26, pp. 715-722. [51]Wang, M. R., Sheu, M. S., and Yang, S. R., 2000, “Performance of a Linear Internal Mixing Atomizer in Atomization of Molten Metals”, In: Proc. ILASS 2000, Pasadena, USA. [52]Wang, M. R., , Lin, T. C., and Yang, C. J., 2005, “Low Pressure Atomization Process of Molten Metal in a Linear Internal Mixing Atomizer”, Transaction of the Aeronautical and Astronautical Society of the Republic of China, 36(3), pp. 269-274. [53]Nagasaka, K., Takagi, T., Koyanagi, K., and Yamauchi, T., 2000, “The Development of Fine Atomization Injector”, JSAE Review, 21, pp. 309-313. [54]Lavernia, E. J., Srivatsan, T. S., and Rangel, R. H., 1992, “Atomization of Alloy Powders”, Atomization and Sprays, 2, pp. 253-274. [55]Capus, J. M., and German, R. M., 1992, “Centrifugal Atomization: Influence of Process Parameters on Size Distribution”, Powder Production and Spray Forming, 1, pp. 127-135. [56]Wentzell, J. M., 1974, “Metal Powder Production by Vacuum Atomization”, J. Vac. Sci. Technology, 11(6), pp. 1035. [57]Mati, G., Bicsak, E., Huppmann, W. J., and Claussen, N., 1977, “Atomization of Metal Powders Using the Vibrating Electrode Method, Modern Developments in Powder Metallurgy”, Edited by Hausner, H. H. and Taubenblat, P. W., Metal Powder Industries Federation, Princeton, NJ, 9, pp. 153. [58]Ting, J., Peretti, M. W., and Eisen, W. B., 2002, “The Effect of Wake-Closure Phenomenon on Gas Atomization Performance”, Materials Science and Engineering A, 326, pp.110-121. [59]Wolf, G. and Bergmann, H. W., 2002, “Investigations on Melt Atomization with Gas and Liquefied Cryogenic Gas”, Materials Science and Engineering A, 326, pp.134-143. [60]Anderson, I. E., and Terpstra, R. L., 2002, “Progress Toward Gas Atomization Processing with Increased Uniformity and Control”, Materials Science and Engineering A, 326, pp. 101-109. [61]Zhou, Y., Lee, S., McDonell, V. G., Samuelsen, G. S., Kozarek, R. L., and Lavernia, E. J., 1999, “Size Distribution of Spray Atomised Aluminum Alloy Powders Produced During Linear Atomisation”, Materials Science and Technology, 15(2), pp. 226-234. [62]Mansour, A., and Chigier, N., 1990, “Disintegration of Liquid Sheets”, Phys. Fluids A, 2, pp.706-719. [63]Pe’rez, P. A., Gonza’lez, J. E., and Sa’nchez, R., 2000, “Characterization of the Deposition Process of Spray Forming in Lonear Atomizers”, Procc. IClass 2000, Pasadena, CA, USA, July. [64]Bradbury, S., Powder Metallurgy Equipment Manual, 3rd edition, Princeton, New Jersey, ISBN 0-918404-68-1. [65]German, R. M., 1994, Powder Metallurgy Science, Metallurgy Industries Federation, ISBN 957-584-368-1. [66]Liang, X., Earthman, J. C., and Lavernia, E. J., 1992, “On the Mechanism of Grain Formation during Spray Atomization and Deposition”, Acta Metall. Mater., 40(11), pp. 3003-3016. [67]Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., Srivastava, V., 2004, “Atomization Process for Metal Powder”, Materials Science and Engineering A, 382, pp. 1-6. [68]Miller, S. A., 1987, “Closed-Coupled Gas Atomization of Metal Alloys”, Metal Powder Report, 42(10), pp. 702. [69]Hopkins, W. G., 1990, “Fine Powder: Closed-Couple or Open-Die Atomization?”, Metal Powder Report, 42(1), pp. 41. [70]Anderson, I. E., 1991, “Boost in Atomization Pressure Shaves Powder-Particle Size”, Advanced Materials and Processes, 140(1), pp. 30. [71]Anderson, I. E., Figliola, R. S., and Morton, H., 1991, “Flow Mechanism in High Pressure Gas Atomization”, Mats. Sci. and Eng. A, 148, pp. 101. [72]Wang, M. R., Lai, T. S., Lin, T. C., Chiu, C. H., and Yang, C. J., 2005, “Optimization of Metal Powder Production by Gas Atomization Processes with Internal-Mixing Mechanism”, Transactions of the Aeronautical and Astronautical Society of the Republic of China, 37(2), pp.153-162. (in Chinese) [73]Z. ZHAO, and D. POULIKAKOS, 1996, “Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—I. Modeling”, Int. J. Hat Mass Transfer, Vol. 39. No. 13, pp. 2771-2789. [74]Shiraz D. Aziz, Sanjeev Chandra, 2000, “Impact, recoil and splashing of molten metal droplets”, Int. J. Heat and Mass Transfer, 43, pp. 2841-2857 [75]Newbery, A. P., Rayment, T., and Grant, P. S., 2004, “A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets During Electric Arc Sprayforming”, Materials Science and Engineering A, 383, pp. 137-145. [76]Yamada, Y., Yasuguchi, M., and Iinoya, K., 1987, “Effects of Particle Dispersion and Circulation Systems on Classification Performance”, Powder Technology, 50(3), pp. 275-280. [77]Bu’’ttner, H., 1988, “Size Separation of Particles from Aerosol Samples Using Impactors and Cyclones”, Part. Part. Syst. Charact., 5, pp. 87-93. [78]Nakajima, Y., Komuro, Y., and Sato, T., 1995, “Scavenging of Submicron Particles by Coarse Particles under the Effects of Electrostatic Field and Particle Vibration”, J. Electrostatics, 34, pp. 37-49. [79]Galk, J., Peukert, W., and Krahnen, J., 1999, “Industrial Classification in a New Impeller Wheel Classifier”, Powder Technology, 105, pp. 186-189. [80]Yamamoto, K., Shiokari, M., Miyajima, T., and Sugimoto, M., 2002, “Separation of Differently Shaped Fine Particles by a New Wet Shape Separator - Effects of Sweep Methods on the Separation Characteristics”, Powder Technology, 125, pp. 74-81. [81]Lee, K. and Reitz, R., 2004, “Investigation of Spray Characteristics from a Low-Pressure Common Rail Injector for Use in a Homogeneous Charge Compression Ignition Engine”, Meas. Sci. Technol., 15, pp. 509-519. [82]William, D. B., 1980, Method for Measuring the Size and Velocity of Spheres by Dual-Beam Light-Scatter Interferometry, Applied Optics, 10(2), pp.363-370. [83]Lai, W. H., 1995, “Droplet Transport and Turbulence Modulation in the Developing Process of the Spray Flow”, Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C. [84]Lau, J. H., 1994, Chip on Board Technologies for Multichip Modules, ITP, ISBN 0-442-01441-4. [85]Nguty, T. A., Salam, B., Durairaj, R., and Ekere, N. N., 2001, “Understanding the Process Window for Printing Lead-Free Solder Pastes”, IEEE Transaction on Electronics Packaging Manufacturing, 24(4), pp. 249-254. [86]Kim, J. H., Satom, M., and Iwasaki, T., 2005, “Rheological Properties of Particle-Flux Suspension Paste”, Advanced Powder Technol., 16(1), pp. 61-71. [87]Li, L., and Thompson, P., 2000, “Stencil Printing Process Development for Flip Chip Interconnect”, IEEE Transaction on Electronics Packaging Manufacturing, 23(3), pp. 165-170. [88]Itsuo, W., Naoyuki, S., Kenzo, T., and Tomohisa, O., 1995, “Flip Chip Interconnection Technology Using Anisotropic Conductive Adhesive Films”, In: Flip Chip Technologies, McGraw-Hill, pp. 301-315. ISBN 0-07-036609-8. [89]Chang, H. L., 1995, ‘Anisotropic Conductive Flip Chip-on-Glass Technology”, In: Flip Chip Technologies, McGraw-Hill, pp. 317-339. ISBN 0-07-036609-8. [90]Ealey, L. A., 1994, Quality by Design: Taguchi Methods & US Industry, Irwin, ISBN 1-55623-970-X. [91]Fowlkes, W. Y., Creveling, C. M., 1995, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Addison-Wesley, ISBN 0-201-63367-1. [92]Lochner, R. H., Matar, J. E., 1990, Designing for Quality: An introduction to the Best of Taguchi and Western Methods of Statistical Experimental Design, Chapman and Hall, ISBN 0-412-40020-0. [93]Li, H. H., 2000, Taguchi Methods: Principles and Practices of Quality Design, Gauli, ISBN 957-584-808-X. (in Chinese) [94]Birch, A.D., Cleaver, R.P., Fairweather, M., Hargrave, G.K. 2005, “Velocity and concentration field measurements in a turbulent, impinging flammable jet”, Chemical Engeering Science 60, pp. 219-230. [95]Kim, Ho-Young, Park, Soon-Young, Min, Kyoungdoug, 2005, ”Imaging the high-speed impact of microdrop on solid surface”, Review of Scientific Instruments, Volume 74, pp. 4930-4937 [96]Kim, Ho-Young, 2004, “Drop fall-off from the vibrating Ceiling”, Physics of Fluids, Vol. 16, pp.474-477 [97]Nararanan, V., Seyed-Yagoobi, J., Page, R.H., “An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow”, Int. J. Heat and Mass Transfer, 47, pp. 1827-1845 [98]Minxia Xue, Yoav Heichal, Sanjeev Chandra, 2007, “Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermo contact resistance”, J. Mater. Sci. 42:9-18, pp.9-18 [99]Ghafouri-Azar, R., Shakeri, S., Chandra, S., Mostaghimi, J., 2003, “Interactions between molten metal droplets impinging on a solid surface”, Int. J. Heat and Mass Transfer 46, pp.1395-1407
|