跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李卓翰
研究生(外文):Cho-Han Li
論文名稱:電漿致動器於三角翼上之應用
論文名稱(外文):Application of Plasma Actuator on Delta Wing
指導教授:溫志湧
指導教授(外文):Chih-Yung Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:60
中文關鍵詞:電漿致動器空氣動力特性三角翼光暈放電離子風
外文關鍵詞:AerodynamicsIonic WindPlasma ActuatorDelta WingCorona Discharge
相關次數:
  • 被引用被引用:1
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
電漿致動器(Plasma actuator)有著能在一大氣壓下放電、機構簡單、維護方便、以及價格低廉、反應時間快速(理論上為十億分之一秒)等優點,是現在各國在航空領域上致力研究的課題,尤其是在UAV及MAV的應用上。其主要作用原理是在飛行體表面通以高壓電場解離鄰近氣體形成電漿,藉由電場誘導產生的離子風(Ionic wind)來改變邊界層速度分佈,進而達到改變其空氣動力特性的效果,例如延遲氣流分離(Delay flow separation)、降低壓力阻力(Pressure drag)等。電漿致動器根據其構造不同可大略分為兩大類:光暈放電(Corona discharge)以及介電質放電(Dielectric barrier discharge) 。
本研究採用光暈放電作為致動器,探討比較三角翼在有致動器以及沒有致動器下,於低雷諾數及不同攻角(Angle of attack)時的空氣動力特性;研究中使用兩條銅棒放電作為致動器,並使用玻璃皮托管來測量誘導產生的離子風風速。實驗在低速風洞中進行,以視流觀察三角翼翼前緣渦流大小的改變,同時以力平衡儀進行氣動力量測;實驗結果發現在雷諾數75,000以及高攻角的狀態之下,致動器的影響效果會比較高雷諾數(Re=100,000、125,000)和低攻角的情況來得明顯:能夠有效的增加三角翼的升力以及翻轉力矩係數。
本研究將開啟電漿致動器用於飛行載體上的基礎和應用研究,建立起一系列的實驗程序,相信將會對於後進的研究者提供些許的幫助。
Plasma actuators that discharge at one atmosphere have attracted considerable attention in the aerospace industry, especially in the applications of UAV and MAV, due to their features of simple mechanism, easy maintenance, low cost and fast response ( 1 ns, theoretically). Their working principles are to apply a positive voltage and a negative voltage on the surface of an aerial vehicle by two electrodes, which then ionize the adjacent gas molecules and form the plasma. The electric field induces the motion of the plasma and results in the ionic wind consequently. The ionic wind alters the velocity profile inside the boundary layer through the particle collisions and may change the aerodynamic characteristics of the vehicle, for example, delay of flow separation, drag reduction…etc. Plasma actuators can be categorized as either corona discharge or dielectric barrier discharge (DBD) by their mechanism.
The research applying corona discharge as the actuator on delta wing, investigate the effects on the aerodynamics of the delta wing model at low Reynolds numbers and different angles of attack and also compared with the case that without them. The characteristics of the ionic wind induced by the two-wire plasma actuator were calibrated by a glass pitot tube. The experiments were conducted in a low speed wind tunnel. The smoke wire technique was adopted to visualize the leading edge vortices and a force balance was also used to measure the aerodynamic characteristics of the delta wing. Results show that the plasma actuator has better performace, namely, increasing the lift and roll moment coefficient, when the delta wing is at Reynolds number of 75,000 and high angle of attack.
The current thesis conducted fundamental and application researches of applying plasma actuators on the flying vehicles. It is hoped that we can make a significant contribution to the domestic aerospace industry.
中文摘要.......................................I
ABSTRACT.......................................III
誌謝...........................................V
目錄...........................................VI
表目錄.........................................IX
圖目錄.........................................X
符號說明.......................................XIII
第一章 序論....................................1
§1.1 前言......................................1
§1.2 電漿致動器原理............................2
§1.3 文獻回顧..................................5
§1.3.1 電流體動力學致動器(Electrohydrodynamic actuator).....................................5
§1.3.2 基本幾何模型之研究......................10
§1.3.3 其他方面之應用..........................12
§1.3.4 無因次參數..............................13
§1.3.5 三角翼文獻回顧..........................14
§1.3.6 研究動機與目的..........................15
第二章 實驗方法與設備..........................16
§2.1 水洞......................................17
§2.2 低速風洞..................................18
§2.2.1 皮托管及壓力轉換器......................18
§2.2.2 外置式應變規力平衡儀....................19
§2.2.3 A/D轉換器...............................19
§2.3 玻璃皮托管................................20
§2.4 三角翼模型................................21
§2.5 電漿致動器之製作..........................22
§2.5.1 高壓電設備..............................22
§2.5.2 致動器結構..............................23
§2.5.3 高壓探棒(High voltage probe)............24
§2.6 電漿致動器特性之設定......................26
§2.7 實驗步驟..................................26
§2.8 翻轉係數(Roll moment coefficient)之計算...27
第三章 結果與討論..............................29
§3.1 三角翼半翼染液視流實驗結果................29
§3.2 電漿致動器實驗結果........................31
§3.3 電漿致動器附近的速度分布..................33
§3.4 煙線視流結果..............................40
§3.5 氣動力量測結果............................46
第四章 結論與建議..............................50
§4.1 結論......................................50
§4.2 建議......................................50
參考文獻.......................................51
附錄...........................................56
[1] M. Gad-El-Hak, “Flow Control,” Cambridge: Cambridge University Press, 2000
[2] W. Shyy, M. Berg and D. Ljungqvist, “Flapping and flexible Wings for Biological and Micro Air Vehicles,” Progress in Aerospace Sciences 35, pp.455-505, 1999
[3] K. B. M. Q. Zaman and D. J. Mckinzie, “Control of Laminar Separation over Airfoils by Acoustic Excitation,” AIAA J., pp.1075-1083, 1991
[4] D. Greenblatt and I. Wygnanski, “Use of Periodic Excitation to Enhance Airfoil Performance at Low Reynolds Numbers,” Journal of Aircraft, pp.190-192, 2000
[5] E. Moreau, “Airflow Control by Non-thermal Plasma Actuators,” J. Phys. 40, pp.605-636, 2007
[6] F. Rogier, J. C. Matéo-Vélez and Géraldine Quinio, “Numerical Modeling of DC Discharges in Air Flows,” Conference on Computational Physics, 2006
[7] J. D’Adamo, G. Artana, E. Moreau, G. Touchard, “Control of the Airflow Close to a Flat Plate with Electrohydrodynamic Actuators,” ASME Paper No.2002-31041, 2002
[8] A. Fridman, A. Chirokov and A. Gutsol, “Non-thermal Atmospheric Pressure Discharge,” J. Phys. D: Appl. Phys. 40, pp.1-24, 2005
[9] S. Yokoyama, M. Kogoma, T. Morikawi and S. Okazaki, “The Mechanisms of the Stabilized Glow Plasma at Atmospheric Pressure,” J. Phys. D: Appl. Phys., pp.1125-1128, 1990
[10] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. S´egur and C. Mayoux, “Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by Dielectric Barrier,” J. Phys. D: Appl. Phys. 83, pp.2950–2957, 1998
[11] J. R. Roth and D. M. Sherman, “Boundary Layer Flow Control With a One Atmosphere Uniform Glow Discharge Surface Plasma,” AIAA 36th Aerospace Sciences Meeting and Exhibit, 1998
[12] J. R. Roth, “Subsonic Plasma Aerodynamics for Flight Control of Aircraft,”
[13] C. L. Enloe, T. E. McLaughlin, R. D. VanDyken, and K. D. Kachner, “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology,” AIAA J. Vol.42, No.3, pp.589-594, 2004
[14] M. L. Post and T. C. Corke, “Separation Control on High Angle of Attack Airfoil Using Plasma Actuators,” AIAA J. Vol.42, No.11, pp.2177-2184, 2004
[15] T. C. Corke, M. L. Post, and D. M. Orlov, “Single-Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Concepts, Optimization, and Applications,” Journal of Propulsion and Power, pp.935-945, 2008
[16] R. Sosa, G. Artana, “Steady Control of Laminar Separation over Airfoils with Plasma Sheet Actuators,” Journal of Electrostatics 64, pp.604-610, 2006
[17] F. Soetomo, “The Influence of High Voltage Discharge on Flat Plate Drag at Low Reynolds Number Air Flow,” MS Thesis Iowa State University, 1992
[18] H. R. Velkoff and J. Ketcham, “Effect of an Electrostatic Field on Boundary Layer Transition,” AIAA J. 16, pp.1381–1383, 1968
[19] G. M. Colver and S. E. Khabiry, “Modeling of DC Corona Discharge Along an Electrically Conductive Flat Plate with Gas Flow,” IEEE Trans. Ind. Appl., Vol. 35(2), pp.387-394, 1999
[20] L. Leger, E. Moreau, G. Artana and G. Touchard, “Influence of a DC Corona Discharge on The Airflow Along an Inclined Flat Plate,” Journal of Electrostatics 51-52, pp.300-306, 2001
[21] E. Moreau, L. Leger, and G. Touchard, “Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity up to 25m/s,” Journal of Electrostatics 64, pp.215-225, 2006
[22] L. Leger, E. Moreau, and G. Touchard, “Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate,” IEEE Trans. Ind. Appl., Vol. 38 pp.1478-1485, 2002
[23] C. Louste, E. Moreau, and G. Touchard, “DC Corona Surface Discharge Along an Insulating Flat Plate in Air: Experimental Results,” Annual Report Conference on Electrical insulation and dielectric phenomena, pp.822-826, 2002
[24] E. Moreau, C. Louste, and G. Touchard, “Electric Wind Induced by Sliding Discharge in Air at Atmospheric Pressure,” Journal of Electrostatics 66, pp.107-114, 2008
[25] G. Artana, R. Sosa, E. Moreau and G. Touchard, “Control of the Near-wake Flow Around a Circular Cylinder with Electrohydrodynamic Actuators,” Experiments in Fluids 35, pp.580-588, 2003
[26] A. Asghar and E. Jumper, “Phase Synchronization of Vortex Shedding from Two Side-by-Side Circular Cylinders Using Plasma Actuators,” AIAA Meeting paper 2004-925, 2004
[27] F. O. Thomas, A. Kozlov and T. C. Corke, “Plasma Actuators for Bluff Body Flow Control,” AIAA Meeting paper 2006-2845, 2006
[28] F. O. Thomas, A. Kozlov, and T. C. Corke, “Plasma Actuators for Cylinder Flow Control and Noise Reduction,” AIAA J. Vol.46 No.8, pp.1921-1931, 2008
[29] A. Santhanakrishnan and J. D. Jacob, “On Plasma Synthetic Jet Actuators,” 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006
[30] J. Huang, T. C. Corke, and F. O. Thomas, “Unsteady Plasma Actuators for Separation Control of Low-Pressure Turbine Blades,” AIAA J. Vol.44 No.7, pp.1477-1487, 2006
[31] A. Labergue, E. Moreau, N. Zouzou and G. Touchard, “Separation Control Using Plasma Actuators: Application to a Free Turbulent Jet,” J. Phys. D: Appl. Phys. 40 pp.674–684, 2007
[32] D. Bivolaru, S. P. Kuo, “Aerodynamic Modification of Supersonic Flow Around Truncated Cone Using Pulsed Electrical Discharges,” AIAA J. Vol.43 No.7, pp.1482-1489, 2005
[33] P. Q. Elias, B. Chanetz, S. Larigaldie, and D. Packan, “Study of the Effect of Glow Discharges Near a M=3 Bow Shock,” AIAA J. Vol.45 No.9, pp.2237-2245, 2007
[34] P. Q. Elias, B. Chanetz, S. Larigaldie, D. Packan and C. O. Laux, “Mach 3 Shock Wave Unsteadiness Alleviation Using a Negative Corona Discharge,” AIAA J. Vol.46 No.8, pp.2042-2049, 2008
[35] R. C. Nelson, T. C. Corke, C. He, H. Othman, T. Matsuno, M. P. Patel, and T. T. Ng, “Modification of the Flow Structure over a UAV Wing for Roll Control,” AIAA paper 45th Aerospace Sciences Meeting, 2007
[36] G. L. Leonard, M. Mitchner, and S. A. Self, “An Experimental Study of The Electrohydrodynamic Flow in Electrostatic Precipitator,” J. Fluid Mech., pp.123-140, 1983
[37] R. Sosa, E. Moreau, G. Touchard, and G. Artana, “Stall Control at High Angle of Attack with Periodically Excited EHD Actuators,” AIAA paper 2004-2738, 2004
[38] P. Magnier, D. Hong, A. L. Chesneau, J. M. Bauchire, and J. Hureau, “Control of Separated Flows with the Ionic Wind Generated by a DC Corona Discharge,” Experiments in Fluids 42, pp.815-825, 2007
[39] A. M. Mitchell, J. Delery, “Research into Vortex Breakdown Control,” Progress in Aerospace Sciences Vol.37 No.4, pp.385-418, 2001
[40] I. Gursul, “Review of Unsteady Vortex Flows over Slender Delta Wings,” Journal of Aircraft, Vol.42 No.2, pp.299-319, 2005
[41] A. M. Mitchell, P. Molton, D. Barberis, and J. Delery, “Vortical Substructures in the Shear Layers Forming Leading Edge Vortices,” AIAA paper 2001-31012, 2001
[42] Y. Guy, J. A. Morrow, and T. E. Mclaughlin, “Velocity Measurements on a Delta Wing with Periodic Blowing and Suction,” AIAA paper 2000-0550,2000
[43] S. G. Siegel, and J. A. Morrow, “PIV Measurements on a Delta Wing with Periodic Blowing and Suction,” AIAA paper 2001-2436,2001
[44] J. X. Zhan, and J. J. Wang, “Experimental Study on Gurney Flap and Apex Flap on a DeltaWing,” Journal of Aircraft, pp.1379-1383, 2004
[45] I. Gursul, R. Gordnier, and M. Visbal “Unsteady aerodynamics of nonslender delta wings,” Progress in Aerospace Sciences, pp.515-557, 2005
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top