跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張書瑜
研究生(外文):Shu-yu Chang
論文名稱:形狀記憶合金加勁複合材料層板之後挫屈及自由振動分析
論文名稱(外文):Postbuckling and Free Vibration Analyses of Shape Memory Alloy Reinforced Composite Laminate
指導教授:蕭樂群蕭樂群引用關係
指導教授(外文):Le-chung Shiau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:後挫屈形狀記憶合金有限元素法自由振動複合層板
外文關鍵詞:Shape memory alloycomposite laminatevibrationFinite Element methodpostbuckling
相關次數:
  • 被引用被引用:3
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本文以有限元素法探討含有形狀記憶合金(SMA)之方形複合層板中形狀記憶合金特性對複合層板的後挫屈及自由振動行為的影響。文中探討形狀記憶合金纖維以不同的預應變及體積使用含量埋入層板中,並考慮其複合層板疊層方向及形狀記憶合金纖維分佈情況,觀察整體系統後挫屈及自由振動行為的變化。結果顯示形狀記憶合金纖維預應變越大及體積含量越多越大,其產生回復應力越大,在完全逆變態的情況下,使得挫屈載重大幅提升、後挫屈撓度降低及挫屈後自由振動頻率降低。而形狀記憶合金纖維越集中於承受高彎曲作用之層板中心處,亦可有效提升挫屈載重、降低後挫屈撓度及挫屈後之自由振動頻率。另外,當挫屈轉變發生之後,振動模態會由(m,1)轉變為(m-1,1)。
The effect of shape memory alloy (SMA) on the postbuckling and vibration behavior of rectangular composite laminated plates was investigated by Finite Element Method. The influence of SMA on postbuckling and free vibration of composite laminated plate by varying the SMA initial strain and fiber spacing was also studied. The results show that the higher initial strain and volume fraction are better in decreasing the postbuckling deflections and natural frequencies in postbuckled region of the plate. Also, when the shape memory alloy fibers are concentrated in the central area of the plate, the postbuckling deflections and natural frequency in postbuckled region of the plate will be decreased significantly. Specially, when buckled pattern change occurred, vibration mode will change from (m,1) to (m-1,1).
摘要
ABSTRACT
誌謝
目錄
表目錄...................................................i
圖目錄.................................................iii
符號..................................................viii
第一章 緒論..............................................1
1.1 研究動機.............................................1
1.2 文獻回顧.............................................4
第二章 公式推導..........................................9
2.1 複合材料層板之基本公式...............................9
2.2 應變能、功與動能....................................13
2.3 三角形板元素之推導..................................14
2.4 複合層板後挫屈之平衡方程式..........................20
2.5 複合層板後挫屈的求解流程............................21
2.6 複合層板自由振動之運動方程式........................22
2.7 複合層板自由振動的求解流程..........................24
第三章 形狀記憶合金加勁複合材料層板之後挫屈分析.........26
3.1 ASET及APT方法的影響.................................26
3.2 形狀記憶合金預應變之影響............................28
3.3 形狀記憶合金體積使用含量的影響......................29
3.4 複合材料疊層方式的影響..............................30
3.5 形狀記憶合金纖維分佈的影響..........................32
第四章 形狀記憶合金加勁複合材料層板之自由振動分析.......35
4.1 ASET及APT方法的影響.................................36
4.2 形狀記憶合金體積使用含量之影響......................37
4.3 複合材料疊層方式的影響..............................38
4.4 形狀記憶合金纖維分佈的影響..........................40
第五章 結論.............................................43
參考文獻................................................46
附錄....................................................49
[1] Chen, L. W. and Chen, L. Y., “Thermal Post-buckling Analysis of Laminated Composite Plates by Finite Element Method,” Composite structures, Vol. 12, 1989, pp. 257-270.
[2] Gray, C. C. and Mei, C., “Finite Element Analysis of Thermal Post-buckling and Vibration of Thermal Buckled Composite Plates,” AIAA Paper, 1991, pp. 2996-3007.
[3] Shiau, L. C. and Wu, T. Y., “ Application of the Finite Element Method to Postbuckling Analysis of Laminated Plates,” AIAA Journal, Vol. 33, No. 12, December 1995.
[4] Shi, Y., Lee, R. Y. Y. and Mei, C., “Thermal Postbuckling of Composite Plates Using the Finite Element Modal Coordinate Method,” Journal of Thermal Stresses, Vol. 22, 1999, pp.595-614.
[5] Shiau, L. C., and Kuo, S. Y., “Thermal Postbuckling Behavior of Composite Sandwich Plates,” Journal of Engineering Mechanics, Vol. 130, No. 10, October 2004, pp.1160-1167.
[6] Shiau, L. C. and Kuo, S. Y., “Free Vibration of Thermally Buckled Composite Sandwich Plates,” Journal of Vibration and Acoustics, Vol. 128, Issue 1, February 2006.
[7] Shin, D. K., Jr, O. H. G. and Gurdal, Z., “Post-buckling Response of Laminated Plates Under Uniaxial Compression,” Structural Engineering and Mechanics, Vol. 29, No. 4, July 10, 2008, pp. 455-467.
[8] Rogers, C. A., Liang, C. and Baker, D. K., “Dynamic Control Concepts Using Shape Memory Alloy Reinforced Plates,” Smart Materials, Structures and Mathematical Issues, Technomic, Lancaster, PA. , 1989.
[9] Baz, A., Iman, K. and McCoy, J., “Active vibration control of flexible beams using shape memory actuators,” Journal of Sound and Vibration, Vol. 140, No. 3, 1990, pp. 437-456.
[10] Baz, A., Poh, S., Ro, J. and Gilheany, J., “Control of the natural frequencies of nitinol-reinforced composite beams,” Journal of Sound and Vibration, Vol. 185, No. 1, 1995, pp. 171-185.
[11] Rogers, C. A., Liang, C. and Jia, J., “Structural Modification of Simply-Supported Laminated Plate Using Embedded Shape Memory Alloy Fibers,” Computer & Structures Vol. 38, No. 5/6, 1991, pp. 569-580.
[12] Lee, J. J. and Choi, S., “Thermal Buckling and Postbuckling Analysis of a Laminated Composite Beam with Embedded SMA Actuators,” Composite Structures 47, 1999, pp. 695-703.
[13] Ostachowicz, W. M., Cartmell, M. P. and Zak, A. J., “Statics and Dynamics of Composite Structures With Embedded Shape Mempry Alloys,” Structural Control and Health Monitoring, SMART 2001, Warsaw, May 2001, pp.22-25.
[14] Thompson, S. P. and Loughlan, J., “Adaptive post-buckling response of carbon fiber composite plates employing SMA actuators,” Composite Structures, Vol. 38, 1997, pp. 667-678.
[15] Duan, B., Tawfik, M., Goek, S. N., Ro, J. J., and Mei, C., “Analysis and Control of Large Thermal Deflection of Composite Plates Using Shape Memory Alloy,” In Smart Structures and Material 2000, Proceedings of SPIE Vol. 3991, 2000.
[16] Tawfik, M., Duan, B., Ro, J., and Mei, C., “Suppression of Post-Buckling Deflection and Panel-Flutter Using Shape memory alloy,” In Smart Structures and Material 2000, Proceedings of SPIE Vol. 3991, 2000.
[17] Lee, H. J. and Lee, J. J., “A Numerical Analysis of The Buckling and Postbuckling Behavior of Laminated Composite Shells With Embedded Shape Memory Alloy Wire Actuators,” Smart Mater. Struct. 9, 2000, pp. 780-787.
[18] Park, J. S., Kim, J. H., and Moon, S. H., “Vibration of Thermally Post-Buckled Composite Plates Embedded With Shape Memory Alloy Fibers,” Composite Structures 63, 2004, pp. 179-188.
[19] Roh, J. H., Oh, I. K., Yang, S. M., Han, J. H. and Lee, I., “Thermal Post-Buckling Analysis of Shape Memory Alloy Hybrid Composite Shell Panels,” Smart Mater. Struc., Vol. 13, 2004, pp. 1337-1344.
[20] Leissa, A. W. and Martin, A. F., “Application of the Ritz method to plane elasticity problems for composite sheets with variable fibre spacing,” International Journal for Numerical Methods in Engineering, Vol. 28, No. 8, Aug 1989, pp. 1813-1825.
[21] Leissa, A. W. and Martin, A. F., “Vibration and Buckling of Rectangular Composite Plates with Variable Fiber Spacing,” Composite Structures, 14, 1990, pp. 339-357.
[22] Yang, T. Y., “Finite Element Structural Analysis,” Prentice-Hall, Inc., 1986.
[23] Cross, W. B., Kariotis, A. H., Stimler F. J., “Nitinol Characterization Study,” CR-1433, Hampton, VA: NASA, 1979.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊