跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張子威
研究生(外文):Tzu-wei Chang
論文名稱:甲烷/一氧化碳紊流跳脫火燄的穩駐特性研究
論文名稱(外文):A Study of the Flame Stabilization in CH4/CO Turbulent, Lifted Jet Flames
指導教授:趙怡欽
指導教授(外文):Yei-Chin Chao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:預混層流火燄速度紊流噴流擴散火燄混合燃料跳脫穩駐特性
外文關鍵詞:premixed laminar burning velocitynon-premixed turbulent jet flameblended fuelsstabilizationlift-off
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
噴流擴散火燄最主要的特徵為火燄的動態現象,一般來說,噴流火燄隨出口速度增加除從層流火燄轉變為紊流火燄,也會產生跳脫(lift-off)、吹熄(blow-out or blow-off)、遲滯(hysteresis)與回駐(reattachment)等動態現象,這些現象包含相當複雜的流體與火燄相互作用機制與穩定特性,若能增加此動態特性的了解,對燃燒系統的設計以及運作有莫大的幫助。
在本研究中,回顧近年來發展的紊流噴流跳脫火燄的穩駐機制,發現三歧火燄跟跳脫穩駐有很大的關係,另一方面,經由適當的改變預混甲烷/一氧化碳/空氣中的燃料組成比例或是燃料混合空氣之當量比,火燄的層流燃燒速度可以達到最大值。
因此,依據紊流噴流其部份混合(partially premixed)的特性與甲烷/一氧化碳混合燃料其特殊的層流火燄速度現象來探討在靜止空氣中的紊流跳脫火燄之穩駐特性。實驗方法是利用一噴流燃燒器、CCD數位硬碟式攝影機、非介入式的雷射粒子影像測速儀,藉由調整噴嘴出口速度來觀測不同混合比例的燃料之跳脫火燄影像、跳脫高度、火燄底端速度分佈。從實驗結果發現,此混合燃料的噴流火燄跳脫特性介於純甲烷與純一氧化碳之間,大約以10%甲烷90%一氧化碳之比例為轉變點,而此穩駐的特性改變可藉由理論的濃度分佈曲線以及火燄底端的速度場分佈比較,推論出可能隨著一氧化碳增加至80%時,純甲烷的三歧火燄穩駐特性會轉變為由甲烷/一氧化碳混合燃料的最大層流火燄速度主導,而當增加至90%的一氧化碳時,火燄穩駐特性會有所改變,除了變為直接吹熄(blow-off)之外,利用降低噴嘴出口速度而從下游再次引燃的方法,發現火燄底端的速度分佈也跟三岐火燄的特性不同。
The dynamic mechanism of a non-premixed jet flame are important characteristics considerably. In general, when velocity of nozzle exit is increased to the limit value, the laminar jet flame will transfer into turbulent jet flame, in addition to generate the typical phenomenon of the lift-off, blow-out/off, hysteresis and reattachment which involved with these complex features of flame-flow interactions and fundamental combustion stability. It is useful to design and operate the combustor with more knowledge of this dynamic property of jet flame.

In the present study, the developmental theories and assumption of stabilization mechanism of lifted turbulent jet diffusion flames are reviewed, some commentary suggest that there are significant relation between the triple flame and flame-lifted stabilization. On the other hand, the laminar flame speed of premixed CH4/CO/air can attain maximum when change applicably the composition of CH4/CO mixture fuels or equivalence ratio of fuel/air.

Hence, the stabilization characteristics of CH4/CO lifted turbulent jet flames in still air are explored by the partially premixed behavior of axisymmetric turbulent jet and the exceptional laminar burning velocity of CH4/CO/air flames. A systematic experiment is conducted in this investigation with a jet burner, a CCD digital camera and the non-intervened laser diagnostic technique (Particle Image Velocimetry) to observe the instantaneous flame-lifted images, the lift-off height and velocity data of flame base by adjusting the exit velocity and blended fuel concentration. Results show that the lift-off characteristics of this jet flame will change from pure methane into pure carbon monoxide at the fuel composed of 10% methane and 90% carbon monoxide. According to compare the theoretical model of fuel concentration distributing in still air and the velocity field in flame base, we predict the stabilization characteristics which is determined by the triple flame in pure methane will transfer into the specific criterion of maximum laminar burning velocity of blended fuels. The jet flame don’t turn into blow-out but become the blow-off, furthermore the characteristics of velocity field in flame base which used by reigniting from downstream again with decreasing the exit velocity are distinct from the triple flame when CO content is further increased over 90%.
目錄
頁數
目錄 I
表目錄 III
圖目錄 IV
符號表 VII
第一章 緒論 1
第二章 文獻回顧與問題分析 5
2-1 文獻探討 6
2-1.1 混合燃料的燃燒 6
2-1.2 非預混紊流噴流火燄 9
2-2 研究動機 19
2-3 研究目標 19
第三章 實驗設備及量測步驟與方法 21
3-1 實驗設備與操作條件 21
3-2 影像處理系統 22
3-3 微粒影像速度量測系統 23
第四章 實驗結果與討論 26
4-1 甲烷/一氧化碳紊流噴流火燄的跳脫特性 26
4-2 甲烷/一氧化碳跳脫火燄的跳脫高度比較 29
4-3 甲烷/一氧化碳濃度分佈曲線與跳脫高度範圍的比較 32
4-4 火燄底端瞬時速度分佈 35
4-5 綜合討論 38
第五章 結論與未來工作 42
5-1 實驗結論 42
5-2 未來工作 44
參考文獻 46


表目錄
表2-1(a) 主要氣化與燃燒的化學反應式 51
表2-1(b) 人工合成氣的組成成份比較 51
表3-1各種火燄操作條件與各穩定極限出口雷諾數 52
表4-1 Flame(1) ~ (6)之Hs、Hsw、Hr、Hrw與氣體密度、動力黏滯係數 53
表4-2 Flame(1) ~ (5)各跳脫與近吹熄速度之平均跳脫高度與Hsw、Hrw比較 54


圖目錄
圖2-1 預混甲烷/一氧化碳/空氣層流火燄速度隨當量比變化圖 55
圖2-2 三歧火燄底端速度分佈示意圖 56
圖3-1 整體實驗儀器架構圖 57
圖3-2 火燄瞬時跳脫高度的數位影像處理分析圖 58
圖3-3 pulse雷射、CCD、電子快門觸發時間流程表 59
圖4-1 100%甲烷跳脫火燄影像隨出口速度變化圖 60
圖4-2 60%甲烷-40%一氧化碳跳脫火燄影像隨出口速度變化圖 61
圖4-3 20%甲烷-80%一氧化碳跳脫火燄影像隨出口速度變化圖 62
圖4-4(a) 10%甲烷-90%一氧化碳跳脫火燄影像隨出口速度變化圖 63
圖4-4(b) 6%甲烷-94%一氧化碳跳脫火燄影像隨出口速度變化圖 63
圖4-5 100%一氧化碳噴流火燄影像隨出口速度變化圖 64
圖4-6 Flame(1) ~ (3)之平均跳脫高度與出口速度之關係圖 65
圖4-7 Flame(4) ~ (6)穩駐噴嘴底端位置與出口速度之關係圖 66
圖4-8 Flame(4)與Flame(5)利用重新引燃的方式得到的平均跳脫高度與出口速度變化圖 67
圖4-9 Flame(1) ~ (3)之無因次跳脫高度與無因次出口速度之關係圖 68
圖4-10 Flame(4) ~ (6)之無因次跳脫高度與無因次出口速度之關係圖 69
圖4-11 Flame(1) ~ (3)之理論濃度分佈曲線比較圖 70
圖4-12 Flame(4) ~ (6)之理論濃度分佈曲線比較圖 71
圖4-13(a) Flame(1)跳脫、近吹熄影像與濃度分佈曲線比較圖 72
圖4-13(b) Flame(1)瞬時跳脫高度機率分佈與濃度分佈曲線比較圖 72
圖4-14(a) Flame(2)跳脫、近吹熄影像與濃度分佈曲線比較圖 73
圖4-14 (b) Flame(2)瞬時跳脫高度機率分佈與濃度分佈曲線比較圖 73
圖4-15(a) Flame(3)跳脫、近吹熄影像與濃度分佈曲線比較圖 74
圖4-15 (b) Flame(3)瞬時跳脫高度機率分佈與濃度分佈曲線比較圖 74
圖4-16(a) Flame(4)跳脫、近吹熄影像與濃度分佈曲線比較圖 75
圖4-16 (b) Flame(4)瞬時跳脫高度機率分佈與濃度分佈曲線比較圖 75
圖4-17(a) Flame(5)跳脫、近吹熄影像與濃度分佈曲線比較圖 76
圖4-17 (b) Flame(5)瞬時跳脫高度機率分佈與濃度分佈曲線比較圖 76
圖4-18(a) CCD第一張粒子散射曝光影像圖 77
圖4-18 (b) CCD第二張粒子散射曝光影像圖 77
圖4-18 (c) 利用加強黑白對比強度之火燄反應區示意圖 78
圖4-19 Flame(1)底端速度向量場與濃度曲線分佈比較圖 79
圖4-20 Flame(2)底端速度向量場與濃度曲線分佈比較圖 80
圖4-21 Flame(3)底端速度向量場與濃度曲線分佈比較圖 81
圖4-22 Flame(4)底端速度向量場與濃度曲線分佈比較圖 82
圖4-23 Flame(5)底端速度向量場與濃度曲線分佈比較圖 83
圖4-24 Flame(1)之底端瞬時軸向速度隨火燄面前緣距離變化圖 84
圖4-25 Flame(2)之底端瞬時軸向速度隨火燄面前緣距離變化圖 85
圖4-26 Flame(3)之底端瞬時軸向速度隨火燄面前緣距離變化圖 86
圖4-27 Flame(4)之底端瞬時軸向速度隨火燄面前緣距離變化圖 87
圖4-28 Flame(5)之底端瞬時軸向速度隨火燄面前緣距離變化圖 88
Brown, G. L., and Roshko, A., “On Density Effects and Large Structure in Turbulent Mixing Layers,” Journal of Fluid Mechanics, 64: 775-816, 1974.
Birch, A. D., Brown, D. R., Dodson M. G., and Thomas, J. R., “The Turbulent Concentration Field of a Methane Jet,” Journal of Fluid Mechanics, 88(3): 431-449, 1978.
Broadwell, J. E., Dahm, W. J. A., and Mungal, M. G., “Blowout of Turbulent Diffusion Flame,” Twenty Symposium (International) on Combustion, The Combustion Institute, pp. 303-310, 1984.
Bridgwater, A. V. “The Technical and Economic Feasibility of Biomass Gasification for Power Generation” Fuel, vol 74, No.5, pp. 631-653, 1995.
Chamberlin, D. S., and Rose, A., “The Flicker of Luminous Flames,” Industrial and Engineering Chemistry, 20(10): 1013-1016, 1928.
Chomiak, J., Longwell, J. P. and Sarofim A. F. “Combustion of Low Calorific Value Gases: Problem and Prospects” Prog. Energy Combust. Sci, vol 15, pp. 109-129, 1989.
Chao, Y. C., and Jeng, M. S., “Behavior of the Lifted Jet Flame under Acoustic Excitation,” Twenty-fourth Symposium (International) on combustion, The combustion Institute, pp. 333-340, 1992.
Eickhoff, H., Lenze, B., and Leuckel, W., “Experimental Investigations on the Stabilization Mechanism of Jet Diffusion Flame,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 311-318, 1984.
Günther, R., Horch, K., and Lenze, B., “First Specialists Meeting (International) of the Combustion Institute, The Combustion Institute, Pittsburgh, pp. 117-122.”, 1981.
Kalghatgi, G. T., “Blow-Out Stability of Gaseous Jet Diffusion Flames. PartⅠ: In Still Air,” Combustion Science and Technology, 26: 233-239, 1981.
Kalghatgi, G. T., “Lift-off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air” Combustion Science and Technology, 41: 17-29, 1984.
Kioni, P. N., Rogg, B. Bray, K. N. C., and Liñán, A., “Flame Spread in Laminar Mixing Layer: The Triple Flame,” Combustion and Flame, 95: 276-290, 1993.
Latzko, H. Z., Convective Heat and Mass Transfer, McGraw-Hill, New York, pp. 282-283, 2005.
Lin, C. K., Jeng, M. S., and Chao, Y. C., “The Stabilization Mechanism of the Lifted Jet Diffusion Flame in the Hysteresis Region,” Experiment in Fluids, 14: 353-365, 1993.
Miake–Lye, R. C., and Hammer, J. A., “Lifted Turbulent Jet Flame: A Stability Criterion base on the Jet Large-scale Structure,” Twenty-second Symposium (International) on Combustion, The Combustion Institute, pp. 817-824, 1988.
Müller, C. M., Breitbach, H., and Peters, N., “Partially Premixed Turbulent Flame Propagation in Jet Flames,” Twenty-fifth Symposium (International) on Combustion, The Combustion Institute, pp. 1099-1106, 1994.
Muñiz, L., and Mungal, M. G., “Instantaneous Flame-Stabilization Velocities in Lifted-Jet Diffusion Flames,” Combustion and Flame, 111: 16-31, 1997.
Phillips, H., “Flame in a Buoyant Methane Layer,” Tenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1277-1283, 1965.
Paul E. Dimotakis, Richard C. Miake-Lye, and Dimitris A. Papantoniou., “Structure and Dynamics of Round Turbulent Jets,” Phys. Fluids, 26(11): 3185-3192, 1983.
Peters, N. and Williams, F. A., “Liftoff Characteristics of Turbulent Jet Diffusion Flames,” AIAA Journal, 21: 423-429, 1983.
Pitts, W. M., “Importance of Isothermal Mixing Processes to the Understanding of Lift-Off and Blowout of Turbulent Jet Diffusion Flames”, Combustion and Flame, 76: 197-212, 1989.
Pitts, W. M., “Large-scale Turbulent Structures and the Stabilization of Lifted Turbulent Jet Diffusion Flames,” Twenty-third Symposium (International) on Combustion, The Combustion Institute, pp. 661-668, 1990.
Ruetsch, G. R., Vervisch, L., Liñán, A., “Effects of Heat Release on Triple Flames,” Phys. Fluids, 7(6): 1447-1454, 1995.
Scholte, T. G. and Vaags, P. B., “Burning Velocities of Mixtures of Hydrogen, Carbon Monoxide and Methane with Air,” Combustion and Flame, 3: 511-524, 1959.
Schefer, R. W., Namazian, M., and Kelly, J., “Structural Characteristics of Lifted Turbulent-Jet Flames,” Twenty-second Symposium (International) on Combustion, The Combustion Institute, pp. 833-842, 1988.
Schefer, R. W., Namazian, M., and Kelly, J., “Stabilization of Lifted Turbulent-Jet Flames,” Combustion and Flame, 99: 75-86, 1994.
Tacke, M. M., Geyer, D., Hassel, E. P., and Janicka, J., “A Detailed Investigation of the Stabilization Point of Lifted Turbulent Diffusion Flames,” Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, pp. 1157-1165, 1998.
Tim Lieuwen, Vince McDonell, Domenic Santavicca, and Thomas Sattelmayer, “Burner Development and Operability Issues Associated with Steady Flowing Syngas Fired Combustors” Combust. Sci. and Tech., 180: 1169-1192, 2008.
Vanquickenborne, L., and van Tigglen, A., “The Stabilization mechanism of Lifted Diffusion Flame,” Combustion and Flame, 10: 59-69, 1966.
Vagelopoulos, C. M. and Egolfopoulos, F. N., “Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide with Hydrogen, Methane, and Air,” Twenty-Fifth Symposium (International) on combustion, The combustion Institute, pp. 1317-1323, 1994.
Wu, C. Y., Chao, Y. C., Cheng, T. S., Li, Y. H., Lee, K. Y., Yuan, Tony, “The Blowout Mechanism of Turbulent Jet Diffusion Flames,” Combustion and Flame, 145: 481-494, 2006.
Wu, C. Y., Chao, Y. C., Cheng, T. S., Chen, C. P., and Ho, C. T., “The Combustion Characteristics for CO-CH4 Blended Fuels,” Combustion and Flame, 156: 362-373, 2009.
Yumlu, V. S., “Prediction of burning velocities of carbon monoxide-hydrogen-air flames,” Combustion and Flame, 11: 190-194, 1967.
經濟部能源局http://www.moeaboe.gov.tw/
環保署http://www.epa.gov.tw/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top