跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊哲睿
研究生(外文):Che-Jui Yang
論文名稱:用於金屬粉末噴霧製程之雙流體霧化噴嘴設計參數之實驗研究
論文名稱(外文):The Experimental Study of Design Parameter of Twin-Fluid Atomizer using in Metal Powder Production.
指導教授:王覺寬
指導教授(外文):Muh-Rong Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:248
中文關鍵詞:霧化衝擊基板
外文關鍵詞:substrateimpingingatomizationmetal powder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討雙流體金屬粉末噴霧製程中,霧化噴嘴及衝擊基板之設計,以建立生產超微粒金屬粉末之方法。所設計之霧化噴嘴分為長方型噴嘴(A型)與圓孔型噴嘴(B型)兩種。首先以A型噴嘴探討液態金屬在內混型霧化方式下噴嘴出口長寬比對金屬粉末特性之影響。所採用之噴嘴出口長寬比分別為1.0、1.5、2.0及3.0。噴嘴出口面積為6mm2 及 12mm2 兩種。實驗結果顯示在霧化氣體與金屬壓力分別為4.8�e105N/m2與4.0�e105N/m2下,當噴嘴出口長寬比自3.0降低為1.0時,金屬粉末平均粒徑自32.01μm 降低至24.10μm。若提高霧化氣體操作壓力為5.2�e105N/m2,金屬粉末平均粒徑進一步降低至21.83μm與19.87μm之間。實驗結果亦顯示,當噴嘴長寬比固定時,噴嘴出口面積較大之噴嘴因具有較高之氣液質量比,所以金屬粉末粒度可以進一步細微化。比較A型與B型噴嘴之噴霧性能, B型噴嘴具有較大之噴嘴出口(4mm圓孔),故可進一步提高氣液質量比,而降低金屬粉末平均粒徑。氣體操作壓力與金屬壓力分別為4.0�e105N/m2與3.5�e105N/m2時,其金屬粉末平均粒徑為9.28μm,細微金屬粉末體積百分比(V15-)為41.82%。
為了生產超微粒之金屬粉末,本研究採用B型噴嘴進一步探討基板衝擊效應對金屬粉末噴霧製程之影響。亦即在液態金屬兩相噴霧流中加入衝擊基板以過濾粗顆粒噴霧粒子。基板之型式包括碟型、環型、圓筒及多孔等基板。實驗結果顯示,在噴嘴下方100mm處配置碟型基板,隨著碟型基板外徑D由40mm增加至100mm時,金屬粉末平均粒徑由6.25μm降低至5.25μm,V15-也可由53.27%提升至69.07%。因為碟型基板對金屬噴霧之遮蔽率隨基板外徑增加而遞增,當基板對金屬遮蔽率增加時,會提高基板對金屬噴霧粗顆粒之過濾作用,故當基板外徑增加,金屬粉末粒徑隨之遞減。環型基板亦有相同趨勢,當環型基板對金屬噴霧之遮蔽率由24.2%增加至86%時,其粉末平均粒徑則由12.56μm遞減至8.18μm。若於噴嘴下方100mm處配置多孔基板,則可使金屬粉末平均粒徑降低至6.25μm。此型基板之設計理念在於由於基板之遮蔽可使金屬噴霧流中較大液滴在撞擊基板後而碎化成微小液滴,進而在飛行過程中固化而成微小金屬粉末。若於B型噴嘴下方200mm處配置圓筒型基板,金屬粉末平均粒徑隨著圓筒基板邊緣高度Hp的增加而遞減至4.26μm,V15-比例則遞增至59.65%。此乃導因於噴霧流中之液態金屬液滴在撞擊基板後碎化成較小液滴,其飛行方向由軸向改變至輻向,在輻向噴流(wall jet)中較小液滴撞擊圓筒型基板之邊緣,再進一步碎化與沉積。
比較未配置基板與基板衝擊流效應下金屬體積百分比,發現在加了基板後,粒徑分佈有明顯向小粒子集中之現象,大顆粒明顯的減少,其中碟型基板亦進一步提高小於15μm顆粒之體積百分比,此代表在基板作用下可使粒徑細微化與粒徑分佈窄化之目的。
The effects of the design of atomizer and impinging substrate on metal powder production process with twin-fluid atomizer are investigated in this dissertation. The atomizer designs investigated are square atomizer (A-type) and circular atomizer (B-type). The effects of atomizer aspect ratio on the characteristics of metal powder under internal-mixing atomization are first discussed with using A-type atomizer. The aspect ratios of the atomizer orifice are 1.0~3.0 with the cross section area 6mm2 and 12mm2. Results show that the SMD is reduced from 32.01�慆 to 24.1�慆 when the orifice aspect ratio decreases from 3.0 to 1.0 for the case of atomization gas pressure and melt injection pressure are 4.8�e105 N/m2 and 4.0�e105 N/m2 respectively. The SMD can be further reduced to the range between 21.83�慆 and 19.87�慆 when the atomization gas pressure is increased to 5.2�e105 N/m2. Results also show that the atomizer with larger cross section area has better atomization performance of its higher gas-to-melt ratio when orifice aspect ratio is fixed. Compare with the atomization performance of A-type and B-type atomizer, the gas-to-melt ratio is increased and SMD further decreases for the case of B-type atomizer due to its larger orifice (with diameter 4mm). The SMD is 9.28�慆 and V15- is 41.28% when the case of atomization gas pressure and melt injection pressure are 4.8�e105 N/m2 and 4.0�e105 N/m2 respectively.
To product ultra-fine metal powder, the effect of impinging jet flow on metal powder production process is further investigated with using B-type atomizer. The coarse particles are filtered with substrate placing downstream of the metal spray. The types of substrates are disk-type, ring-type, cylinder-type, and mesh-type. Results show that when the disk-type substrate is placed downstream 100mm from the orifice of atomizer, the SMD decreases from 6.25�慆 to 5.25�慆 and V15- increases from 53.27% to 69.07% as the substrate outer diameter increases from 40mm to 100mm. Since the blockage ratio of the disk-type substrate is increased by increasing the outer diameter. The filtering of substrate on coarse particles is enhanced as the blockage increases. The results of ring-type substrate lacing downstream show the similar trend. The SMD decreases from 12.56�慆 to 8.18�慆 when the blockage of ring-type substrate on the metal spray is increased from 24.2% to 86%. The SMD decreases to 6.25�慆 when the mesh-type substrate is placed downstream 100mm from the atomizer. Since the larger droplets impact the substrate and further break up into fine droplets then the droplets solidified during flying process and become fine metal powder. The design of mesh-type substrate is to produce fine metal powders. When the cylinder-type substrate is placed downstream 200mm of metal spray, the SMD is reduced to 4.26�慆 and V15- is enhanced to 59.65%. It results from the larger melt droplets in the metal spray impacting the bottom of the cylinder-type substrate and then break up into finer droplets. The motion direction of these finer droplets is transformed from axial direction to radial direction by wall jet. When the droplets reach the edge of the cylinder-type substrate, the impact and breakup occur again. The finer droplets further breakup. The comparison of the characteristics of the metal spray with and without substrate is also discussed. The particle size distribution is shift to fine powders when the substrates are placed downstream of metal spray obviously. It is concluded that the impinging mechanism of the molten spray on the substrates is an effective technique to control the particle size and size distribution in the metal powder production.
摘要 i
誌謝 iii
第一章 緒論 v
第二章 實驗設備與量測系統 viii
第三章 液態金屬在噴嘴低長寬比下之霧化特性 ix
第四章 熔融金屬噴霧在基板衝擊效應下之霧化特性 xi
第五章 結論 xii
第六章 未來工作之建議 xiv
ABSTRACT xv
CONTENTS xvii
LIST OF TABLES xxi
LIST OF FIGURES xxii
NOMENCLATURE xxxii

CHAPTER I INTRODUCTION 1
1.1 Historical Background 4
1.2 Motivation 6
1.3 Basic Process in Atomization 7
1.3.1 Primary Atomization 7
1.3.2 Secondary Atomization 8
1.3.3 Droplets Collision and Transport 10
1.4 Atomizers and Atomization Performance 11
1.4.1 Atomizers 11
1.4.2 Atomizer Design 13
1.4.3 Performance of Twin-Fluid Atomization 14
1.5 Atomization of Melts and Powders Production 17
1.5.1 External Mixing Atomization 17
1.5.2 Fine Powder Atomization 20
1.5.3 Internal Mixing Atomization 22
1.5.4 Impact and solidification of molten droplets on substrate 23
1.5.5 Classification 25
1.6 Objectives 26
1.7 Thesis Outline 27

CHAPTER II EXPERIMENTAL FACILITY AND INSTRUMENTATION 28
2.1 Experimental Setup for Metal Powder Production 28
2.2 Design of Atomizer 30
2.3 Design of Impinging Substrates 31
2.4 Experimental Procedures 32
2.5 Instruments for Particle Sizing 33
2.5.1 INSITEC RT-Sizer 33
2.5.2 Coulter 35
2.5.3 Calibration of Particle Sizer 36
2.5.4 Isokinetic sampling Method 36
2.5.5 Online measurement 36

CHAPTER III ATOMIZER DESIGN TO CHARACTERISTICS OF THE MOLTEN METAL ATOMIZATION 37
3.1 Effects of Orifice Area 37
3.1.1 Mass Flow Rate 37
3.1.2 Atomization Performance 40
3.2 Effects of melt injection pressure 44
3.2.1 Mass Flow Rate 44
3.2.2 Atomization Performance 46
3.3 Effects of Operational Pressure Difference 49
3.3.1 Mass Flow Rate 49
3.3.2 Atomization Characteristics 51
3.4 Effects of Orifice Aspect Ratio 54
3.4.1 Mass Flow Rate 54
3.4.2 Atomization Characteristics 55
3.5 Effects of Atomizer Orifice Design 58
3.5.1 Mass Flow Rate 58
3.5.2 Atomization Characteristics 60
3.6 Comparison of Atomizers 61
3.7 Summary 62

CHAPTER IV ATOMIZATION CHARACTERIZATION OF SUBSTRATE IN MELT SPRAY FLOW 64
4.1 Metal spray without substrates 64
4.2 Effects of Impingement Substrate in Molten Metal Spray 64
4.2.1 Effects of Distance Between Atomizer Orifice and Substrate 65
4.2.2 Effects of Sampling Positions in Molten Metal Spray Flow 68
4.2.3 Effects of Operating Pressure Difference to Molten Metal Spray 69
4.2.4 Effects of Melt Heating Temperature to Atomization Characterization 72
4.3 Effects of Disk-type Substrate in Molten Metal Spray 74
4.3.1 Atomization Performance of Disk-type Substrate to Molten Metal Spray 74
4.3.2 Effects of Disk-type Substrate Blockage Ratio to Atomization Performance 78
4.4 Effects of Ring-Type Substrate in Molten Metal Spray 79
4.4.1 Atomization Performance of Ring-type Substrate to Molten Metal Spray 79
4.4.2 Effects of Ring-Type Substrate Blockage Ratio to Atomization Performance 82
4.5 Effects of Cylindrical-Type Substrate in Molten Metal Spray 84
4.6 The Effects of Mesh-type Substrate in Molten Metal Spray 86
4.7 Compare of metal spray with and without substrate 89

CHAPTER V CONCLUSION 92
CHAPTER VI SUGGESTIONS AND FUTURE WORK 95
REFERENCE 231
PUBLICATION LIST 239
VITA 248
[1]馮慶芬, 粉末冶金學. 台北縣中和市: 新文京開發, 2002.
[2]Dunkley, J. J., "Producing Metal Powders," Metals and Materials, vol. 6 ,No.6, p. 361, 1990.
[3]A. Lawley, Atomization: the production of metal powders. New Jersey, 1992.
[4]Dunkley, J. J., "Liquid Atomization," Powder Metall, vol. 32, p. 96, 1990.
[5]Dombrowski, N., and Johns, W. R., 1963, “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets”, Chem. Eng. Sci., 18, pp. 203.
[6]Klar, E., and Fesco, J., 1981, Prog. Powder Metall., 37, pp. 47.
[7]Garci’a, R. C., Gala’n, A. S., Castrejo’n, J. R., and Pita, A. A., 2003, “The Fractal Dimension of an Oil Spray, Fractals”, 11(2), pp. 155-161.
[8]Mazallon, J., Dai, Z., and Feath, G. M., 1999, “Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows”, Atomization and Sprays, 9, pp. 291-311.
[9]Christophe, D., 2001, “Measurement of Breakup Length of Cylindrical Liquid Jet”, Application to Low-Pressure Car Injector, Atomization and Sprays, 11, pp. 201-226.
[10]Mccreery, G. E., and Stoots, C. M., 1996, “Drop Formation Mechanism and Size Distributions for Spray Plate Nozzles”, Int. J. Multiphase Flow, 22(3), pp. 431-452.
[11]Chou, W. H., Hsiang, L. P., Feath, G. M., 1997, “Temporal Properties of Drop Breakup in the Shear Breakup Regime”, Int. J. Multiphase Flow, 23(4), pp. 651-669.
[12]Lane, W. R., 1951, “Shatter of Droplets in Stream of Air”, Ind. Eng. Chem., 43(6), pp. 1312-1317.
[13]Hinze, J. O., 1955, “Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes”, AIChE J., 1(3), pp. 289-295.
[14]Chigier, N. A., and Reitz, R. D., 1996, “Regimes of Jet Breakup Mechanism”, in K. Kuo (ed.), Prog. Astronaut. Aeronautics, 1, pp. 109-136.
[15]Wu, P. K., and Faeth, G. M., 1993, “Aerodynamics Effects on Primary Breakup of Turbulent Liquids”, Atomization and Sprays, 3, pp. 265-289.
[16]Liu, A. B., and Reitz, R. D., 1993, “Mechanism of Air Assisted Liquid Atomization”, Atomization and Spray, 3, pp. 55-75.
[17]Dai, Z., and Feath, G. M., 2001, “Temporal Properties of Secondary Drop Breakup in the Multimode Breakup Regime”, Int. J. Multiphase Flow, 27, pp. 217-236.
[18]Hsiang, L. P., and Faeth, G. M., 1992, “Near-Limit Drop Deformation and Secondary Breakup”, Int. J. Multiphase Flow, 18(5), pp. 635-652.
[19]Lee, C. S., and Reitz, R. D., 2001, “Effect of Liquid Properties on the Breakup Mechanism of High-Speed Liquid Drops”, Atomization and Sprays, 11, pp. 1-19.
[20]O’Rourke, P. J., and Bracco, F. V., 1980, “Modeling of Drop Interactions in Thick Sprays and a Comparison with Experiments”, Stratified Charge Automotive Engineering Conference, the Institute of Mechanical Engineering, London.
[21]Asheim, J. P., Kirwan, J. E., and Peters, J. E., 1987, “Modeling of a hollow-cone liquid spray including droplet collisions”, AIAA-87-0135.
[22]Sturgess, G. J., Syed, S. A., and McManus, K. R., 1985, “Calculation of a hollon-Cone Liquid Spray in a Uniform Air Stream”, J. Propulsion, 1(5), pp. 360-369.
[23]Hong, C. H., 1991, “Dynamic Characteristics of the Continuous and Dispersed Phase in a Hollow Cone Spray Jet”, Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C.
[24]Lai, W. H., Yang, K. H., Hong, C. H., and Wang, M. R., 1996, “Droplet Transport in Simplex and Air-Assisted Sprays”, Atomization and Sprays, 6, pp. 21-49.
[25]Nguyen, Q. V., Rangel, R. H., and Rankin, D. D., 1991, “Measurement and Prediction of Trajectories and Collision of Droplets”, Int. J. Multiphase Flow, 10(2), pp. 159-177.
[26]Lefebvre, A. H., 1989, Atomization and Sprays, Hemisphere Publishing Corporation, ISBN 0-89116-603-3, ISSN 1040-2765.
[27]Yule, A. J. and Dunkley, J. J., 1994, Atomization of Melts for Powder Production and Spray Deposition, Oxford University Press Inc., New York, ISBN 0-19-856258-6.
[28]Shigenori K., 2003, “Steady-State Paint Flow under High Centrifugal Force Atomization in Spray Painting”, JSAE Review, 24, pp. 489-494.
[29]Lavernia, E. J., and Wu, Y., 1996, Spray Atomization and Deposition, John Wiley& Sons Ltd, ISBN 0-471-95477-2.
[30]Tamaki, N., Sbimizu, M., and Hiroyasu, H., 2001, “Enhancement of the Atomization of a Liquid Jet by Cavitation in a Nozzle Hole”, Atomization and Sprays, 11, pp. 125-137.
[31]Chang, J. C., Haung, S. B., Lin, C. M., 2006, Effects of Inlet Surface Roughness, Texture and Nozzle Material on Cavitation, Atomization & Sprays, 3. (in press)
[32]Kufferath, A ., Wende, B., and Leuckel, W., 1999, “Influence of Liquid Flow Conditions on Spray Characteristics of Internal-Mixing Twin-Fluid Atomizers”, International Journal of Heat and Fluid Flow, 20, pp. 513-519.
[33]Halder, M. R., Dash, S. K., and Som, S. K., 2002, “Initiation of Air Core in a Simplex Nozzle and the Effects of Operating and Geometrical Parameters on Its Shape and Size”, Experimental Thermal and Fluid Science, 26, pp. 871-878.
[34]Wang, M. R., Kuo, C. C., Yang, J. R., Chiu, J. S., Chen, C. P., and Sheu, M. S., 2004, “Atomization Characteristics of Molten Metal in a Linear Atomizer with Low Aspect Ratio”, In Proc. ILASS-Asia 2004, pp. 193-201.
[35]Rizkalla, A. A., and Lefebvre, A. H., 1975, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics”, J. Eng. Power, pp. 173-179.
[36]Rizkalla, A. A., and Lefebvre, A. H., 1975, “The Influence of Air and Liquid Properties on Airblast Atomizer”, J. Fluids Eng., 97, pp. 316-320.
[37]Beck, J. E., and Lefebvre, A. H., 1991, “Airblast Atomization at Conditions of Low Air Velocity”, J. Propulsion, 7(2), pp. 155-170.
[38]Beck, J. E., Lefebvre, A. H., and Koblish, T. R., 1991, “Liquid Sheet Disintegration by Impinging Air Streams”, Atomization and Sprays, 1(2), pp. 155-170.
[39]Rizk, N. K., and Lefebvre, A. H., 1983, “Influence of Atomizer Design Feature on Mean Drop Size”, J. AIAA, 21(8), pp. 1139-1142.
[40]Aligner, M., and Wittig, S., 1980, “Swirl and Counter Swirl Effects in Prefilming Airblast Atomization”, Trans. ASME J. Eng. Power, 102, pp. 706-710.
[41]Lefebvre, A. H., 1983, Gas Turbine Combustion, Hemisphere.
[42]Lefebvre, A. H., Wang, X. F., and Martin, C. A., 1988, “Spray Characteristics of Aerated-Liquid Pressure Atomizers”, AIAA J. Prop. Power, 4(4), pp. 293-298.
[43]Roesler, T. C., and Lefebvre, A. H., 1989, “Studies on Aerated-Liquid Atomization”, Int. J. Turbo Jet Engines, 6, pp. 221-230.
[44]Wang, X. F., Chin, J. S., and Lefebvre, A. H., 1989, “Influence of Gas Injector Geometry on Atomization Performance of Aerated-Liquid nozzles”, Int. J. Turbo Jet Engines, 6, pp. 271-280.
[45]Lund, M. T., Sojka, P. E., Lefebvre, A. H., and Gosselin, P. G., 1993, “Effervescent Atomization at Low Mass Flow Rates. Part 1: The Influence of Surface Tension”, Atomization and Sprays, 3, pp. 77-89.
[46]Sutherland, J. J., Sojka, P. E., and Plesniak, M. W., 1997, “Ligament Controlled Effervescent Atomization”, Atomization and Sprays, 7(4), pp. 383-406.
[47]Panchagnula, M. V., and Sojka, P. E., 1999, “Spatial Droplet Velocity and Size Profiles in Effervescent Atomizer-Produced Sprays”, Fuel, 78, pp. 729-741.
[48]Whitlow, J. D., and Lefebvre, A. H., 1993, “Effervescent Atomizer Operation and Spray Characteristics”, Atomization and Sprays, 3, pp. 137-156.
[49]Nguyen, D. A., and Rhodes, M. J., 1998, “Producing Fine Drops of Water by Twin-Fluid Atomisation”, Powder Technology, 99, pp. 285-292.
[50]Guo, L. J., Li, G. J., Chen, B., Chen, X. J., Papailiou, D. D., and Panidis, T., 2002, “Study on Gas-Liquid Two-Phase Spraying Characteristics of Nozzles for the Humidification of Smoke”, Experimental Thermal and Fluid Science, 26, pp. 715-722.
[51]Wang, M. R., Sheu, M. S., and Yang, S. R., 2000, “Performance of a Linear Internal Mixing Atomizer in Atomization of Molten Metals”, In: Proc. ILASS 2000, Pasadena, USA.
[52]Wang, M. R., , Lin, T. C., and Yang, C. J., 2005, “Low Pressure Atomization Process of Molten Metal in a Linear Internal Mixing Atomizer”, Transaction of the Aeronautical and Astronautical Society of the Republic of China, 36(3), pp. 269-274.
[53]Nagasaka, K., Takagi, T., Koyanagi, K., and Yamauchi, T., 2000, “The Development of Fine Atomization Injector”, JSAE Review, 21, pp. 309-313.
[54]Lavernia, E. J., Srivatsan, T. S., and Rangel, R. H., 1992, “Atomization of Alloy Powders”, Atomization and Sprays, 2, pp. 253-274.
[55]Capus, J. M., and German, R. M., 1992, “Centrifugal Atomization: Influence of Process Parameters on Size Distribution”, Powder Production and Spray Forming, 1, pp. 127-135.
[56]Wentzell, J. M., 1974, “Metal Powder Production by Vacuum Atomization”, J. Vac. Sci. Technology, 11(6), pp. 1035.
[57]Mati, G., Bicsak, E., Huppmann, W. J., and Claussen, N., 1977, “Atomization of Metal Powders Using the Vibrating Electrode Method, Modern Developments in Powder Metallurgy”, Edited by Hausner, H. H. and Taubenblat, P. W., Metal Powder Industries Federation, Princeton, NJ, 9, pp. 153.
[58]Ting, J., Peretti, M. W., and Eisen, W. B., 2002, “The Effect of Wake-Closure Phenomenon on Gas Atomization Performance”, Materials Science and Engineering A, 326, pp.110-121.
[59]Wolf, G. and Bergmann, H. W., 2002, “Investigations on Melt Atomization with Gas and Liquefied Cryogenic Gas”, Materials Science and Engineering A, 326, pp.134-143.
[60]Anderson, I. E., and Terpstra, R. L., 2002, “Progress Toward Gas Atomization Processing with Increased Uniformity and Control”, Materials Science and Engineering A, 326, pp. 101-109.
[61]Zhou, Y., Lee, S., McDonell, V. G., Samuelsen, G. S., Kozarek, R. L., and Lavernia, E. J., 1999, “Size Distribution of Spray Atomised Aluminum Alloy Powders Produced During Linear Atomisation”, Materials Science and Technology, 15(2), pp. 226-234.
[62]Mansour, A., and Chigier, N., 1990, “Disintegration of Liquid Sheets”, Phys. Fluids A, 2, pp.706-719.
[63]Pe’rez, P. A., Gonza’lez, J. E., and Sa’nchez, R., 2000, “Characterization of the Deposition Process of Spray Forming in Lonear Atomizers”, Procc. IClass 2000, Pasadena, CA, USA, July.
[64]Bradbury, S., Powder Metallurgy Equipment Manual, 3rd edition, Princeton, New Jersey, ISBN 0-918404-68-1.
[65]German, R. M., 1994, Powder Metallurgy Science, Metallurgy Industries Federation, ISBN 957-584-368-1.
[66]Liang, X., Earthman, J. C., and Lavernia, E. J., 1992, “On the Mechanism of Grain Formation during Spray Atomization and Deposition”, Acta Metall. Mater., 40(11), pp. 3003-3016.
[67]Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., Srivastava, V., 2004, “Atomization Process for Metal Powder”, Materials Science and Engineering A, 382, pp. 1-6.
[68]Miller, S. A., 1987, “Closed-Coupled Gas Atomization of Metal Alloys”, Metal Powder Report, 42(10), pp. 702.
[69]Hopkins, W. G., 1990, “Fine Powder: Closed-Couple or Open-Die Atomization?”, Metal Powder Report, 42(1), pp. 41.
[70]Anderson, I. E., 1991, “Boost in Atomization Pressure Shaves Powder-Particle Size”, Advanced Materials and Processes, 140(1), pp. 30.
[71]Anderson, I. E., Figliola, R. S., and Morton, H., 1991, “Flow Mechanism in High Pressure Gas Atomization”, Mats. Sci. and Eng. A, 148, pp. 101.
[72]Wang, M. R., Lai, T. S., Lin, T. C., Chiu, C. H., and Yang, C. J., 2005, “Optimization of Metal Powder Production by Gas Atomization Processes with Internal-Mixing Mechanism”, Transactions of the Aeronautical and Astronautical Society of the Republic of China, 37(2), pp.153-162. (in Chinese)
[73]Z. ZHAO, and D. POULIKAKOS, 1996, “Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—I. Modeling”, Int. J. Hat Mass Transfer, Vol. 39. No. 13, pp. 2771-2789.
[74]Shiraz D. Aziz, Sanjeev Chandra, 2000, “Impact, recoil and splashing of molten metal droplets”, Int. J. Heat and Mass Transfer, 43, pp. 2841-2857
[75]Newbery, A. P., Rayment, T., and Grant, P. S., 2004, “A Particle Image Velocimetry Investigation of In-Flight and Deposition Behavior of Steel Droplets During Electric Arc Sprayforming”, Materials Science and Engineering A, 383, pp. 137-145.
[76]Yamada, Y., Yasuguchi, M., and Iinoya, K., 1987, “Effects of Particle Dispersion and Circulation Systems on Classification Performance”, Powder Technology, 50(3), pp. 275-280.
[77]Bu’’ttner, H., 1988, “Size Separation of Particles from Aerosol Samples Using Impactors and Cyclones”, Part. Part. Syst. Charact., 5, pp. 87-93.
[78]Nakajima, Y., Komuro, Y., and Sato, T., 1995, “Scavenging of Submicron Particles by Coarse Particles under the Effects of Electrostatic Field and Particle Vibration”, J. Electrostatics, 34, pp. 37-49.
[79]Galk, J., Peukert, W., and Krahnen, J., 1999, “Industrial Classification in a New Impeller Wheel Classifier”, Powder Technology, 105, pp. 186-189.
[80]Yamamoto, K., Shiokari, M., Miyajima, T., and Sugimoto, M., 2002, “Separation of Differently Shaped Fine Particles by a New Wet Shape Separator - Effects of Sweep Methods on the Separation Characteristics”, Powder Technology, 125, pp. 74-81.
[81]Lee, K. and Reitz, R., 2004, “Investigation of Spray Characteristics from a Low-Pressure Common Rail Injector for Use in a Homogeneous Charge Compression Ignition Engine”, Meas. Sci. Technol., 15, pp. 509-519.
[82]William, D. B., 1980, Method for Measuring the Size and Velocity of Spheres by Dual-Beam Light-Scatter Interferometry, Applied Optics, 10(2), pp.363-370.
[83]Lai, W. H., 1995, “Droplet Transport and Turbulence Modulation in the Developing Process of the Spray Flow”, Ph.D. dissertation, IAA, National Cheng Kung University, Taiwan, R.O.C.
[84]Lau, J. H., 1994, Chip on Board Technologies for Multichip Modules, ITP, ISBN 0-442-01441-4.
[85]Nguty, T. A., Salam, B., Durairaj, R., and Ekere, N. N., 2001, “Understanding the Process Window for Printing Lead-Free Solder Pastes”, IEEE Transaction on Electronics Packaging Manufacturing, 24(4), pp. 249-254.
[86]Kim, J. H., Satom, M., and Iwasaki, T., 2005, “Rheological Properties of Particle-Flux Suspension Paste”, Advanced Powder Technol., 16(1), pp. 61-71.
[87]Li, L., and Thompson, P., 2000, “Stencil Printing Process Development for Flip Chip Interconnect”, IEEE Transaction on Electronics Packaging Manufacturing, 23(3), pp. 165-170.
[88]Itsuo, W., Naoyuki, S., Kenzo, T., and Tomohisa, O., 1995, “Flip Chip Interconnection Technology Using Anisotropic Conductive Adhesive Films”, In: Flip Chip Technologies, McGraw-Hill, pp. 301-315. ISBN 0-07-036609-8.
[89]Chang, H. L., 1995, ‘Anisotropic Conductive Flip Chip-on-Glass Technology”, In: Flip Chip Technologies, McGraw-Hill, pp. 317-339. ISBN 0-07-036609-8.
[90]Ealey, L. A., 1994, Quality by Design: Taguchi Methods & US Industry, Irwin, ISBN 1-55623-970-X.
[91]Fowlkes, W. Y., Creveling, C. M., 1995, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Addison-Wesley, ISBN 0-201-63367-1.
[92]Lochner, R. H., Matar, J. E., 1990, Designing for Quality: An introduction to the Best of Taguchi and Western Methods of Statistical Experimental Design, Chapman and Hall, ISBN 0-412-40020-0.
[93]Li, H. H., 2000, Taguchi Methods: Principles and Practices of Quality Design, Gauli, ISBN 957-584-808-X. (in Chinese)
[94]Birch, A.D., Cleaver, R.P., Fairweather, M., Hargrave, G.K. 2005, “Velocity and concentration field measurements in a turbulent, impinging flammable jet”, Chemical Engeering Science 60, pp. 219-230.
[95]Kim, Ho-Young, Park, Soon-Young, Min, Kyoungdoug, 2005, ”Imaging the high-speed impact of microdrop on solid surface”, Review of Scientific Instruments, Volume 74, pp. 4930-4937
[96]Kim, Ho-Young, 2004, “Drop fall-off from the vibrating Ceiling”, Physics of Fluids, Vol. 16, pp.474-477
[97]Nararanan, V., Seyed-Yagoobi, J., Page, R.H., “An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow”, Int. J. Heat and Mass Transfer, 47, pp. 1827-1845
[98]Minxia Xue, Yoav Heichal, Sanjeev Chandra, 2007, “Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermo contact resistance”, J. Mater. Sci. 42:9-18, pp.9-18
[99]Ghafouri-Azar, R., Shakeri, S., Chandra, S., Mostaghimi, J., 2003, “Interactions between molten metal droplets impinging on a solid surface”, Int. J. Heat and Mass Transfer 46, pp.1395-1407
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top