跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳曉燕
研究生(外文):Hsiao-Yen Chen
論文名稱:牛第四型皰疹病毒之基因功能暨調控研究
論文名稱(外文):Studies on the gene function and regulation of bovine herpesvirus type 4(BHV-4)
指導教授:施桂月
指導教授(外文):Guey-Yueh Shi
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:93
中文關鍵詞:IE1基因血管內皮細胞RING E3泛素連接酶牛第四型疱疹病毒ORF57蛋白不同剪接方式的轉錄產物IE2蛋白
外文關鍵詞:RING E3 ubiquitin ligaseORF57 proteinalternative transcriptsendothelial cellsIE2 proteinIE1 geneBHV-4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
牛第四型疱疹病毒能感染血管內皮細胞並大量複製,而且兔子感染這種病毒後其血管動脈硬化的生成速度會加快。然而至今尚未有文獻探討牛第四型疱疹病毒在血管內皮細胞中基因的表現、調控與功能。牛第四型疱疹病毒在上皮細胞表現二種前早期基因(immediate-early gene, IE gene)。表現量較少的IE RNA 2所轉錄的IE2蛋白具有調控早期與晚期基因的功能,而表現量較多的IE RNA 1其功能尚未被發現。本研究的目的即在探討牛第四型疱疹病毒感染血管內皮細胞後其IE1基因表現、調控與功能。我們發現在病毒感染細胞之前早期階段IE RNA 1表現量明顯增加,而且IE1基因區域在病毒感染後期階段尚表現一些經不同剪接方式生成的轉錄產物(alternative transcripts)。這些經由不同剪接方式所生成的轉錄產物都是使用一對隱藏在第四個外顯子(exon 4)內的剪接提供(splice donor)與接受(acceptor)序列來移除一段378-bp的插入子(intron)。IE1基因也使用多個轉錄起始點與聚腺苷酸化(polyadenylation)位置來增添調控的選擇性。報告基因分析(reporter assay)與膠體電泳位移分析(electrophoretic mobility shift assay)結果可知IE2蛋白經由辨識IE1基因啟動子上一段37-bp (-549/-513)的片段調控著IE1基因的表現,且這個調控現象能隨著IE2蛋白的表現量增加而更加明顯。由於IE1基因能產生這麼多種轉錄產物且它的表現受到IE2蛋白的調控,所以我們運用共同轉染(co-transfection)與反轉錄聚合酶連鎖反應(RT-PCR)分析哪一種轉錄產物受到IE2蛋白的調控。有趣的是,IE2蛋白的確能活化IE1基因的轉錄並產生大量的IE RNA 1,而其它以不同剪接方式生成的轉錄產物則是必須要牛第四型疱疹病毒的ORF57蛋白幫助它們移除隱藏在第四個外顯子的插入子才能大量生成。兩種經不同剪接方式生成的轉錄產物的全長cDNA序列已定序完成,它們分別被命名為IE RNA 1-SV1與IE RNA 1-SV2,而它們可能轉譯出的蛋白則分別命名為IE1_174蛋白與IE1_165蛋白。IE RNA 1所轉譯的IE1蛋白與IE1_165蛋白具有RING E3泛素連接酶(RING E3 ubiquitin ligase)的二種特微:一個C4HC3 RING-CH motif與二個穿膜區域。然而,IE1_174蛋白只有一個不完整的C4HC3 RING-CH motif,而且不具有穿膜區域。我們並發現IE1蛋白具有抑制第一型主要組織相容性複合體(MHC class I)分子於細胞表面分布的功能,推測可能幫助病毒逃避免疫系統攻擊。IE1_174蛋白則無此功能。以上的研究結果顯示,IE1基因在內皮細胞的表現有著極複雜的調控機轉,而IE2蛋白與ORF57蛋白分別在轉錄時與轉錄後進行調控。
Bovine herpesvirus type 4 (BHV-4), an endothelial-tropic virus, is known to accelerate atherosclerosis process in a rabbit model. However, the expression and regulation of BHV-4 gene in infected endothelial cells remains unclear. BHV-4 expresses two immediate-early genes in epithelial cells. The minor transcript, IE RNA 2, encodes a transcription factor IE2 protein, which regulates several BHV-4 early and late genes. The function of the major transcript IE RNA 1 remains unknown. The purposes of this study were to investigate the IE1 gene regulation and function in BHV-4-infected endothelial cells. We found that IE RNA 1 expressed prominently in the immediate-early stage of infection. Several alternative transcripts using a pair of cryptic internal splice donor and acceptor sites within exon 4 as well as different initiation and polyadenylation sites were produced at later stages of infection. Analytic results of reporter assays and electrophoretic mobility shift assays revealed that IE2 protein, via a 37-bp fragment (-549/-513), dose-dependently regulated IE1 gene. IE2 protein activated the IE1 gene transcription and produced a large amount of IE RNA 1 as evidenced by co-transfection and RT-PCR assay. Interestingly, alternative transcripts were increased in the presence of ORF57 protein of BHV-4, which participated in splicing of viral transcripts via promoting the removal of the cryptic intron located in exon 4. The full-length cDNA sequences of two alternative transcripts, IE RNA 1-SV1 and IE RNA 1-SV2, were obtained from RACE experiments. IE RNA 1-SV1 and IE RNA 1-SV2 were predicted to encode IE1_174 protein and IE1_165 protein, respectively. The IE1 protein, encoded by IE RNA 1, and IE1_165 protein contained two characteristics of RING E3 ubiquitin ligase, a C4HC3 RING-CH motif and two transmembrane regions. However, IE1_174 protein contained an imperfect RING-CH motif and was lack of two transmembrane regions. Furthermore, we showed that IE1 protein, but not IE1_174 protein, participated in immune evasion by down-regulation of MHC class I molecules on the cell surface. Altogether, these data suggest that regulation of IE1 gene is extreme complex in endothelial cells, and IE2 protein and ORF57 protein regulate IE1 gene at the transcription level and the post-transcription level, respectively.
Contents
Abstract in Chinese 摘要 1
Abstract 3
Acknowledgment致謝 5
Abbreviations 7
Contents 9
Table list 11
Figure list 12
Introduction 13
Infection and atherosclerosis 13
BHV-4 14
BHV-4 and atherosclerosis 15
BHV-4 genes and regulation 16
Viruses exploit ubiquitin system 18
Specific aims 20
Materials and methods 21
Cell culture and virus propagation 21
Reverse transcription-polymerase chain reaction (RT-PCR) 21
Detection of viral DNA replication 22
Western blot analysis 23
Plasmid construction 24
Transient transfection and reporter assay 24
5’- and 3’-rapid amplification of cDNA ends (RACE) 25
Electrophoretic mobility shift assay (EMSA) 25
Immunofluorescence assay 26
Evaluation of data and statistics 27
Results 28
Analysis of IE1 gene transcription in BHV-4-infected endothelial cells 28
Identification of the 5’- and 3’-ends of IE 1 gene transcripts expressed late in infection 29
Basal promoter activity of IE1 gene promoter 30
IE2 protein regulates IE1 gene promoter in a dose-dependent manner 31
IE2 protein binds a 37-bp fragment of IE1 promoter 32
Putative consensus binding sequence of the IE2 protein 33
IE2 protein enhances IE1 gene transcription whereas ORF57 protein promotes the production of alternative transcripts 34
The expression of IE1 gene products in BHV-4-infected endothelial cells 36
IE1 gene products containing a RING-CH motif 36
IE1 protein down-regulates cell surface MHC class I molecules 37
Discussion 39
Differential regulation of BHV-4 IE1 gene in endothelial cells and in epithelial cells 39
Alternative transcripts of BHV-4 IE1 gene 40
BHV-4 IE2 protein response elements 41
Putative strategy used by IE1 protein to interfere surface distribution of MHC class I molecules 42
References 45
Tables 56
Figures 58
Part II. The effects of Chlamydia pneumoniae infection on endothelial hemostasis 73
Author’s curriculum vitae 92
Adam, E., Melnick, J.L., Probtsfield, J.L., Petrie, B.L., Burek, J., Bailey, K.R., McCollum, C.H. and DeBakey, M.E., 1987. High levels of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis. Lancet 2, 291-3.
Antoniou, A.N. and Powis, S.J., 2008. Pathogen evasion strategies for the major histocompatibility complex class I assembly pathway. Immunology 124, 1-12.

Areste, C. and Blackbourn, D.J., 2009. Modulation of the immune system by Kaposi's sarcoma-associated herpesvirus. Trends Microbiol 17, 119-29.

Bartee, E., Mansouri, M., Hovey Nerenberg, B.T., Gouveia, K. and Fruh, K., 2004. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J Virol 78, 1109-20.

Bartha, A., Juhasz, M. and Liebermann, H., 1966. Isolation of a bovine herpesvirus from calves with respiratory disease and keratoconjunctivitis. A preliminary report. Acta Vet Acad Sci Hung 16, 357-8.

Bermudez-Cruz, R., Zhang, L. and van Santen, V.L., 1997. Characterization of an abundant, unique 1.7-kilobase bovine herpesvirus 4 (BHV-4) late RNA and mapping of a BHV-4 IE2 transactivator-binding site in its promoter-regulatory region. J Virol 71, 527-38.

Bermudez-Cruz, R., Zhang, L. and van Santen, V.L., 1998. Characterization of a bovine herpesvirus 4(BHV-4) 1.1-kb RNA and its transactivation by BHV-4 immediate-early 2 gene product. Arch Virol 143, 2391-412.

Broll, H., Finsterbusch, T., Buhk, H.J. and Goltz, M., 1999. Genetic analysis of the bovine herpesvirus type 4 gene locus for the putative terminase. Virus Genes 19, 243-50.

Bruggeman, C.A., 2000. Does Cytomegalovirus Play a Role in Atherosclerosis? Herpes 7, 51-54.

Bublot, M., Lomonte, P., Lequarre, A.S., Albrecht, J.C., Nicholas, J., Fleckenstein, B., Pastoret, P.P. and Thiry, E., 1992. Genetic relationships between bovine herpesvirus 4 and the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. Virology 190, 654-65.

Bublot, M., Van Bressem, M.F., Thiry, E., Dubuisson, J. and Pastoret, P.P., 1990. Bovine herpesvirus 4 genome: cloning, mapping and strain variation analysis. J Gen Virol 71 ( Pt 1), 133-42.

Carlquist, J.F., Muhlestein, J.B., Horne, B.D., Hart, N.I., Lim, T., Habashi, J., Anderson, J.G. and Anderson, J.L., 2004. Cytomegalovirus stimulated mRNA accumulation and cell surface expression of the oxidized LDL scavenger receptor, CD36. Atherosclerosis 177, 53-9.

Carroll, K.D., Khadim, F., Spadavecchia, S., Palmeri, D. and Lukac, D.M., 2007. Direct interactions of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta protein with the cellular protein octamer-1 and DNA are critical for specifying transactivation of a delayed-early promoter and stimulating viral reactivation. J Virol 81, 8451-67.

Chang, H., Gwack, Y., Kingston, D., Souvlis, J., Liang, X., Means, R.E., Cesarman, E., Hutt-Fletcher, L. and Jung, J.U., 2005. Activation of CD21 and CD23 gene expression by Kaposi's sarcoma-associated herpesvirus RTA. J Virol 79, 4651-63.

Chiu, B., Viira, E., Tucker, W. and Fong, I.W., 1997. Chlamydia pneumoniae, cytomegalovirus, and herpes simplex virus in atherosclerosis of the carotid artery. Circulation 96, 2144-8.

Coscoy, L. and Ganem, D., 2000. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci U S A 97, 8051-6.

Coscoy, L., Sanchez, D.J. and Ganem, D., 2001. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol 155, 1265-73.

Cox, M.A., Leahy, J. and Hardwick, J.M., 1990. An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J Virol 64, 313-21.

Dodd, R.B., Allen, M.D., Brown, S.E., Sanderson, C.M., Duncan, L.M., Lehner, P.J., Bycroft, M. and Read, R.J., 2004. Solution structure of the Kaposi's sarcoma-associated herpesvirus K3 N-terminal domain reveals a Novel E2-binding C4HC3-type RING domain. J Biol Chem 279, 53840-7.

Donofrio, G., Cavirani, S., van Santen, V. and Flammini, C.F., 2005. Potential secondary pathogenic role for bovine herpesvirus 4. J Clin Microbiol 43, 3421-6.

Donofrio, G., Martignani, E., Poli, E., Lange, C., Martini, F.M., Cavirani, S., Cabassi, C.S., Taddei, S. and Flammini, C.F., 2006. Bovine herpesvirus 4 based vector interaction with liver cells in vitro and in vivo. J Virol Methods 136, 126-36.

Dubuisson, J., Thiry, E., Thalasso, F., Bublot, M. and Pastoret, P.P., 1988. Biological and biochemical comparison of bovid herpesvirus-4 strains. Vet Microbiol 16, 339-49.

Duncan, L.M., Piper, S., Dodd, R.B., Saville, M.K., Sanderson, C.M., Luzio, J.P. and Lehner, P.J., 2006. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J 25, 1635-45.

Egyed, L. and Baska, F., 2003. Histological lesions in vascular tissues of bovine herpes virus type 4-infected rabbits. Vet Microbiol 91, 1-10.

Ehlers, B., Buhk, H.J. and Ludwig, H., 1985. Analysis of bovine cytomegalovirus genome structure: cloning and mapping of the monomeric polyrepetitive DNA unit, and comparison of European and American strains. J Gen Virol 66 ( Pt 1), 55-68.

Everett, R.D., 1984. Trans activation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO J 3, 3135-41.

Everett, R.D., 1986. The products of herpes simplex virus type 1 (HSV-1) immediate early genes 1, 2 and 3 can activate HSV-1 gene expression in trans. J Gen Virol 67 ( Pt 11), 2507-13.

Fabricant, C.G., Fabricant, J., Minick, C.R. and Litrenta, M.M., 1983. Herpesvirus-induced atherosclerosis in chickens. Fed Proc 42, 2476-9.

Fang, S., Jensen, J.P., Ludwig, R.L., Vousden, K.H. and Weissman, A.M., 2000. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275, 8945-51.

Froberg, M.K., 2004. Review: CMV escapes! Ann Clin Lab Sci 34, 123-30.

Goltz, M., Broll, H., Mankertz, A., Weigelt, W., Ludwig, H., Buhk, H.J. and Borchers, K., 1994. Glycoprotein B of bovine herpesvirus type 4: its phylogenetic relationship to gB equivalents of the herpesviruses. Virus Genes 9, 53-9.

Goto, E., Ishido, S., Sato, Y., Ohgimoto, S., Ohgimoto, K., Nagano-Fujii, M. and Hotta, H., 2003. c-MIR, a human E3 ubiquitin ligase, is a functional homolog of herpesvirus proteins MIR1 and MIR2 and has similar activity. J Biol Chem 278, 14657-68.

Grabe, N., 2002. AliBaba2: context specific identification of transcription factor binding sites. In Silico Biol 2, S1-15.

Hardwick, J.M., Lieberman, P.M. and Hayward, S.D., 1988. A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62, 2274-84.

Hendrix, M.G., Dormans, P.H., Kitslaar, P., Bosman, F. and Bruggeman, C.A., 1989. The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and nonatherosclerotic patients. Am J Pathol 134, 1151-7.

Hewitt, E.W., 2003. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163-9.

Hewitt, E.W., Duncan, L., Mufti, D., Baker, J., Stevenson, P.G. and Lehner, P.J., 2002. Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J 21, 2418-29.

Honess, R.W. and Roizman, B., 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14, 8-19.

Ishido, S., Goto, E., Matsuki, Y. and Ohmura-Hoshino, M., 2009. E3 ubiquitin ligases for MHC molecules. Curr Opin Immunol 21, 78-83.

Ishido, S., Wang, C., Lee, B.S., Cohen, G.B. and Jung, J.U., 2000. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74, 5300-9.

Kit, S., Kit, M., Ichimura, H., Crandell, R. and McConnell, S., 1986. Induction of thymidine kinase activity by viruses with group B DNA genomes: bovine cytomegalovirus (bovine herpesvirus 4). Virus Res 4, 197-212.

Kozak, M., 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187-208.

Kuo, C.C., Shor, A., Campbell, L.A., Fukushi, H., Patton, D.L. and Grayston, J.T., 1993. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 167, 841-9.

Lan, K., Kuppers, D.A., Verma, S.C., Sharma, N., Murakami, M. and Robertson, E.S., 2005. Induction of Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J Virol 79, 7453-65.

Lehner, P.J., Hoer, S., Dodd, R. and Duncan, L.M., 2005. Downregulation of cell surface receptors by the K3 family of viral and cellular ubiquitin E3 ligases. Immunol Rev 207, 112-25.

Letunic, I., Goodstadt, L., Dickens, N.J., Doerks, T., Schultz, J., Mott, R., Ciccarelli, F., Copley, R.R., Ponting, C.P. and Bork, P., 2002. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30, 242-4.

Liang, Y., Chang, J., Lynch, S.J., Lukac, D.M. and Ganem, D., 2002. The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev 16, 1977-89.
Liang, Y. and Ganem, D., 2003. Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci U S A 100, 8490-5.

Liang, Y. and Ganem, D., 2004. RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi's sarcoma-associated herpesvirus by the lytic switch protein RTA. J Virol 78, 6818-26.

Liao, W., Tang, Y., Kuo, Y.L., Liu, B.Y., Xu, C.J. and Giam, C.Z., 2003. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J Virol 77, 9399-411.

Lin, T.M., Jiang, M.J., Eng, H.L., Shi, G.Y., Lai, L.C., Huang, B.J., Huang, K.Y. and Wu, H.L., 2000. Experimental infection with bovine herpesvirus-4 enhances atherosclerotic process in rabbits. Lab Invest 80, 3-11.

Lin, T.M., Shi, G.Y., Jiang, S.J., Tsai, C.F., Hwang, B.J., Hsieh, C.T. and Wu, H.L., 1999. Persistent infection of bovine herpesvirus type 4 in bovine endothelial cell cultures. Vet Microbiol 70, 41-53.

Lin, T.M., Shi, G.Y., Tsai, C.F., Su, H.J., Guo, Y.L. and Wu, H.L., 1997. Susceptibility of endothelial cells to bovine herpesvirus type 4 (BHV-4). J Virol Methods 63, 219-25.

Liu, Y., Cao, Y., Liang, D., Gao, Y., Xia, T., Robertson, E.S. and Lan, K., 2008. Kaposi's sarcoma-associated herpesvirus RTA activates the processivity factor ORF59 through interaction with RBP-Jkappa and a cis-acting RTA responsive element. Virology 380, 264-75.

Lomonte, P., Bublot, M., van Santen, V., Keil, G.M., Pastoret, P.P. and Thiry, E., 1995. Analysis of bovine herpesvirus 4 genomic regions located outside the conserved gammaherpesvirus gene blocks. J Gen Virol 76 ( Pt 7), 1835-41.

Lorenzo, M.E., Jung, J.U. and Ploegh, H.L., 2002. Kaposi's sarcoma-associated herpesvirus K3 utilizes the ubiquitin-proteasome system in routing class major histocompatibility complexes to late endocytic compartments. J Virol 76, 5522-31.

Ludwig, H., 1983. Bovine Herpesviruses. In B. Roizman, The herpesviruses, Vol. 2. Plenum Press, New York, 135-214.

Lukac, D.M., Renne, R., Kirshner, J.R. and Ganem, D., 1998. Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252, 304-12.

Majerciak, V., Yamanegi, K., Allemand, E., Kruhlak, M., Krainer, A.R. and Zheng, Z.M., 2008. Kaposi's sarcoma-associated herpesvirus ORF57 functions as a viral splicing factor and promotes expression of intron-containing viral lytic genes in spliceosome-mediated RNA splicing. J Virol 82, 2792-801.

Matsumura, S., Fujita, Y., Gomez, E., Tanese, N. and Wilson, A.C., 2005. Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 79, 8493-505.

Means, R.E., Ishido, S., Alvarez, X. and Jung, J.U., 2002. Multiple endocytic trafficking pathways of MHC class I molecules induced by a Herpesvirus protein. EMBO J 21, 1638-49.

Means, R.E., Lang, S.M. and Jung, J.U., 2007. The Kaposi's sarcoma-associated herpesvirus K5 E3 ubiquitin ligase modulates targets by multiple molecular mechanisms. J Virol 81, 6573-83.

Melnick, J.L., Petrie, B.L., Dreesman, G.R., Burek, J., McCollum, C.H. and DeBakey, M.E., 1983. Cytomegalovirus antigen within human arterial smooth muscle cells. Lancet 2, 644-7.

Mendall, M.A., Goggin, P.M., Molineaux, N., Levy, J., Toosy, T., Strachan, D., Camm, A.J. and Northfield, T.C., 1994. Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J 71, 437-9.

Minick, C.R., Fabricant, C.G., Fabricant, J. and Litrenta, M.M., 1979. Atheroarteriosclerosis induced by infection with a herpesvirus. Am J Pathol 96, 673-706.

Mohanty, S.B., Hammond, R.C. and Lillie, M.G., 1971. A new bovine herpesvirus and its effect on experimentally infected calves. Brief report. Arch Gesamte Virusforsch 33, 394-5.

Moreno-Lopez, J., Goltz, M., Rehbinder, C., Valsala, K.V. and Ludwig, H., 1989. A bovine herpesvirus (BHV-4) as passenger virus in ethmoidal tumours in Indian cattle. Zentralbl Veterinarmed B 36, 481-6.

Mukhopadhyay, D. and Riezman, H., 2007. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201-5.

Nathan, J.A. and Lehner, P.J., 2009. The trafficking and regulation of membrane receptors by the RING-CH ubiquitin E3 ligases. Exp Cell Res 315, 1593-600.

Nicholas, J., Ruvolo, V., Zong, J., Ciufo, D., Guo, H.G., Reitz, M.S. and Hayward, G.S., 1997. A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins. J Virol 71, 1963-74.

Ohmura-Hoshino, M., Goto, E., Matsuki, Y., Aoki, M., Mito, M., Uematsu, M., Hotta, H. and Ishido, S., 2006. A novel family of membrane-bound E3 ubiquitin ligases. J Biochem 140, 147-54.

Osorio, F.A. and Reed, D.E., 1983. Experimental inoculation of cattle with bovine herpesvirus-4: evidence for a lymphoid-associated persistent infection. Am J Vet Res 44, 975-80.

Pickart, C.M., 2004. Back to the future with ubiquitin. Cell 116, 181-90.

Rahbar, A. and Soderberg-Naucler, C., 2005. Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation. J Virol 79, 2211-20.

Randow, F. and Lehner, P.J., 2009. Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 11, 527-34.

Russo, J.J., Bohenzky, R.A., Chien, M.C., Chen, J., Yan, M., Maddalena, D., Parry, J.P., Peruzzi, D., Edelman, I.S., Chang, Y. and Moore, P.S., 1996. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93, 14862-7.

Saikku, P., Leinonen, M., Mattila, K., Ekman, M.R., Nieminen, M.S., Makela, P.H., Huttunen, J.K. and Valtonen, V., 1988. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2, 983-6.

Sanchez, D.J., Coscoy, L. and Ganem, D., 2002. Functional organization of MIR2, a novel viral regulator of selective endocytosis. J Biol Chem 277, 6124-30.

Schultz, J., Milpetz, F., Bork, P. and Ponting, C.P., 1998. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95, 5857-64.

Sedlackova, L., Perkins, K.D., Lengyel, J., Strain, A.K., van Santen, V.L. and Rice, S.A., 2008. Herpes simplex virus type 1 ICP27 regulates expression of a variant, secreted form of glycoprotein C by an intron retention mechanism. J Virol 82, 7443-55.

Sorlie, P.D., Adam, E., Melnick, S.L., Folsom, A., Skelton, T., Chambless, L.E., Barnes, R. and Melnick, J.L., 1994. Cytomegalovirus/herpesvirus and carotid atherosclerosis: the ARIC Study. J Med Virol 42, 33-7.

Staudt, M.R. and Dittmer, D.P., 2007. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol 312, 71-100.

Storz, J., Ehlers, B., Todd, W.J. and Ludwig, H., 1984. Bovine cytomegaloviruses: identification and differential properties. J Gen Virol 65 ( Pt 4), 697-706.

Streblow, D.N., Soderberg-Naucler, C., Vieira, J., Smith, P., Wakabayashi, E., Ruchti, F., Mattison, K., Altschuler, Y. and Nelson, J.A., 1999. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99, 511-20.

Sun, R., Lin, S.F., Gradoville, L., Yuan, Y., Zhu, F. and Miller, G., 1998. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 95, 10866-71.

Swanson, R., Locher, M. and Hochstrasser, M., 2001. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 15, 2660-74.

Thiry, E., Bublot, M., Dubuisson, J. and Pastoret, P.P., 1989. Bovine herpesvirus-4 infection of cattle. In Herpesvirus diseases of cattle, horses, and pigs. Kluwer Academic Publishers, Boston, 96-115.

Thom, D.H., Grayston, J.T., Siscovick, D.S., Wang, S.P., Weiss, N.S. and Daling, J.R., 1992. Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease. JAMA 268, 68-72.

Todd, W.J. and Storz, J., 1983. Morphogenesis of a cytomegalovirus from an American bison affected with malignant catarrhal fever. J Gen Virol 64, 1025-30.

van Santen, V.L., 1991. Characterization of the bovine herpesvirus 4 major immediate-early transcript. J Virol 65, 5211-24.

van Santen, V.L., 1993. Characterization of a bovine herpesvirus 4 immediate-early RNA encoding a homolog of the Epstein-Barr virus R transactivator. J Virol 67, 773-84.

Wakenshaw, L., Walters, M.S. and Whitehouse, A., 2005. The Herpesvirus saimiri replication and transcription activator acts synergistically with CCAAT enhancer binding protein alpha to activate the DNA polymerase promoter. J Virol 79, 13548-60.

Wang, G.H., Bertin, J., Wang, Y., Martin, D.A., Wang, J., Tomaselli, K.J., Armstrong, R.C. and Cohen, J.I., 1997. Bovine herpesvirus 4 BORFE2 protein inhibits Fas- and tumor necrosis factor receptor 1-induced apoptosis and contains death effector domains shared with other gamma-2 herpesviruses. J Virol 71, 8928-32.

Wang, S., Liu, S., Wu, M.H., Geng, Y. and Wood, C., 2001. Identification of a cellular protein that interacts and synergizes with the RTA (ORF50) protein of Kaposi's sarcoma-associated herpesvirus in transcriptional activation. J Virol 75, 11961-73.

Wang, S.E., Wu, F.Y., Fujimuro, M., Zong, J., Hayward, S.D. and Hayward, G.S., 2003. Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi's sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J Virol 77, 600-23.

Wang, Y. and Yuan, Y., 2007. Essential role of RBP-Jkappa in activation of the K8 delayed-early promoter of Kaposi's sarcoma-associated herpesvirus by ORF50/RTA. Virology 359, 19-27.

Whitehouse, A., Carr, I.M., Griffiths, J.C. and Meredith, D.M., 1997a. The herpesvirus saimiri ORF50 gene, encoding a transcriptional activator homologous to the Epstein-Barr virus R protein, is transcribed from two distinct promoters of different temporal phases. J Virol 71, 2550-4.

Whitehouse, A., Stevenson, A.J., Cooper, M. and Meredith, D.M., 1997b. Identification of a cis-acting element within the herpesvirus saimiri ORF 6 promoter that is responsive to the HVS.R transactivator. J Gen Virol 78 ( Pt 6), 1411-5.

Zhang, L. and van Santen, V.L., 1995. Interaction of bovine herpesvirus 4 (BHV-4) immediate early 2 gene product with BHV-4 thymidine kinase promoter-regulatory region. J Gen Virol 76 ( Pt 10), 2433-45.

Zhu, J., Quyyumi, A.A., Norman, J.E., Costello, R., Csako, G. and Epstein, S.E., 2000. The possible role of hepatitis A virus in the pathogenesis of atherosclerosis. J Infect Dis 182, 1583-7.

Zimmermann, W., Broll, H., Ehlers, B., Buhk, H.J., Rosenthal, A. and Goltz, M., 2001. Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication. J Virol 75, 1186-94.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top