跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 09:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪俊豪
研究生(外文):Chun-Hao Hung
論文名稱:以混合循環模型分析冠狀動脈相位流場及波動特性
論文名稱(外文):Analysis of Phasic Coronary Arterial Flow and Wave Characteristics Using Hybrid Circulation Model
指導教授:陸鵬舉陸鵬舉引用關係
指導教授(外文):Pong-Jeu Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:反脈動循環輔助冠狀循環風箱模型
外文關鍵詞:Counter-pulsation Circulation SupportWindkessel ModelCoronary Circulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
反脈動(Counter-Pulsation)循環輔助在臨床上已經被證實對治療各種急性或慢性心衰竭患者是可行的方法。為何反脈動(收縮卸載及舒張強化)可以使受損的心肌復原,到目前為止醫學上仍然不能完全解釋清楚。現已發現在心肌表層和內層之冠狀動脈流場在心室收縮與舒張期中會有不同相位的灌流特徵。而對此現象,心肌的作動(即肌肉組織的擠壓及鬆放)扮演了很重要的角色。本研究提出一假說,即認為波的傳遞可提供長距離的能量輸送,因而可增進心肌內層微血管的灌流。本研究目標在於發展包含一維血管流及風箱模型(Windkessel Model)的混合循環模型。並將冠狀動脈網絡分為血管直徑1-2mm以上的大主幹及其餘小動脈、微血管及小靜脈等微循環(Microcirculation)兩部份。其中大主幹以一維血管流模式來代表,其餘微循環則用風箱模型則代表;包覆在血管外的心肌組織壓力分布則以線性分布代表;在模擬相位流場效應時,考慮了心肌內層的阻抗、順容與穿壁壓力(Transmural Pressure)及血管閉鎖(Vessel Collapse)之間的效應。模型建立後以豬隻動物實驗依據作為驗證,並探討相位流在不同反脈動循環輔助裝置,如主動脈內氣球泵浦(Intra-aortic Balloon Pump, IABP)及主動脈側血泵浦(Para-aortic Blood Pump, PABP)輔助下之交相作用特徵。模擬結果顯示兩者的充氣時間點落在主動脈閥關時能使冠狀微血管灌流體積最大,PABP與IABP分別能增加深層微血管約8.3%及4.2%的灌流體積;IABP的收縮卸載會造成冠狀動脈逆流,然而PABP則可由控制洩氣時間點來降低逆流的現象,且PABP最佳的洩氣時間區間為心室收縮至主動脈閥開啟前;此卸載的控制不僅減少逆流產生,也大幅降低左心室的收縮功。本研究發現大體積的血泵能產生較大的波強度及心肌深層灌流,但亦會造成的稍多的逆流與較低的舒張末期壓力(End Diastolic Aortic Pressure)。本研究結果顯示:1)大體積的血泵有較佳的輔助功效;2)在舒張強化時,PABP能比IABP產生較大的強化壓縮波及灌流體積;3)PABP為非阻塞式設計,可更有效的提供較佳的左心室卸載及對增加週邊器官灌流,並能減少冠狀動脈逆流。
Counter-pulsation circulation support has been clinically proven to be a viable means for treating various acute heart dysfunctions. To date, why counter-pulsation therapeutics, namely, systolic unloading and diastolic augmentation, can help the diseased myocardium recover has not been completely understood. It was clinically found that epi- and endo-myocardial coronary perfusion characteristics show a relative phase difference during systole and diastole, for which intra-myocardial muscle action and the induced tissue pressurization and relaxation play a critical role. The present research hypothesizes that it is the wave propagation which enables a long-range energy transport that improves the perfusion in the microvessels of the myocardium. In order to study the wave effects on the coronary flow, the present research proposed a hybrid circulation model consisting of a continuous one-dimensional (1-D) flow model and a lumped Windkessel model. The coronary vascular bed was divided into two categories comprising arterial vessels with diameters greater than 1~2 mm and other arteriolar, capillary and venous networks. The larger arterial trunks were represented using 1-D flow model whereas the microcirculation simulated by Windkessel models. Linear tissue pressure distribution was adopted to represent the myocardial pressure occurring in the segmented ventricular wall. The dependence of resistance and capacitance on transmural pressure and vessel collapse was taken into account to characterize the coronary vasculature bed. The constructed numerical model was validated using data obtained from in-vivo porcine experiments supported by counter-pulsatile means including intra-aortic balloon pump (IABP) and para-aortic blood pump (PABP). Simulation results show that capillary perfusion volume has maximum value when pump inflation was initiated at the aortic valve closure instant. PABP and IABP can increase 8.3% and 4.2% perfusion volume in capillary, respectively. Coronary regurgitation was traditionally seen accompanied with IABP support during systolic unloading. However, this detrimental blood flow reversal can be avoided by the PABP deflation control. The present work found that PABP deflation period can be optimized into early heart systole acrossing the instant of aortic valve opening. This deflation control strategy not only decreases the coronary regurgitation but also maintains a high reduction of the left ventricular (LV) stroke work. It was observed that larger pumping volume yields stronger wave and better endo-myocardial perfusion at the expense of a slightly increased coronary reversed flow and a decreased end diastolic aortic pressure. In conclusion, the present simulation reveals that: 1) Larger counter-pulsatile pumping volume is more effective in perfusing the endomyocardium where infarction is prone to occur; 2) PABP generates stronger compression wave and perfusion volume than does IABP on coronary diastolic augmentation; and 3) Non-occlusive PABP can be optimized to provide superior LV unloading and end organ perfusion without incurring significant coronary regurgitation.
中文摘要I
AbstractIII
誌謝V
目錄VI
表目錄IX
圖目錄X
符號說明XIII
第一章 緒論1
1-1 冠狀循環1
1-2 反脈動輔助裝置1
1-3 研究動機與目的2
1-4 波強度分析法3
1-5 血動力指標5
第二章 混合循環模型發展 7
2-1 冠狀循環模型7
2-1-1 一維血管流模式7
2-1-2 風箱模式9
2-2 體循環及反脈動輔助器模型11
2-3 混合循環模型耦合12
第三章 混合循環模型數值方法14
3-1冠狀循環模型網格交界面處理14
3-2體循環模型修正16
第四章 程式驗證20
4-1 網格交界面數值方法驗證20
4-2 冠狀循環模型驗證20
第五章 計算結果與討論22
5-1 反脈動循環輔助22
5-2 PABP驅動時間對血動力的影響24
5-3 PABP體積對血動力的影響26
5-4 PABP脹縮速度對血動力的影響27
5-5 探討IABP與PABP輔助之差異29
第六章 結論31
6-1 結論31
6-2 未來工作32
參 考 文 獻33
附錄一 波強度分析法35
附錄二 數值通量計算及時間積分38
附錄三 冠狀循環風箱模式參數41
附錄四 微分進化演算法44
自述99
[1]Chadwick, R. S. et. al., “Physic Regional Myocardial Inflow and Outflow: Comparison of Theory and Experiments,” Am. J. Physiol. Heart Circ. Physiol., Vol. 258, 1990, pp. H1687-H1698.
[2]Papaioannou, T. G., and Stefanadis, C., “Basic Principles of the Intraaortic Balloon Pump and Mechanisms Affecting Its Performance,”ASAIO Journal, Vol. 51, 2005, pp. 296-330.
[3]Bavin, T. K., and Self, M. A., “Weaning from Intra-Aortic Balloon Pump Support,” Am. J. Nursing, Vol. 91, October 1991, pp. 54-59.
[4]Parker, K. H., and Jones, C. J. H., “Forward and Backward Running Waves in the Arteries: Analysis Using the Method of Characteristics,”J. Biomech. Eng., Vol. 112, 1990, pp. 322-326.
[5]Sun, Y. H., Anderson, T. J., Parker, K. H., and Tyberg, J. V., “Wave-Intensity Analysis: a New Approach to Coronary Hemodynamics,” J. Appl. Physiol., Vol. 89, 2000, pp. 1636-1644.
[6]Khir, A. W., and Parker, K. H., “Wave Intensity in the Ascending Aorta: Effects of Arterial Occlusion,” J. Biomech., Vol. 38, 2005, pp. 647-655.
[7]Wang, J. J., and Parker K. H., “Wave Propagation in a Model of the Arterial Circulation,” J. Biomechanics, Vol. 37, 2004, pp. 457-470.
[8]Aguado-Sierra, J., Hadjilizou, N., Davies, J. E., Francis, D., Mayet, J. and Parker, K. H., ”Pressure Reservoir-wave Separation Applied to the Coronary Arterial Data,“ Proceedings of the 29th Annual International Conference of the IEEE EMBS.
[9]Davies J. E. et al., “Evidence of a Dominant Backward-Propagating "Suction" Wave Responsible for Diastolic Coronary Filling in Humans, Attenuated in Left Ventricular Hypertrophy,” Circulation, Vol. 113, 2006, pp. 1768-1778.
[10]Kassab, G. S., Rider, C. A., Tang, N. J., and Fung, Y. C., “Morphometry of Pig Coronary Arterial Trees,” Am. J. Physiol. Heart Circ. Physiol., Vol. 265, 1993, pp. H350-H356.
[11]Olufsen, M., “Modeling the Arterial System with Reference to an Anesthesia Simulator,” Ph.D. thesis, Roskilde: IMFUFA, Roskilde University, Denmark, Text No. 345, 1998.
[12]Stergiopulos, N., Young, D. F., and Rogge, T. R., “Computer Simulation of Arterial Flow with Applications to Arterial and Aortic Stenoses,” J. Biomechanics, Vol. 25, 1992, pp. 1477-1488.
[13]Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys., Vol. 43, 1981, pp. 357-372.
[14]Segers, P., Stergiopulos, N., Westerhof, N., Wouters, P., Kolh, P., and Verdonck, P., “Systemic and Pulmonary Hemodynamic Assessed with a Lumped-parameter Heart-arterial Interaction Model,” J. Eng. Math., Vol. 47, 2003, pp. 185-199.
[15]Burattini, R. and Salvia, P. O. D., “Development of Systemic Arterial Mechanical Properties from Infancy to Adulthood Interpreted by Four-element Windkessel Models,” J. Appl. Physiol., Vol. 103, 2007, pp. 66-79.
[16]Sharp, M. K., and Dharmalingam, R. K., “Development of a Hydraulic Model of the Human Systemic Circulation,”ASAIO Journal, Vol. 45, 1999, pp. 535-540.
[17]Sagawa, K., Suga, H., and Sunagawa, K., Cardiac Contraction and the Pressure-Volume Relationship, New York: Oxford University Press, 1988.
[18]Segers, P. et al., “Three- and Four-element Windkessel Models: Assessment of Their Fitting Performance in a Large Cohort of Healthy Middle-aged Individuals,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 222, 2008, pp. 417-428.
[19]Huo, Y. and Kassab G. S., “A Hybrid One-dimensional/Womersley Model of Pulsatile Blood Flow in the Entire Coronary Arterial tree,” Am. J. Physiol. Heart Circ. Physiol. Vol. 292, 2007, pp. H2623-H2633.
[20]He, Y., Liu, H., and Himeno, R., “A One-Dimensional Thermo-Fluid Model of Blood Circulation in the Human Upper Limb,” Int. J. Heat and Mass Transfer, Vol. 47, 2004, pp. 2735-2745.
[21]Y. C. Fung, Biodynamic-Circulation, New York: Spring-Verlag, 1984.
[22]Caro, C. G. et al., The Mechanics of the Circulation, Oxford, UK: Oxford Univ. Press, 1978
[23]Flaherty, J. E. et al., “Post-buckling Behavior of Elastic Tubes and Rings with Opposite Sides in Contact,” Soc. Ind. Appl. Math., Vol. 23, 1972, pp. 446-455.
[24]Wiederhielm, C. A., “Dispensability Characteristics of Small Blood Vessels,” Federation Proc., Vol. 24, 1965, pp.1075-1084.
[25]Gaehtgens, P., and Uekermann, U., “The Dispensability of Mesenteric Venous Microvessels,” Pfluegers Arch., Vol. 330, 1971, pp. 206-216.
[26]Wusten, B. et al., “Dilatory Capacity of Coronary Circulation and its Correlation to the Arterial Vasculature in the Canine Left Ventricle,” Basic Res. Cardiol., Vol. 72, 1997, pp. 636-650
[27]Uday K. Chakraborty, Advances in Differential Evolution, Berlin Heidelberg: Springer-Verlag, 2008
[28]林博文, “ Wave Intensity of Counter-Pulsation Circulation Support.,” 國立成功大學航空太空工程學系碩士論文, 2007
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top