跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李炳宏
研究生(外文):Ping-hung Lee
論文名稱:反脈動主動脈側血泵輔助下之波傳現象實驗探討
論文名稱(外文):Experimental Investigation of Wave Phenomena in Counter-pulsatile Para-aortic Blood Pump Support
指導教授:陸鵬舉陸鵬舉引用關係
指導教授(外文):Pong-jeu Lu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:波強度分析法反脈動循環輔助仿生循環測試台主動脈側接血泵
外文關鍵詞:counter-pulsatile circulation supportwave intensity analysispara-aortic blood pumpmock circulation test rig
相關次數:
  • 被引用被引用:1
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究為探討反脈動主動脈側血泵(Para-aortic Blood Pump;簡稱PABP)輔助下之主動脈流場特徵,特建構一套循環測試平台(Mock Circulation Test Rig)以利實驗進行。本測試台依據混合循環模式(Hybrid Circulation Model)做系統及組件設計,包含了由矽膠所製作可突顯脈動流場之波傳現象與對流效應的主動脈系統,以及藉由區塊參數法所架構的體循環系統與肺循環系統。實驗中將血液循環分成健康狀態、心衰竭狀態以及反脈動輔助之情況作血動力特徵之模擬,依照血動力指標,以心肌耗氧指標(Tension Time Index)
,心肌養分供需比例(Endocardial Viability Ratio),平均主動脈收縮壓(Mean Systolic Pressure),平均主動脈舒張壓(Mean Diastolic Pressure),心搏量(Stroke Volume),左心室壓力-體積關係圖(Left Ventricle Pressure Volume Loop),心輸出量(Cardiac Output),心室收縮功(Stroke Work),以及單位心輸出量所耗之心室收縮功(Stroke Work/Cardiac Output)為反脈動輔助之指標參數進行量化分析。實驗發現將血泵充氣時間點設置在主動脈瓣關閥的時間點上時,會產生最佳的舒張強化(Diastolic Augmentation)效果。而血泵的洩氣時間點則可視選擇最小的心肌脈動耗氧量或最大的心輸出增加量為輔助目標,將其設置在左心室開始收縮射血前或後的區間內。當在心室收縮射血前做反脈動卸載輔助,其效果會增加血動力指標中的平均主動脈舒張壓達30%,心肌養分供需比例達60%與心輸出量達20%,並減少心肌耗氧指標與平均主動脈收縮壓,分別達16%與20%之多;另一方面,若於心室收縮射血後做反脈動卸載輔助,相對其他血動力指標增益稍有下降,然而心輸出量則有最佳近30%的增益。當以單位心輸出量所耗之心室收縮功來做評估時,最佳的反脈動卸載時間落在左心室開始收縮瞬間或是射血之前兩個時間點上。前者的反脈動血泵作動會提供最好的心輸出增益量,以及對體循環下游周邊器官造成最小血液回抽的副作用。波強度分析法亦被應用來分析不同血泵卸載時間的脈動波與流場特性,其結果顯示血泵在洩氣時會誘導出雙波峰形狀的正向與反向兩種波形。實驗發現隨著卸載時間越靠近左心室射血週期(無論前或後),主動脈舒張末期壓力差、收縮卸載導致的反向膨脹波或者是左心室射血所誘導出的正向壓縮波的強度均會減小。本研究發現最佳收縮卸載時機為左心室射血瞬間,於此時間卸載不僅可降低單位心輸出量所耗之心室收縮功,也可減少冠狀動脈逆流現象。藉由血動力參數與波強度分析亦發現在心跳頻率為每分鐘100次時,會有最好的反脈動輔助功效。
In order to study the aortic flow characteristics when supported by a counter-pulsatile para-aortic blood pump (PABP), a specialized mock circulation test rig was constructed. This mock loop was designed using a hybrid circulation model concept, in which the aortic segment, where wave transport and flow convection are prominent, was represented by a silicone rubber while the rest systemic and pulmonary segments simulated by lumped resistors and compliance chambers. Hemodynamics associated with healthy, heart failure and PABP-supported conditions were simulated. The hemodynamic indices used to quantify the counter-pulsatile effectiveness consist of tension time index (TTI), endocardial viability ratio (EVR), mean systolic pressure (MSP), mean diastolic pressure (MDP), stroke volume (SV), left ventricular pressure-volume loop (LV P-V Loop), cardiac output (CO), stroke work (SW), and stroke work per unit cardiac output (SW/CO). It was found that pump inflation, when initiated right at the aortic valve closure instant, can result in the best diastolic augmentation. Pump deflation, however, can be operated within an adjacent time zone either prior to or after LV contraction, depending on whether minimized myocardial oxygen consumption or maximal cardiac output enhancement is desired. Deflation prior to LV ejection can result in increases in MDP (30%), EVR (60%), CO (20%), and decreases in TTI (16%) and MSP (15%). On the other hand, imminent deflation after LV contraction can elevate CO to around 30% with other counter-pulsatile indices slightly penalized. As judged by SW/CO, which indicates the external work delivered to blood stream per unit cardiac output, the optimal deflation occurs at two timings, one right on and another prior to the instant of LV ejection. The former is deemed better because CO enhancement at this instant is larger and the blood volume sucked from the downstream end organs is smaller. Wave intensity (WI) analysis was performed to analyze the pulse wave and the flow characteristics associated with different PABP deflation control timings. It was shown that PABP deflation induces two WI peaks on both forward- and backward-going wave spectra. The unloading strength or the LV ejection-induced WI is proportional to the lowering of the end-diastolic pressure. The backward unloading expansion wave, however, was annihilated as the deflation timing moved further into the LV ejection period. Deflation upon LV ejection was found the optimal unloading strategy which provided SW/CO reduction while avoided coronary regurgitation. Heart rate effect on pump effectiveness was also studied. Counter-pulsatile support enforced around 100 beats per minute gave the best performance as measured by the proposed hemodynamic indices and WI strengths.
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號說明 XIII
第一章 緒論 1
1-1 反脈動循環輔助簡介 1
1-2 循環測試平台簡介 3
1-3 研究動機與目的 5
第二章 循環測試平台設計與量測參數 8
2-1 血動力簡介 8
2-2 阻抗 10
2-3 順容 12
2-4 慣性項 13
2-5 人工動脈血管 14
2-6 波強度分析法 17
2-7 反脈動循環輔助血動力指標 19
2-7-1 心肌脈動耗氧指標 19
2-7-2 心肌養分供需比例 20
2-7-3 平均主動脈收縮壓 20
2-7-4 平均主動脈舒張壓 21
2-7-5 舒張末期主動脈壓 21
2-7-6 心室收縮功 22
第三章 實驗設備與實驗步驟 23
3-1 實驗設備 23
3-1-1 循環測試平台-左右心室 23
3-1-2 循環測試平台-修正型水母瓣 24
3-1-3 循環測試平台-驅動系統 25
3-1-4 定常流場測試平台 26
3-1-5 壓力轉換計 26
3-1-6 超音波流量計 27
3-1-7 資料擷取系統 27
3-2 阻抗器校驗 28
3-3 順容器校驗 28
3-4 循環測試平台 29
3-4-1 測試平台架設 29
3-4-2 實驗量測步驟與方法 30
第四章 結果與討論 32
4-1 健康狀態及心衰竭狀態之模擬討論 32
4-2 PABP循環輔助模擬 35
4-2-1 PABP洩氣時間點對血動力的影響 36
4-2-2 波強度分析 40
4-4-3 心跳頻率對血動力的影響 44
第五章 結論 47
5-1 結論 47
5-2 未來工作 48
參考文獻 50
表 54
圖 63
自述 108
[1]Stevenson, L. W., and Kormos, R. L., “Mechanical Cardiac Support 2000: Current Applications and Future Trial Design,” Journal of the American Collage of Cardiology, Vol. 37, No. 1, 2001, pp. 340-70.
[2]Ji, B., and Undar, A., “An Evaluation of the Benefits of Pulsatile versus Non-pulsatile Perfusion during Cardiopulmonary Bypass Procedures in Pediatric and Adult Cardiac Patients,” ASAIO Journal, Vol. 52, 2006, pp. 357-361.
[3]Undar, A., “Myths and Truths of Pulsatile and Non-pulsatile Perfusion during Acute and Chronic Cardiac Support,” The International Journal of Artificial Organ Vol. 28, No. 5, 2004, pp. 439-443.
[4]Bolooki, H., “Clinical Application of the Intra-Aortic Balloon Pump,” 3rd Ed., 1998, Futura Pulishing Company, Inc. Armonk, New York.
[5]Papaioannou, T. G., and Stefanadis, C., “Basic Principles of the Intra-aortic Balloon Pump and Mechanisms Affecting Its Performance,” ASAIO Journal, Vol. 51, 2005, pp. 296-330.
[6]Nanas, S. N. et al., “High Stroke Volume Para-Aortic Counter-pulsation Device Versus Centrifugal Pump in Cardiogenic Shock: Experimental Study,” Journal of Surgery, Vol. 21, 1997, pp. 318-322.
[7]Stamatelopoulos, S. F. et al., “Treating Severe Cardiogenic Shock by Large Counter-pulsation Volumes,” The Annals of Thoracic Surgery, Vol. 62, 1996, pp. 1110-7.
[8]Terrovitis, J. V. et al., “Superior Performance of a Para-aortic Counter-pulsation Device Compared to the Intra-aortic Balloon Pump,” World Journal Surgery, Vol. 27, No. 12, 2003, pp. 1311-1316.
[9]Liu, Y., Allaire, P. E., Wood, H. G., and Olsen, D. B., “Design and Initial Testing of a Mock Human Circulatory Loop for Left Ventricular Assist Device Performance Testing,” The International Journal of Artificial Organs, Vol. 29, 2005, pp. 341-345.
[10]Knierbein, B., Reul, H., Eilers, R., Lange, M., KauFmann, R., and Rau, G., “Compact Mock Loops of the Systemic and Pulmonary Circulation for Blood Pump Testing,” The International of Journal Artificial Organs, Vol. 15, 1992, pp. 40-48.
[11]Bowles, C. T., Shah, S. S., Nishimura, K., and Clark, C., “Development of Mock Circulation Models for the Assessment of Counter-pulsation Systems,” Cardiovascular Research, Vol. 25, 1991, pp. 901-908.
[12]Pantalos, G. M., Koenig, S. C., Gillars, K. J., Guruprasad, A. G., and Ewert, D. L., “Characterization of an Adult Mock Circulation for Testing Cardiac Support Devices,” ASAIO Journal, Vol. 50, 2004, pp. 37-46.
[13]Werner, J., B�仡ringer, D., and Hexamer, M. “Simulation and Prediction of Cardiotherapeutical Phenomena from a Pulsatile Model Coupled to the Guyton Circulatory Model,” IEEE Transaction on Biomedical Engineering, Vol. 49, No. 5, 2002, pp. 430-439.
[14]Timms, D., Hayne, M., McNeil, K., and Galbraith, A., “A Complete Mock Circulation Loop for the Evaluation of Left, Right, and Biventricular Assist Devices,” The International Journal of Artificial Organs, Vol. 29, 2005, pp. 564-572.
[15]Giridharan, G. A. et al., “Left Ventricular and Myocardial Perfusion Responses to Volume Unloading and Afterload Reduction in a Computer Simulation,�竑SAIO Journal, Vol. 50, 2004, pp. 512-518.
[16]Stergiopulos, N., Westerhof, B. E., and Westerhof, N., “Total Arterial
Inertance as the Fourth Element of the Windkessel Model,” American Journal of Physiology, Vol. 276, 1999, pp. H81-H88.
[17]Sharp, M. K., and Dharmalingam, R. K., “Development of a Hydraulic Model of the Human Systemic Circulation,” ASAIO Journal, Vol. 45, 1999, pp. 535-540.
[18]Rosenberg, G., Phillips, W. M., Landis, D. L., and Pierce, W. S., “Design and Evaluation of the Pennsylvania State University Mock Circulatory System,” ASAIO Journal, Vol. 4, 1981, pp. 41-49.
[19]Ferrari, G., De Lazzari, C., and Kozarski, M., “A Hybrid Mock Circulatory System: Testing a Prototype under Physiologic and Pathological Conditions,” ASAIO Journal, Vol. 48, 2002, pp. 487-494.
[20]Milnor, W. R., Hemodynamics, Williams & Wilkins, 1989.
[21]Stergiopulos, N., Young, D. F., and Rogge, T. R., “Computer Simulation of Arterial Flow with Applications to Arterial and Aortic Stenoses,” Journal of Biomechanics, Vol. 25, 1992, pp. 1477-1488.
[22]Westerhof, N., Bosman, F., DeVries, C. J., and Noordergraaf, A., “Analog Studies of the Human Systemic Arterial Tree,” Journal of Biomechanics, Vol. 2, 1969, pp. 121-143.
[23]De Lazzari, C., Darowski, M., Ferrari, G., Clemente F., and Guaragno, M., “Computer Simulation of Hemodynamic Parameters Changes with Left Ventricle Assist Device and Mechanical Ventilation,” Computers in Biology and Medicine, Vol. 30, 2000, pp. 55-69.
[24]Stergiopulos, N., Meister, J. J., and Westerhof, N., “Evaluation of Method for Estimation of Total Arterial Compliance,” American Journal of Physiology, Vol. 268, 1995, pp. H1540-H1548.
[25]Liu, Z., Brin, K. P., and Yin, F. C., “Estimatiom of Total Arterial Compliance: Improved Method and Evaluation of Current Methods,” American Journal of Physiology, Vol. 251, 1986, pp. H588-H600.
[26]Woodruff, S. Sharp, M. K., and Pantalos, G. M., “Compact Compliance Chamber Design for the Study of Cardiac Performance in Microgravity,” ASAIO Journal, Vol. 43, 1997, pp. 316-320.
[27]Ferrari, G., Nicoletti, A., and De Lazzari, C., “A Physical Model of the Human Systemic Arterial Tree,” The International of Journal Artificial Organs Vol. 23, 2000, pp. 647-657.
[28]Olufsen, M. S., “Modeling the Arterial System with Reference to an Anesthesia Simulator,” Ph.D. thesis, Roskilde: IMFUFA, Roskilde University, Denmark, Text No. 345, 1998.
[29]Segers, P., Dubois, F., Wachter, D. De, and Verdonck, P., “Role and Relevancy of a Cardiovascular Simulator,” Journal of Cardiovascular Engineering Vol. 3, 1998, pp. 48-56.
[30]Khir, A. W., and Parker, K. H., “Wave Intensity in the Ascending Aorta: Effects of Arterial Occlusion,” Journal of Biomechanics, Vol. 38, 2005, pp. 647-655
[31]Feng, J., and Khir, A. W., “The Compression and Expansion Waves of the Forward and Backward Flows: an In-vitro Arterial Model,” Journal of Engineer in Medicine, Vol. 222, 2008, pp. 531-542.
[32]Parker, K. H., and Jones, C. J. H., “Forward and Backward Running Waves in the Arteries: Analysis Using the Method of Characteristics,” Journal of Biomechanical Engineering, Vol. 112, 1990, pp. 322-326.
[33]Sun, Y. H., Anderson, T. J., Parker, K. H., and Tyberg, J. V., “Wave Intensity Analysis: a New Approach to Coronary Hemodynamics,�紃ournal of Applied Physiology, Vol. 89, 2000, pp.
[34]Barnea, O., Moore, T. W., Dubin, S. E., and Jaron, D., “Cardiac Energy Considerations during Intra-aortic Balloon Pumping,” IEEE Transactions on Biomedical Engineering, Vol. 37, No. 2, 1990, pp. 170-181.
[35]Zelano, J. A., Li, J. K.-J., and Welkowitz, W., “A Closed-Loop Control Scheme for Intra-aortic Balloon Pumping,” IEEE Transactions on Biomedical Engineering, Vol. 37, No. 2, 1990, pp. 182-192.
[36]Kiichi, S., Lowell, M., Hiroyuki, S., and Kenji, S., Cardiac Contraction and the Pressure-Volume Relationship, Oxford University Press, 1988.
[37]林博文, “反脈動式循環輔助之波動強度分析,”成功大學航空太空工程研究所論文, 2007.
[38]林純玄, “反脈動左心室輔助器之離體測試,”成功大學航空太空工程研究所論文, 2006.
[39]陳瑞龍, “聚氨酯人工心瓣之製作與性能評估,”成功大學航空太空工程研究所論文, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top