跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾子杰
研究生(外文):Tzu-chieh Tseng
論文名稱:研究與製備網絡狀單壁奈米碳管在有機異質接面太陽能電池的應用
論文名稱(外文):Fabrication and study of single-walled Carbon Nanotubes Nanonet Based Organic Heterojunction Thin Film Solar Cell
指導教授:高騏高騏引用關係
指導教授(外文):Chie Gau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:112
中文關鍵詞:奈米碳管太陽能電池
外文關鍵詞:carbon nanotubesolar cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管(carbon nanotube)一種碳的同素異形體,其獨特的機械與電學特性,一直是眾多研究所追逐的焦點,在各式奈米元件中具備顯著的潛力。有機太陽能電池具備可撓性、低成本、低製程技術等優點,在太陽能電池中有其獨特的地位。本研究利用酒精催化化學氣相沈積系統成長單壁奈米碳管結合有機高分子薄膜,製作含有奈米結構異質接面之太陽能電池。基於研究顯示本實驗所成長之奈米碳管為單壁奈米碳管,其半導體特性為bi-polar,在有機太陽能電池中為主動層。將本元件進行一系列電性與光學的研究顯示,轉換效率為0.012%,短路電流密度(Jsc)為0.132mA/cm2,開路電壓(Voc)為0.23V,填充因子(FF)為0.39,奈米碳管的緻密性與否影響著電池的效率。另外,研究在酒精催化化學氣相沈積系統成長單壁奈米碳管製程中,通入氨氣(NH3)進行奈米碳管改質,觀察其表面形貌與光學的變化,進而製作成太陽能電池探討其電性的改變。
Carbon nanotube, a kind of different Carbon allotrope, with unique mechanical and electrical science identities, is the core that many researches focus on. Between different nano devices, carbon nanotube has outstanding potency. Organic solar energy cells possess many advantages: flexibility, low-cost, and easy processing technologies and so on, has distinctive position in solar energy cells.
This research using Alcohol Catalytic Chemical Vapor Deposition to develop growth of single-wall carbon nanotube and combine with organic polymer thin film, to produce Heterojunction Solar Cell that contains nano structure. Based on the reveal, which showed that the carbon nanotube in this study is single wall carbon nanotube, whose Semiconductor is bi-polar, and is active layer in organic solar cell. Making e the elements to proceed series Electrical property and optics, the study showed that conversion efficiency is 0.012%, short-circuit current density (Jsc) is 0.132mA/cm2, open-circuit voltage(Voc) is 0,23V, and Fill Factor(FF) is 0.39. The compactness of carbon nanotube will affect the Efficiency of cell. Besides, it’s the study for the process of Alcohol Catalytic Chemical Vapor Deposition growing single wall carbon nanotube, put NH3 in to carry out Surface modification of carbon nanotube, observing the varietion of Morphology and optics, to produce solar energy cell; and further, probe into the alterations of electrical propert
目錄
授權書
簽署人須知
簽名頁
致謝
中文摘要
英文摘要
目錄..............................................I
表目錄............................................Ⅴ
圖目錄............................................Ⅵ
第一章 序論.......................................1
1.1研究背景...................................1
1.2研究動機與目的 4
1.3 奈米碳管緒論 5
1.3.1奈米碳管的發展 5
1.3.2奈米碳管的結構與性質 6
1.3.3奈米碳管成長機制 8
1.3.4奈米碳管的製備種類 10
1.4 有機高分子太陽能電池元件的發展 13
1.5 奈米碳管應用於太陽能電池文獻回顧 15
第二章 太陽能電池理論與基礎 22
2.1 無機太陽能電池之工作原理 23
2.1.1 P-N接面 23
2.2 無機太陽能電池之工作特性 25
2.2.1 太陽能電池基本電路模型 26
2.2.2 太陽能光電轉換效率 29
2.3 有機太陽能電池之工作原理 30
2.3.1光能吸收激子的產生 30
2.3.2激子擴散 30
2.3.3電荷分離 31
2.3.4電荷收集 31
2.4 共軛高分子太陽能電池之特性分析 32
2.4.1開路電壓 32
2.4.2短路電流 32
2.4.3填充因子 33
2.4.4光電轉換效率 34
第三章 實驗方法及步驟 35
3.1 實驗材料 35
3.2 奈米碳管薄膜的成長 36
3.2.1 多壁奈米碳管的成長 37
3.2.2 單壁奈米碳管的成長 38
3.3 太陽能電池元件製作 39
3.4 奈米碳管與有機高分子薄膜特性分析設備 42
3.5 太陽能電池元件設備 46
第四章 實驗結果與討論 49
4.1 奈米碳管的成長 49
4.1.1 催化劑比例對合成奈米碳管的影響 50
4.1.2 加入不同比例氨氣後處理碳管的影響 51
4.2單壁奈米碳管之電性與成分結構分析 52
4.2.1穿透式電子顯微鏡(TEM)量測分析 52
4.2.2 四點探針量測分析 53
4.2.3 霍爾效應量測分析 54
4.3 奈米碳管之光學特性檢測 55
4.3.1 單壁奈米碳管光電效應之探討 55
4.3.2 奈米碳管拉曼光譜檢測 55
4.3.3 奈米碳管UV-VIS-NIR光譜量測 58
4.4 奈米碳管與有機高分子薄膜的異質接面探討 59
4.4.1 場發式掃描電子顯微鏡(SEM)表面與截面 59
4.4.2 奈米碳管/有機高分子薄膜之UV-VIS-NIR光譜. 59
4.5 太陽能電池元件製程討論 60
4.6 太陽能電池元件之量測結果 62
第五章 總結與建議 63
參考文獻 65
表目錄

Table 1-1國內能源供需預測 70
Table 3-1 AZ5214光阻的物理與化學特性 71
Table 3-2 AZ5214 光阻製程參數設定 71
Table 3-3二氯苯化學特性 71
Table 4-1加入不同比例的氨氣成長奈米碳管 72
Table 4-2單壁奈米碳管之EDS成分分析 72
Table 4-3單壁奈米碳管之霍爾效應量測(Hall effect) 73
圖目錄

Fig 1-1未來新興替代能源使用預測圖(European Union) 74
Fig 1-2台灣能源供應結構(經濟部能源局提供) 75
Fig 1-3台灣能源供應比例(經濟部能源局提供) 75
Fig 1-4歷年來油價走勢圖 (美元/每桶) 76
Fig 1-5奈米碳管在遇到轉彎處獲兩圓封蓋的部分時,則是由五環碳或七環碳的結構所組成 76
Fig 1-6各種形式的fullerene(a) 足球與C60,(b) C70,(c) 被填入一顆La 原子的C82,(d) SWCNT,(e) MWCNT 77
Fig 1-7奈米碳管的結構可以由二維石墨平面上的向量來表示 77
Fig 1-8 (a)椅型奈米碳管(armchair CNT) (b)鋸齒型奈米碳管(zigzag CNT) (c)螺旋型奈米碳管(chiral CNT) 78
Fig 1-9拉曼光譜拉伸振動模式提供旋度角度範圍 78
Fig 1-10奈米碳管的底部成長模式與頂部成長模式 79
Fig 1-11電弧放電法 79
Fig 1-12雷射氣化法 80
Fig 1-13微波電漿化學氣相沉積系統 80
Fig 1-14有機高分子結構如 (a) 1,3-butadiene (b) β-胡蘿蔔素(c) 維他命A 81
Fig 1-15雙壁碳管之太陽能電池示意圖 81
Fig 2-1 P-N接合內部電場 82
Fig 2-2無機太陽能電池理想等效電路 82
Fig 2-3 P-N接合光致電效應 82
Fig 2-4太陽電池的等效電路有串聯和分流電阻的情況 83
Fig 2-5 曲線(a)無串連電阻之理想電池(b)有較小的分流電阻(c)具無限大之分流電阻與較大之串聯電阻 83
Fig 2-6太陽電池在太陽輻射照射下的電流-電壓特性曲線圖 84
Fig 2-7有機太陽能電池之有效電路 84
Fig 3-1鄰-二氯苯 85
Fig 3-2 P3HT,regioregular poly(3-hehylthiophene) 85
Fig 3-3 PCBM,[6,6]-phenyl-C61-butyric acid methyl ester 85
Fig 3-4 Maruyama成長碳管之設備示意圖 [37] 86
Fig 3-5成長碳管之參數製成圖 86
Fig 3-6 ACCVD法成長奈米碳管之設備示意圖 87

Fig 3-7 Dip Coating之設備圖 87
Fig 3-8太陽能電池pattern設計 88
Fig 3-9太陽能電池製作流程之示意圖 91
Fig 3-10高解析熱電子型場發射掃描式電子顯微鏡 92
Fig 3-11微拉曼及微光激發光譜儀 92
Fig 3-12霍爾量測系統 93
Fig 3-13霍爾量測系統試片載台 93
Fig 3-14紫外光/可見光 光譜儀 94
Fig 3-15熱蒸鍍機 94
Fig 3-16氮氣真空手套箱 95
Fig 4-1 0.02wt% 的奈米醋酸鈷與醋酸鉬溶液之奈米碳管SEM圖
(a)表面形貌(b) cross-section 95
Fig 4-2 0.1wt% 的奈米醋酸鈷與醋酸鉬溶液之奈米碳管SEM圖
(a)表面形貌(b) cross-section 96
Fig 4-3 典型的CNx 結構示意圖。紫色原子代表氮原子,藍色原子代表碳原子 96
Fig 4-4 SEM表面形貌NH3 (a)10sccm (b) 20sccm 97
Fig 4-5 SEM表面形貌NH3 (a)30sccm (b) 50sccm 97
Fig 4-6穿透式電子顯微鏡(TEM) 97
Fig 4-7單壁奈米碳管之EDS成份分析 98
Fig 4-8單壁奈米碳管cross-section 98
Fig 4-9電阻係數與材料電性之關係 99
Fig 4-10單壁奈米碳管之溫度變化與電阻之關係 99
Fig 4-11 ambipolar場效應電晶體 100
Fig 4-12單壁奈米碳管光電流效應…………………………………100
Fig 4-13多壁奈米碳管之拉曼位移圖………………………………101
Fig 4-14單壁奈米碳管G-band 與D-band拉曼位移………………101
Fig 4-15單壁奈米碳管具有RBM拉曼位移……………………….102
Fig 4-16單壁奈米碳管之PL圖…………………………………….102
Fig 4-17 P3HT:PCB之得拉曼位移圖……………………………….103
Fig 4-18加入不同比例氨氣成長奈米碳管之拉曼位移圖之一 103
Fig 4-19加入不同比例氨氣成長奈米碳管之拉曼位移圖之二 104
Fig 4-20加入不同比例氨氣成長奈米碳管之拉曼位移圖之三 104
Fig 4-21單壁奈米碳管之紫外光-可見光-紅外光吸收光譜 105
Fig 4-22單壁奈米碳管之紫外光-可見光-紅外光穿透光譜 105
Fig 4-23不同氨氣比例參與反應之單壁奈米碳管紫外光-可見光近紅外吸收光譜 106
Fig 4-24不同氨氣比例參與反應之單壁奈米碳管紫外光-可見光-近紅外穿透光譜 106
Fig 4-25奈米碳管與有機高分子膜接面SEM(cross-section)圖之一 107
Fig 4-26奈米碳管與有機高分子膜接面SEM(cross-section)圖之二 107
Fig 4-27 P3HT:PCBM不同退火條件下之紫外光-可見光吸收光譜 ….108
Fig 4-28 P3HT:PCBM/CNT不同比例氨氣參與反應條件下之紫外光-可見光吸收光譜 108
Fig 4-29 P3HT:PCBM/CNT不同比例氨氣參與反應條件下之紫外光-可見光-近紅外穿透光譜 109
Fig 4-30製程圖片(a)黃光微影(b)RIE蝕刻(c)奈米碳管pattern完成(d)熱蒸鍍金屬電極(Au) 110
Fig 4-31太陽能電池元件 110
Fig 4-32太陽能電池不同片電阻值之電流密度變化 111
Fig 4-33太陽能電池效率圖 111
Fig 4-34加入不同比例氨氣成長奈米碳管之太陽能電池原件效率比較圖 112
Fig 4-35太陽能電池元件之能階圖 112
參考文獻
[1]H. W. Kroto, J. R. Heath, S. C. O'Brien, “C60: Buckminsterfullerene”, Nature, 318, pp.162-163.(1985)
[2]S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, pp.56–589.(1991)
[3]N. Hamada, Sl. Sawada, and A. Oshiyama, “New one–dimensional conductors: graphitic microtules”, Phys.Rev.Lett., 68, pp.1579–1581.(1992)
[4]J. W. Mintmire, B. I. Dunlap, andC. T. White, “Are fullerene tubules metallic”, Phys. Rev. Lett., 68 ,pp.631-634.(1992)
[5]L. M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, andD. G. Pettifor, “Stability of carbon nanotubes:How small can they be?”, Phys. Rev. Lett. 85, pp.3249-3252.(1992)
[6]M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33, pp.883-891.(1995)
[7]M. Jose-Yacaman, M. Miki-yoshida, L. Rendon, “Catalytic growth of carbon microtubules with fullerene structure”, Appl Phys Lett., 62, 2029.(1993)
[8]H. Jaeger, T. Behrsing, “Dual nature of vapour-grown carbon fibres”, Composite Sci Tech., 51, 231.(1994)
[9]M. Jose-Yacaman, H. Terrones, L. Rendon, Carbon, “Carbon structures grown from decomposition of a phenylacetylene and thiophene mixture on Ni nanoparticles”, 33, 669.(1995)
[10]N. M. Rodriguez, M. S. Kim, R.T. K. Baker. “ Carbon nanofibers. A unique catalyst support medium ”, J. Phys. Chem., 98, 13108.(1994)
[11]朱宏偉,慈立傑,梁吉等. “新型碳材料”, 15, pp.48.(2000)
[12]H. M. Cheng, F. Li, G. Su, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons”, Appl Phys Lett., 72, 3282.(1998)
[13]T. W. Ebbesen, and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature ,358 , pp.220-222.(1992)
[14]S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, pp.603-605.(1992)
[15]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G.Scuseria,D Tomnek, J. E. Fischeo,and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes”, Science, 273 , pp.483-487.(1996)
[16]S. Zhu, C. H. Su, J. C. Cochrane, S. Lehoczky, Y. Cui ,and A. Burger, “Growth oriention of carbon nanotubes by thermal chemical vapor  deposition”, Journal of Crystal Growth, 234 pp.584-588.(2002)
[17]X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen, “Synthesis of multi-walled carbon nanotubes by microwave plasma-enhanced chemical vapor deposition” Thin Solid Films, 390 ,pp.130-133.(2002)
[18]Y. C. Choi, Y. M. Shin, Y. H. Lee,and B. S. Lee, “Controlling the diameter,growth rate,and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition” , Appl Phys Lett , 76 , pp.2367-2369.(2000)
[19]T. Komukai, K. Aoki, H. Furuta, M. Furuta, K. Oura, T. Hirao, “Density control of carbon nanotubes through the thickness of Fe/ Al multilayer catalyst”, Jpn. J. Appl Phys ,45, pp. 6043–6045.(2006)
[20]M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J.Amaratunga, A. C. Ferrari, D. Roy, J. Robertson and W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition”, J. Appl. Phys. ,90, pp.5308.(2001)

[21]S. Honda, Y.-G. Baek, K.-Y. Lee, T. Ikuno, T. Kuzuoka, J.-T. Ryu, S.Ohkura, M. Katayama, K. Aoki, T. Hirao and K. Oura, “Synthesis of randomly oriented carbon nanotubes on SiO2 substrates by thermal chemical vapor deposition toward field electron emitters ”, Thin Solid Films , 464–465 , pp.290.(2004)
[22]T. Ikuno, S. Honda, H. Furuta, K. Aoki, T. Hirao, K. Oura and M. Katayama, “Correlation between field electron emission and structural properties in randomly and vertically oriented carbon nanotube films”, Jpn. J. Appl. Phys. ,44 , pp.1655.(2005)
[23]O. Smiljanic, T. Dellero, A. Serventi, G. Lebrun, B. L. Stansfield, J. P. Dodelet, M. Trudeau and S. Désilets, “Growth of carbon nanotubes on Ohmically heated carbon paper”,Chem. Phys. Lett.,342, pp.503-509.(2001)
[24]Y. H. Wang, J. Lin, C. H. A. Huan and G. S. Chen , “Synthesis of large area aligned carbon nanotube arrays from C2H2–H2 mixture by rf plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett.,79 pp.680.(2001)
[25]C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C.Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
[26]H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, J. Chem.Soc. Chem. Commun., 16, 578 (1977).
[27]E. Kymakis, N. Kornilios, E. Koudoumas,”Carbon nanotube doping of P3HT : PCBM photovoltaic devices”, J. Phys. D: Appl. Phys. 41 (2008) 165110
[28]S.P. Somani, P. R. Somani, E. Flahaut, G. Kalita, and M.Umeno , “Double-Walled Carbon Nanotubes-Incorporated Donor–Acceptor Type Organic Photovoltaic Devices Using Poly(3-octylthiophene) and C60”, J. J. of Appl. Phys , Vol. 47, No. 2, 2008, pp. 1219–122
[29]E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga “High open-circuit voltage photovoltaic devices from carbon-nanotube polymer composites”, J. Appl. Phys 93, 1764.(2003)
[30]A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, “Conducting and transparent single –wall carbon nanotube electrodes for polymer-fullerene solar cells”, Appl Phys Lett , 87, 203511.(2005)
[31]U.Ross, B.Sergey. Lee, X. Jiang, K. Inoue, M. Zhang, S.Fang, R. H. Baughman, A.A. Zakhidov, “Transprent carbon nanotube sheets as 3-D charge collectors in organic solar cells”, Solar Energy Materials & Solar Cells, 91 pp.416–419.(2007)
[32]A. J. Miller, R. A. Hatton, G. Y. Chen, and S. Ravi P. Silva, “Carbon nanotubes grown on In2O3:Sn glass as large area electrodes for organic photovoltaics”, Appl Phys Lett, 90, 023105.(2007)
[33]A. Cao, X. Zhang, C. Xu, B. Wei, D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption”, Solar Energy Materials & Solar Cells, 70, pp.481-486.(2002)
[34]J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang,G. Zhang, Z. Wang, J. Luo, A. Cao, and D. Wu, “Double-walled carbon nanotube solar cells”, Nano Lett., 0, No.0(2007)
[35]J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang,W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, and B. Wei,“Ultrathin single-layered membranes from double-walled carbon nanotubes”, Adv. Mater.18, pp.1695–1700.(2006)
[36]Derek A. Stewart, F. Leonard, “ Energy conversion efficiency in nanotube optoelectronics”, Nano Lett.,5, No.2, pp.219-222.(2005)
[37]H. Sato, K. Hata, and K. Hiasa, “Low temperature growth of carbon nanotubes by alcohol catalyticchemical vapor deposition for field emitter applications ”, J. Vac. Sci. Technol., 25, pp.579.(2007)
[38]T. M. Wu ,Y. W. Lin, “Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties”, Polymer, 47, pp.3576–3582.(2006)
[39]S. Maruyama,R. Kojima,Y. Miyauchi,S. Chiashi,M. Kohno,“Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol” Chemical Physics Letters, 360, pp.229–234.(2002)
[40]Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates”, Chemical Physics Letters, 377, pp.49–54.(2003)
[41]Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, “Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol”, Chemical Physics Letters, 374, pp.53–58.(2003)
[42]Y. Murakami , S. Chiashi , Y. Miyauchi , M. Hu ,M. Ogura , T.Okubo, S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy”, Chemical Physics Letters, 385, pp.298–303.(2004)
[43]S.Iijima, “Helical microtubules of graphitic carbon”, Nature 354,(1991)56
[44]G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son and D. J.Kima, J. Appl, Phys. 91, (2002) 3847.
[45]M. Jung, K. Y. Eun, Y. J. Baik, K.R. Lee, J. K. Shin and S. T. Kim,Thin Solid Films 398-399, (2001) 150.
[46]M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and Ph. Avouris,” Photoconductivity of Single Carbon Nanotubes”,nano letters,Vol.3 NO.8,pp1067-1071.
[47]A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R. Saito,“G-band resonant Raman study of 62 isolated single-wall carbonnanotubes”,Physical Review B , 65, 155412(2002).
[48]M. Hu, Y. Murakami, M. Ogura, S. Maruyama, and T.Okubo, “Morphology and chemical state of Co–Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates”, Journal of Catalysis, 225, pp.230–239.(2004)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊