跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡明育
研究生(外文):Ming-Yu Tsai
論文名稱:卡車尾端角落噴嘴氣流對減少阻力的研究
論文名稱(外文):The Study of Using Corner Nozzle Flow for Truck Drag Reduction
指導教授:陳世雄陳世雄引用關係
指導教授(外文):Shih-Hsiung Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:133
中文關鍵詞:卡車空氣阻力減阻噴嘴風洞渦流
外文關鍵詞:wind tunnelvortextruckaerodynamic dragdrag reductionnozzle
相關次數:
  • 被引用被引用:2
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
由於現在石油價格不斷地上漲與環保意識的興起,因此必須要逐漸減少能源的消耗。在交通運輸方面,負責運輸貨物的卡車消耗了交通運輸中相當比例的能源。但卡車因功能上的限制,造成一般的外型較不流線,使得卡車相較於一般客車有著更大的空氣阻力係數。本研究的方向是針對卡車的空氣阻力著手,藉由減少卡車的空氣阻力進而減少能源的消耗。關於卡車的空氣阻力,有很大一部分是由車尾低壓造成的。車尾低壓是由於在卡車後方的流場分離,此流場分離形成了較大的渦流與較低的壓力,因而產生較大的阻力。本研究的減阻方式是在車尾的兩側角落裝設二維噴嘴,藉由此方式來改善卡車後方的流場。
本研究是運用風洞實驗的方式,來量測一具 1/8 縮尺比例的重型卡車模型之空氣阻力。並藉由改變二維噴嘴的導流角度與噴嘴出入口面積比的方式來比較不同實驗參數時的空氣阻力,以此來探討導流角度與噴嘴出入口面積比對減阻效果的影響。經由一系列的實驗跟比較的結果發現,在低雷諾數的實驗條件下,當導流的角度大約在45度到60度之間會有較佳的減阻效果,且漸擴型噴嘴其減阻效果會優於漸縮型噴嘴。
In recent years, the oil price is getting higher and higher. People are looking for vehicles with better energy efficiency and lower fuel consumption. Among all types of vehicles, the aerodynamic drag of trucks is significantly higher than that of other passenger vehicles because of their shapes are limited by their functions. The purpose of this research is to study the reduction of truck’s fuel consumption by aerodynamic drag reduction. To achieve this, this research focuses on the improvement of the low pressure region at truck rear end by using 2-dimensional nozzles installed at the rear end corners. The presence of the nozzle flow is to change the vortex and flow separation at truck end, so that the aerodynamic drag is reduced. To verify the drag reduction efficiency of this device, the corner nozzles are installed on a 1/8 scale heavy truck model. Wind tunnel experiments were performed to measure the drags. Variables of flow turning angle and the area ratio of the nozzles were studied to identify the effectiveness of drag reduction. The results show that the highest drag reduction efficiency is achieved in divergent nozzle with turning angle between 45 to 60 degrees at low Reynolds numbers.
中文摘要............................................................................................................i
英文摘要...........................................................................................................ii
致謝..................................................................................................................iii
目錄..................................................................................................................iv
表目錄..............................................................................................................vi
圖目錄.............................................................................................................vii
符號說明...........................................................................................................x
第一章 諸論..................................................................................................1
1-1. 動機與目的......................................................................................1
1-2. 研究方法..........................................................................................2
1-3. 文獻回顧..........................................................................................3
1-4. 研究方向..........................................................................................6
第二章 理論分析..........................................................................................8
2-1. 阻力分析..........................................................................................8
2-2. 流場分析........................................................................................12
第三章 實驗設計........................................................................................14
3-1. 設計概念........................................................................................14
3-2. 減阻裝置設計................................................................................15
3-2-1. 實驗卡車模型.........................................................................15
3-2-2. 噴嘴外型限制與實驗參數.....................................................16
3-2-3. 減阻裝置的製作.....................................................................18
3-3. 實驗方式........................................................................................20
3-3-1. 實驗架構.................................................................................20
3-3-2. 減阻裝置的實驗组.................................................................24
3-3-3. 實驗步驟.................................................................................24
第四章 實驗結果與討論............................................................................27
4-1. 實驗結果........................................................................................27
4-2. 實驗結果分析................................................................................29
4-2-1. 各組導角的減阻效果關係.....................................................29
4-2-3. 出入口面積比和減阻效果的關係.........................................31
4-2-4. 只有內側葉片的減阻效果趨勢.............................................32
4-2-5. 只有外側葉片的減阻效果趨勢.............................................32
4-3. 實驗結果趨勢討論........................................................................32
4-4. 實驗結果解釋................................................................................33
4-4-1. 噴嘴進氣口邊界層厚度.........................................................33
4-4-2. 流場改變.................................................................................35
第五章 結論................................................................................................36
5-1. 實驗總結........................................................................................36
5-2. 未來工作建議................................................................................38
參考文獻.........................................................................................................40
表.....................................................................................................................44
圖.....................................................................................................................54
附錄...............................................................................................................102
[1]FreeCharts, http://FreeCharts.com/, Dec. 2006
[2]U.S. Department of Energy, http://www.doe.gov, Dec. 2002.
[3]U.S. Department of Energy, Energy Information Administration, http://www.eia.doe.gov/oiaf/aeo, Dec. 2002.
[4]U.S. Department of Energy, Oak Ridge National Laboratory, http://www.ornl.gov, Dec. 2002.
[5]Wood, R. M., “Impact of Advanced Aerodynamic Technology on Transportation Energy Consumption,” SAE transactions, vol. 113, number 6, pp. 854-874, 2004.
[6]Wood, R. M., and Bauer, S. X. S., “Simple and Low-Cost Aerodynamic Drag Reduction Devices for Tractor-Trailer Trucks,” SAE transactions, vol. 112, number 2, pp. 143-160, 2003.
[7]McCallen, R., Couch, R., Hsu, J., Browand, F., Hammache, M., Loenard, A., Brady, M., Salari, K., Rutledtge, W., Ross, J., Storms, B., Heineck, J. T., Driver, D., Bell, J., and Zilliac, G., “Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8) ,” SAE Government Industry Meeting, Washington, April 26-28, 1999.
[8]Rylski, S., “Road Vehicle Aerodynamics,” second edition, Pentech Press, UK, 1984.
[9]Hucho, W. H., “Aerodynamics of Road Vehicles,” Butterworth- Heinemann, UK, 1987.
[10]Salari, K., “Heavy Vehicle Drag Reduction Devices: Computational Evaluation & Design,” DOE Heavy Vehicle Systems Review, April 18-20, 2006.
[11]Berta, C., and Bonis, B., “Experimental Research of Ideal Aerodynamic Characteristics for Industrial Vehicle,” SAE Paper 801402, 1980.
[12]G�尒z, H.,“Die Aerodynamik des Nutzfahrzeuges-Massnahmen zur Kraftstoffeinsparung,” Fortschr.-Berichte der VDI-Zeitschriften, Series 12, No. 31, 1977.
[13]Modi, V. J., Hill, S. S., and Yokomizo, T., “ Drag Reduction of Trucks Through Boundary-Layer Control,” Journal of Wind Engineering and Industrial Aerodynamics, Volumes 54-55, pp. 583-594, 1995.
[14]Hucho, W. H., and Emmelmann, H. J., “Aerodynamishe Formoptimierung ein Weg zur Steigerung der Wirtschaftlicheit von Nutzfahrzeugen , ” Fortsch.-Berichte der VDI-Zeitschriften, Series 12, No. 31, 1977.
[15]Bearman, P. W., “Investigation of the Flow Behind a Two-Dimensional Model with Blunt Trailing Edge and Fitted with Splitter Plates,” J. Fluid Mechanics, Vol. 21, pp. 241-255, 1965.
[16]Bearman, P. W., “Investigation into the Effects of Base Bleed on the Flow Behind a Two - Dimensional Model with a Blunt Trailing Edge,” AGARD Conf. Proc. No. 4, Separated Flows, Part 2, pp. 479-507, 1966.
[17]Storms, B. L., Satran, D. R., Heineck, J. T., and Stephen, M. W., “A Study of Reynolds Number Effects and Drag-Reduction Concepts on a Generic Tractor-Trailer,” AIAA paper no. 2251, 2004.
[18]Kruppa, E. W., “A Wind Tunnel Investigation of the Kasper Vortex Concept,” AIAA paper no.77-310, Jan., 1977.
[19]Munshi, S. R., Modi, V. J., and Yokomizo, T., “Fluid Dynamics of Flat Plates and Rectangular Prisms in the Presence of Moving Surface Boundary-Layer Control, ” Journal of Wind Engineering and Industrial Aerodynamics, Volume 79, pp. 37-60, 1999.
[20]Modi, V. J. and Deshpande, V. S., “Aerodynamics of a Building with Momentum Injection,” AIAA paper no. 2456, 2001.
[21]Englar, R. J., and Applegate, C. A., “Circulation Control- A Bibliography of DTNSRDC Research and Selected Outside References (Jan 1969 to Dec 1983),” David Taylor Naval Ship Research and Development Center Report 84/052, Carderock , MD, Sept., 1984.
[22]Engler, R. J., “Development of Pneumatic Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling and Safety of Heavy Vehicles,” SAE Government/Industry Meeting, Washington, May 14-16, 2001.
[23]Mathieu, R., Patrick, G., and Azeddine, K., “Analysis and Control of the Near-Wake Flow Over a Square-Back Geometry,” AIAA paper no. 3336, 2006.
[24]Bauer, S., and Wood, R., “Base Passive Porosity for Drag Reduction, ” United States Patent 6,286,892, Sept. 11, 2001.
[25]Ashill, P. R., Fulker, J. L., and Hackett, K. C., “Studies of Flows Induced by Sub Boundary Layer Vortex Generators (SBVGs),” AIAA paper no. 14121, 2002.
[26]White, F. M., “Viscous Fluid Flow,” McGraw-Hill Education, Singapore, 2006.
[27]Kim, K. C., Ji, H. S., and Seong, S. H., “Flow Structure Around a 3-D Rectangular Prism in a Turbulent Boundary Layers,” Journal of Wind Engineering and Industrial Aerodynamics, November, 2002.
[28]林國楨,“貨車導風板風阻對油耗的影響,”省能運具推廣說明會車輛節能研討會, 2003年9月16日.
[29]李添財,“汽車空氣動力學”全華科技圖書股份有限公司, 1999年1月.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top