跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林士傑
研究生(外文):Shih-Jie Lin
論文名稱:利用氣衝式噴嘴進行甲醇霧化重組之數值模擬分析
論文名稱(外文):Numerical Simulation and Analysis of Methanol Atomization and Reforming Employing an Air-blast Atomizer
指導教授:江滄柳
指導教授(外文):Tsung-Leo Jiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:72
中文關鍵詞:霧化重組器甲醇
外文關鍵詞:MethanolAtomizationReformer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以數值方法建立甲醇重組反應器之模擬分析模式,並應用於兩組圓柱型甲醇重組反應器之模擬分析。其中一組為定溫式甲醇重組反應器,使用Cu/ZnO觸媒。另一組為自熱式甲醇重組反應器,使用Pt/CeO2-ZrO2。經由數值模擬分析結果與實驗結果比較顯示,本研究建立之分析模式可準確地預測甲醇轉化率及氫氣之產出率。經由數值模擬預測,本研究同時證實提高定溫式甲醇重組反應器燃料空間流速與觸媒熱傳導係數可以有效地提升甲醇重組之效能。至於在自熱式重組器之模擬上發現,相較於甲醇解離及水氣轉化反應,部分氧化反應之反應速率相對地較低,且本研究計算之結果在溫度分布趨勢以及甲醇轉化率上與實驗值一致。本研究結合以上之模擬經驗配合一氣衝式噴嘴,以數值計算分析將甲醇以噴霧之方式在一自熱式反應器重組反應之影響,以及更細部的流場、溫度場、成分濃度分布之探討,發現在增大噴霧角度能提高甲醇轉化率並且提高溫度。縮小噴嘴口徑也能提高反應溫度及甲醇轉化率。
A numerical simulation model for the analysis of methanol reformers is developed in the present study. It has been applied to the analysis of two cylindrical methanol reformers. One is an isothermal methanol reformer, employing the catalyst of Cu/ZnO, the other is an auto-thermal reformer with the catalyst of Pt/CeO_2-ZrO_2. The methanol conversion and the hydrogen generation rates are predicted by the present simulation model in good agreement with the experiments. It has also been found that for the isothermal methanol reformer, increasing the space velocity and the thermal conductivity of the catalyst enhances the conversion of methanol. For the auto-thermal reformer, it is found that the reaction rate of the partial oxidation is relatively lower than those of the methanol decomposition and the water-gas shift reaction. In the present study, it is also found that the trends of the temperature distribution and the methanol conversion rate are consistent with the experimental results. The present study further analyzes an ATR reactor installed with an air-blast atomizer for atomizing liquid methanol. The detailed distributions of the flow field, temperature, and species concentration are predicted. It is found that both enlarging the spray angle and reducing the spray nozzle size increase the Methanol conversion rate and the reaction temperature .
摘要..................................Ⅰ
Abstract..............................Ⅱ
誌謝……………………………………………Ⅲ
目錄……………………………………………Ⅳ
表目錄…………………………………………Ⅶ
圖目錄…………………………………………Ⅷ
符號說明………………………………………XII

第一章 緒論
1.1 前言……………………………………………………1
第二章 文獻回顧
2.1 文獻回顧………………………………………………4
2.1.2 重組材料分析評估…………………………………4
2.1.3 研究動機及目的……………………………………7
2.1.4 本文架構……………………………………………8
第三章 研究方法
3.1 物理問題及模式說明…………………………………9
3.2 模型問題之基本假設 ………………………………10
3.3 統御方程式 …………………………………………10
3.3.1 非觸媒區之統御方程式 …………………………11
3.3.2 觸媒區之統御方程式 ……………………………12
3.4 化學反應速率................................16
3.5 數值方法 ……………………………………………18
3.5.1 離散.....................................18
3.5.2 SIMPLE運算法則...........................19
3.5.3 鬆弛係數.................................19
3.5.4 收斂標準.................................20
第四章 結果與討論
4.1數值模擬計算與實驗結果的驗證.................21
4.2 空間流速對重組反應的影響…………………………32
4.3 觸媒熱傳係數對重組反應的影………………………41
4.4 自發熱重組反應對重組反應的影響…………………50
4.5 自發熱重組反應結合噴霧模式之數值模擬計算……56
第五章 結論與未來工作
5.1 結論........................................67
5.2 未來工作………………………………………………68
參考文獻........................................69
附錄…………………………………………………………72
1.Ersoz, A., Olgun, H., Ozdogan, S., Reforming options for
hydrogen production from fossil fuels for PEM fuel cells,
Journal of Power Sources, Vol. 154, pp. 67-73, 2006.
2.Emonts, B., Hansen, J.B., Schmidt, H., Grude, T.,
Hohlein, B. and Peters, R.,Fuel cell drive system with
hydrogen in test ,Journal of Power Sourses.Vol. 86.
Pp.228-236.2000.
3.Hohlein, B., Boe, M., Bogild, H.J., Brockerhoff, P.,
Colsman, G. and Emonts, B., Hydrogen from methanol for
fuel cells in mobile system: development of a compact
reformer , Journal of Power Sources, Vol.
61,pp.143-147,1996.
4.Emonts, B., Hansen, J.B., Jorgensen, S.L., Hohlein, B and
Peters, R., Compact methanol reformer test for
fuel-cell-powered light-duty vehicles, Journal of Power
Sources ,Vol. 71,pp.288-293,1998.
5.Wiese, W., Emonts, B. and Peters, R., Methanol steam
reforming in a fuel cell drive system, Journal of Power
Sources, Vol. 84,pp.187-193, 1999.
6.Peters, R., Dusterward, H.G. and Hohlein, B.,
Investigation of a methanol reformer concept considering
the particular impact of dynamics and long-term stability
for use in a fuel-cell-powered passenger car, Journal of
Power Sources, Vol. 86,pp.507-514, 2000.
7.Takeda, K., Baba, A., Hishinuma, Y. and Chikahisa, T.,
Performance of a methanol reforming system for a fuel
cell powered vehicle and system evaluation of a PEFC
system, JSAE Review, Vol. 23,pp.183-188, 2002.
8.Choi, Y. and Stenger, H.G., Fuel cell grade hydrogen from
methanol on a commercial Cu/Zn/Al2O3 catalyst, Applied
Catalysis B: Environmental, Vol. 38, pp.259-269, 2002.
9.Holladay, J.D., Jones, E.O., Phelps, M. and Hu, J., Micro
fuel processor for use in a miniature power supply,
Journal of Power Sources, Vol.108,pp.21-27, 2002.
10.Loffler, D.G., Taylor, K. and Mason, D., A light
hydrocarbon fuel processor producing high-purity
hydrogen, Journal of Power Sources, Vol. 117 ,pp. 84-91,
2003.
11.Ladebeck, J.R., and Wagner, J.P., Catalyst development
for water-gas shift in Handbook of Fuel
Cell-Fundamentals, Technology and Application, edited by
W. Vielstich, A. Lamm, and H. A. Gasteiger(Wiley,
Hoboken, NJ, 2003), Vol. 3, pp. 190-201.
12.Shore, L., and Farrauto, R.J., PROX catalyst in Handbook
of Fuel Cells-Fundamentals, Technology and Application,
edited by W. Vielstich, A. Lamm, H. A. Gasteiger (Wiley,
Hoboken, NJ, 2003), Vol. 3, pp.211-218.
13.Choi,K.S., Kim,H.M., Yoon,H.C., Equilibrium model
validation through the experiments of methanol
autothermal reformation. Hydrogen Energy(2008)7039-7047.
14.Peppley, B.A., Amphlett, J.C., Kearns, L.M., Mann, R.F.,
Methanol-steam reforming on Cu/ZnO/Al2O3 catalyst: Part1
:the reaction network, Applied Catalyst A:Genernal
179(1999)21-29.
15.Peppley, B.A., Amphlett, J.C., Kearns, L.M., Mann, R.F.,
Methanol-steam reforming on Cu/ZnO/Al2O3 catalyst:Part
2:A comprehensive kinetic model, Applied Catalyst
A:General 179(1999)31-49.
16.Chuang,C.C., Chen,Y.H., Ward,J.D., Yu,C.C., Optimal
design of an experimental methanol fuel reformer.
Hydrogen Energy 33(2008)7062-7073.
17.Fukahori, S., Koga, H., Kitaoka, T., Nakamura, M.,
Wariishi, H., Steam reforming behavior of methanol using
paper-structured catalysts:Experimental and
computational fluid dynamic analysis. Journal of
Hydrogen Energy 33(2008)1661-1670.
18.宋隆裕,燃料電池用甲烷水蒸汽重組反應之測試與分析,能源季
刊,第二十四卷,第三期,pp.96-116,八十三年七月。
19.陳泓政,燃料電池用之甲醇重組器氫氣產生研究,國立成功大學
航空太空工程系碩士論文,2002年,6月。
20.陳維新“能源概論(三版)”高立圖書有限公司,2008年2月
21.Fluent Incorporated, Fluent 6.3 and Gambit 2.2.30, User
Guide, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top