|
[1]Antoniou, I., and Gustafson, K., 1997, “From Irreversible Markov Semigroups to Chaotic Dynamics”, Physica A, Vol. 236, pp.296-308.
[2]Antoniou, I., and Gustafson, K., 1993, “From Probabilistic Description to Deterministic Dynamics”, Physica A, Vol. 197, pp.153-166.
[3]Antoniou, I., Gustafson, K. and Suchanecki, Z., 1998, “On the Inverse Problem of Statistical Physics: from Irreversible Semigroups to Chaotic Dynamics”, Physica A, Vol. 252, pp.345-361.
[4]Antoniou, I., Christidis, TH. and Gustafson, K., 2004, “Probability from Chaos”, International Journal of Quantum Chemistry, Vol. 98, pp.150-159.
[5]Arfken, G., 1985, “Hypergeometric Functions”, §13.5 in Mathematical Methods for Physicists, 3rd ed. Academic Press, pp.748-752.
[6]Balian, R., and Bloch, C., 1970, “Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain: I. Three-dimensional Problem with Smooth Boundary Surface”, Annals of Physics, Vol. 60, No. 2, pp.401-447.
[7]Balian, R., and Bloch, C., 1971, “Asymptotic Evaluation of the Green's Function for Large Quantum Numbers”, Annals of Physics, Vol. 63, No. 2, pp.592-606.
[8]Balian, R., and Bloch, C., 1971, “Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain. II. Electromagnetic Field. Riemannian Spaces”, Annals of Physics, Vol. 64, No. 1, pp.271-307.
[9]Balian, R., and Bloch, C., 1972, “Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain: III. Eigenfrequency Density Oscillations”, Annals of Physics, Vol. 69, No. 1, pp.76-160.
[10]Balian, R., and Bloch, C., 1974, “Solution of the Schrödinger Equation in Terms of Classical Paths”, Annals of Physics, Vol. 85, No. 2, pp.514-545.
[11]Barut, A.O., and Duru, I.H., 1988, “Path Integration via Hamilton-Jacobi Coordinates and Applications to Potential Barriers”, Physical Review A , Vol. 38, pp.5906-5909. [12]Benettin, G., and Strelcyn, J.M., 1978, “Numerical Experiments on the Free Motion of a Point Mass Moving in a Plane Convex Region: Stochastic Transition and Entropy”, Physics Review A, Vol. 17, pp.773-785.
[13]Berry, M., 1989, “Quantum Chaology, not Quantum Chaos”, Physica Scripta, Vol. 40, pp.335-336.
[14]Blümel, R., and Smilansky, U., 1990, “Quantum Mechanical Suppression of Chaos”, Physics World 3 (2), pp.30-34.
[15]Bogojevic, A., Balaz, A., and Belic, A., 2005, “Jaggedness of Path Integral Trajectories”, Physics Letters A, Vol. 345, pp.258-264.
[16]Bohigas, O., Giannoni, M.J., and Schmit, C., 1984, “Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws”, Physics Review Letter, Vol. 52, pp.1-4.
[17]Bohm, D., and Vigier, J.P., 1954, “Model of the Causal Interpretation of Quantum Theory in Terms of a Fluid with Irregular Fluctuations”, Physics Review, Vol. 96, pp.208-216.
[18]Bohm D., and Hiley B.J., 1993, “The Undivided Universe”, Routledge, London.
[19]Bohm, D., 1952, “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I”, Physics Review, Vol. 85, pp.166-179.
[20]Bohm, D., 1952, “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. II”, Physics Review, Vol. 85, pp.180-193.
[21]Burghardt, B., and Stolze, J., 1999, “Numerical Evaluation of Coherent-State Path Integrals in Quantum Dynamics”, Journal of Physics A: Mathematical and General, Vol. 32, pp.2075-2090.
[22]Casdagli, M., Sauer, T., and Yorke, J.A., 1991, “Embedology”, Journal of Statistical Physics, Vol. 65, pp.579-616.
[23]Chattaraj, P.K., and Sengupta, S., 1993, “Quantum Fluid Dynamics of a Classically Chaotic Oscillator”, Physics Letter A, Vol. 181, pp.225-231.
[24]Creutz, M., and Freedman, B., 1981, “A Statistical Approach to Quantum Mechanics”, Annals of Physics, Vol. 132, pp.427-462.
[25]de Alcantara Bonfim, O.F., Florencio, J., and Sá Barreto, F.C., 1998, “Chaotic Dynamics in Billiards Using Bohm’s Quantum Mechanics”, Physics Review E, Vol. 58, pp.2693-2696.
[26]de Polavieja, G.G., Borondo, F., and Benito, R.M., 1994, “Scars in Groups of Eigenstates in a Classically Chaotic System”, Physics Review Letter, Vol. 73, pp.1613-1616.
[27]de Sales, J.A., and Florencio, J., 2003, “Quantum Chaotic Trajectories in Integrable Right Triangular Billiards”, Physics Review E, Vol. 67, pp.016216.1 – 6.
[28]Dippel, O., Schmelcher, P., and Cederbaum, L.S., 1994, “Charged Anisotropic Harmonic Oscillator and The Hydrogen Atom in Crossed Fields”, Physics Review A, Vol. 49, pp.4415-4429.
[29]Eckmann, J.P., Oliffson Kamphorst, S., 1986, “Lyapunov Exponents from Time Series”, Physics Review A, Vol. 34, pp.4971-4979.
[30]Eckmann, J.P., and Ruelle, D., 1985, “Ergodic Theory of Chaos and Strange Attractors”, Reviews of Modern Physics, Vol. 57, pp.617-656.
[31]Elnaschie M.S., 1995, “On Conjugate Complex Time and Information in Relativistic Quantum Theory”, Chaos, Solitons and Fractals, Vol. 5(8), pp. 1551-1555.
[32]Elnaschie M.S., 2000, “On the Unification of the Fundamental Forces and Complex Time in the Space”, Chaos, Solitons and Fractals, Vol. 11, pp.1149-1162.
[33]Elnaschie, M.S., 2005, “The Feynman Path Integral and E-infinity from the Two-Slit Gedaneken Experiment”, International Journal of Nonlinear Science and Numerical Simulation, Vol. 6(4), pp.335-342.
[34]Elnaschie, M.S., 2005, “A New Solution for the Two-Slit Experiment”, Chaos, Solitons and Fractals, Vol. 25, pp.935-939.
[35]Elnaschie M.S., 2005, “Non-Euclidean Spacetime Structure and the Two-Slit Experiment”, Chaos, Solitons and Fractals, Vol. 26, pp.1-6.
[36]Elnaschie, M.S., 2006, “Hilbert Space, the Number of Higgs Particles and the Quantum Two-Slit Experiment”, Chaos, Solitons and Fractals, Vol. 27, pp.9-13.
[37]Feynman, R.P., and Hibbs, A.R., 1965, “Quantum Mechanics and Path Integrals”, MacGraw-Hill.
[38]Giannoni, M.J., Voros, A., and J. Zinn-Justin, 1991, “Chaos and Quantum PhysicsLes Houches Lecture Series 52”, North-Holland, Amsterdam.
[39]Goldstein, H., 1980, “Classical Mechanics”, Chapter 10, 2nd Ed., Addison- Wesley Publishing Company.
[40]Goldstein, S., Misra, B., and Courbage, M., 1981, “On Intrinsic Randomness of Dynamical Systems”, Journal of Statistical Physics, Vol. 25, pp.111-126.
[41]Goodrich, R., Gustafson, K., and Misra, B., 1980, “On Converse to Koopman's Lemma”, Physica A, Vol. 102, pp.379-388.
[42]Grassberger, P., and Procaccia, 1983, “Characterization of Strange Attractors”, Physics Review Letter, Vol. 50, pp.346-49.
[43]Gutzwiller, M.C., 1990, “Chaos in Classical and Quantum Systems”, Springer, Berlin.
[44]Haake, F., 1990, “Quantum Signatures of Chaos”, Springer, Berlin.
[45]Herold, H., Ruder, H., and Wunner, G., 1981, “The Two-Body Problem in the Presence of a Homogeneous Magnetic Field”, Journal of Physics B, Vol. 14, pp.751-764.
[46]Hilborn, R.C., 2000, “Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers”, Oxford university.
[47]Hilbert, D., 1902, “Mathematical Problems, Bulletin of the American Mathematical Society”, Vol. 8, pp.437-479.
[48]Hirsch, M.W., and Smale, S., 1965, “Differential Equations, Dynamic Systems and Linear Algebra”, Academic Press, New York.
[49]Holland, P. R., 1993, “The Quantum Theory of Motion”, Cambridge University.
[50]Hopf, E., 1934, “On Causality, Statistics, and Probability”, Journal of Mathematics and Physics, Vol. 13, pp.51-102.
[51]Izrailev, F.M., 1990, “Simple Models of Quantum Chaos: Spectrum and Eigenfunctions”, Physics Reports, Vol. 196, pp.299-392.
[52]Jahnson, R.A., Palmer, K.J., and Sell, G., 1987, “Ergodic Properties of Linear Dynamical Systems”, SIAM Journal on Mathematical Analysis, Vol. 18, pp. 1-33.
[53]Jancel, R., 1969, “Foundations of Classical and Quantum Statistical Mechanics”, Oxford, UK.
[54]José, J.V., 1988, “Quantum Manifestations of Classical Chaos: Statistics of Spectra,” in Hao, B.L., editor, Directions in chaos, Vol. 2, Singapore.
[55]Kleinert, H., 2004, “Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets”, World Scientific.
[56]Kolmogorov, A.N., 1960, “A New Metric Invariant for Transitive Dynamical Systems and Automorphisms in Lebesgue Spaces, Doklady of Russian Academy of Sciences”, Mathematical Reviews, Vol. 21, pp.386.
[57]Konkel, S., and Makowski, A.J., 1998, “Regular and Chaotic Causal Trajectories for the Bohm Potential in a Restricted Space”, Physics Letter A, Vol. 238, pp.95-100.
[58]Koopman, B., 1931, “Hamiltonian Systems and Transformations in Hibert Space”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 17, pp.315-318.
[59]Koopman, B., and von Neumann, J., 1932, “Dynamical Systems of Continuous Spectra”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 18, pp.255-266.
[60] Kroger, H., 2000, “Fractal Geometry in Quantum Mechanics, Field Theory and Spin Systems”, Physics Reports, Vol. 323, pp.81-181.
[61]Krylov, N.S., 1979, “Works on the Foundations of Statistical Physics”, Princeton University.
[62]Mané, R., Rand, D., and Young, L.S., 1981, “Dynamical Systems and Turbulence”, Springer, Berlin. [63]Mehta, M.L., 1991, “Random Matrix Theory”, Academic Press.
[64]Meyn, S.P., and Tweedie, R.L., 2005, “Markov Chains and Stochastic Stability”, Springer-Verlag, London.
[65]Miller, S.C., and Good, R.H., 1953, “A WKB-Type Approximation to the Schrödinger Equation”, Physical Review, Vol. 91, pp.174-179.
[66]Misra, B., Prigogine, I., and Courbage, M., 1979, “From Deterministic Dynamics to Probabilistic Descriptions”, Physica A, Vol. 98, pp.1-26.
[67]Misra, B., and Prigogine, I., 1983, “In Long Time Predictions in Dynamical Systems”, Wiley, New York, pp.21-43.
[68]Parmenter, R.H. and Valentine, R.W., 1995, “Deterministic Chaos and the Causal Interpretation of Quantum Mechanics”, Physics Letter A, Vol. 201, pp.1-8.
[69]Parmenter, R.H., and Valentine, R.W., 1997, “Chaotic Causal Trajectories Associated with a Single Stationary State of a System of Noninteracting Particles”, Physics Letter A, Vol. 227, pp.5-14.
[70]Penrose, R., 1979, “Singularities and Time-Asymmetry, in S.W. Hawking and W. Israel, eds., General Relativity: An Einstein Centenary Survey”, Cambridge University.
[71]Pesin, Ya. B., 1977, “Lyapunov Characteristic Exponents and Smooth Ergodic Theory”, Russian Mathematical Surveys, Vol. 32, pp.55-114.
[72]Prigogine, I., 1980, “From Being to Becoming: The New Science of Connectedness”, San Francisco.
[73]Rabinovich, M.I., 1979, “Stochastic Self-Oscillations and Turbulence”, Soviet Physics Uspekhi, Vol. 21, pp.443-469.
[74]Ribeiro, A.D., de Aguiar, M.A.M., and Baranger, M., 2004, “Semiclassical Approximation Based on Complex Trajectories”, Physical Review E, Vol. 69, pp.066204.1-14.
[75]Rosenstein, M.T., Collins, J.J., and De Luca, C.J., 1993, “A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets”, Physica D, Vol. 65, pp.117-134.
[76]Schmelcher, P., and Cederbaum, L.S., 1993, “Two-body Effects of The Hydrogen Atom in Crossed Electric and Magnetic Fields”, Chemical Physics Letters, Vol. 208, pp.548-554.
[77]Seligman, T.H., Verbaraarschot, J.J.M., and Zirnbauer, M.R., 1984, “Quantum Spectra and Transition from Regular to Chaotic Classical Motion” Physics Review Letter, Vol. 53, pp.215-217.
[78]Shankar, R., 1994, “Principles of Quantum Mechanics”, Chapter 7, 2nd Ed., Plenum Press.
[79]Sharlow, M.F., 1998, “A New Non-Hausdorff Spacetime Model for Resolution of the Time Travel Paradoxes”, Annals of Physics, Vol. 263, pp.179-197.
[80]Sinai, Y.G., 1988, “About A. N. Komogorov’s Work on the Entropy of Dynamical Systems, Ergodic Theory and Dynamical Systems”, Vol. 8, pp.501-502.
[81]Takens, F., 1980, “Detecting Strange Attractor in Turbulence”. In D. Rand and L. S. Young, editors, Dynamical Systems and Turbulence, Warwick, page 366, Springer, Berlin, 1981.
[82]Visser, M., 1995, “Lorentzian wormholes: From Einstein to Hawking”, AIP Press, Woodbury, N.Y..
[83]Von Plato, J., 1991, “Boltzmann's Ergodic Hypothesis”, Archive for History of Exact Sciences, Vol. 42, pp.71-89.
[84]Yang, C.D., 2005, “Wave-Particle Duality in Complex Space”, Annuals of Physics, Vol. 319, pp.444-470.
[85]Yang, C.D., 2005, “Quantum Dynamics of Hydrogen Atom in Complex Space”, Annuals of Physics, Vol. 319, pp.399-443.
[86]Yang, C.D., 2006, “Modeling Quantum Harmonic Oscillator in Complex Domain”, Chaos, Solitons and Fractals, Vol. 30, pp.342-362.
[87]Yang, C.D., 2006, “Quantum Hamilton Mechanics: Hamilton Equations of Quantum Motion, Origin of Quantum Operators, and Proof of Quantization Axiom”, Annals of Physics, Vol. 321, pp.2876-2926.
[88]Yang, C.D., 2007, “Quantum Motion in Complex Space”, Chaos, Solitons and Fractals, Vol. 33, pp.1073-1092.
[89]Yang, C.D., 2008, “Trajectory Interpretation of the Uncertainty Principle in 1D Systems Using Complex Bohmian Mechanics”, Physics Letters A, Vol. 372, pp.6240-6253.
[90]Zakrzewski, J., Dupret, K., and Delande, D., 1995, “Statistical Properties of Energy Levels of Chaotic Systems: Wigner or Non-Wigner?”, Physics Review Letter, Vol. 74, pp.522-525.
[91]Zurek , W.H., and Paz, J.P., 1994, “Decoherence, Chaos, and the Second Law”, Physics Review Letter, Vol. 72, pp. 2508-2511.
|