|
References 1.Boston, R. P. Feynman in Nanotechnology: Research and Perspectives.p.347 (1992). 2.傅昭銘, 奈米科學與技術的基本概念. 奈米科技-基礎、應用與實作 1:p.3 (2005). 3.何佳安、張立惠, 奈米的健康、危害與保護. 生醫奈米技術 13:p.195 (2007). 4.葉晨聖、黃志嘉, 金奈米的製備與生物醫學上的應用. 生醫奈米技術 2:p.3 (2007). 5.張立德、牟季美, 奈米材料和奈米結構 (2002). 6.黃德歡, 改變世界的奈米技術 (2002). 7.莊萬發, 超微粒子理論應用 (1994). 8.Frankel RB, Blakemore RP and Wolfe RS, Magnetite in Freshwater Magnetotactic Bacteria. Science 203:1355-1356 (1979). 9.O'Brien S, Brus L and Murray CB, Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J Am Chem Soc 123:12085-12086 (2001). 10.Kim HS, Lee SM, Ha K, Jung C, Lee YJ, Chun YS, Kim D, Rhee BK and Yoon KB, Aligned inclusion of hemicyanine dyes into silica zeolite films for second harmonic generation. J Am Chem Soc 126:673-682 (2004). 11.Isaacs RJ and Spielmann HP, Insight into G[bond]T mismatch recognition using molecular dynamics with time-averaged restraints derived from NMR spectroscopy. J Am Chem Soc 126:583-590 (2004). 12.Deng H, Li X, Peng Q, Wang X, Chen J and Li Y, Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed Engl 44:2782-2785 (2005). 13.Moulik BKPaSP, Uses and applications of microemulsions. Current Science 80:990-1001 (2001). 14.Wang X, Zhuang J, Peng Q and Li Y, A general strategy for nanocrystal synthesis. Nature 437:121-124 (2005). 15.Ohnishi M, Y. Kozuka, Q. L. Ye, H. Yoshikawa, K. Awaga, R. Matsuno, M. Kobayashi, A. Takahara, T. Yokoyama, S. Bandow and S. Iijima., Phase selective preparations and surface modifications of spherical hollow nanomagnets. J Mater Chem 16:3215 - 3220 (2006). 16.Jia CJ, Sun LD, Yan ZG, You LP, Luo F, Han XD, Pang YC, Zhang Z and Yan CH, Single-crystalline iron oxide nanotubes. Angew Chem Int Ed Engl 44:4328-4333 (2005). 17.Woo K, H. J. Lee, J.-P. Ahn and Y. S. Park., Sol-gel mediated synthesis of Fe2O3 nanorods. Adv Mater 15:1761-1764 (2003). 18.Yang WH, Lee CF, Tang HY, Shieh DB and Yeh CS, Iron oxide nanopropellers prepared by a low-temperature solution approach. J Phys Chem B 110:14087-14091 (2006). 19.Wu PC, Wang WS, Huang YT, Sheu HS, Lo YW, Tsai TL, Shieh DB and Yeh CS, Porous iron oxide based nanorods developed as delivery nanocapsules. Chemistry 13:3878-3885 (2007). 20.Suzuki M, M. Shinkai, M. Yanase, A. Ito, H. Honda and T. and Kobayashi, Enhancement of uptake of magnetoliposomes by magnetic force and hyperthermic effect on tumor. Jpn J Hyperthermic Oncol 15:79-87 (1999). 21.Shinkai M, Functional magnetic particles for medical application. J Biosci Bioeng 94:606-613 (2002). 22.Baker I, Q. Zeng and C. R. Sullivan., Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. J Appl Phys 99:08H106-108H109 (2006). 23.Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y and Kobayashi T, Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167-175 (2004). 24.Kim DH, S. H. Lee, K. H. Im, K. N. Kim, K. M. Kim, I. B. Shim, M. H. Lee and Y. K. Lee., Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies. Current Applied Physics 6S1:e242-e246 (2006). 25.Zhang Z, Zhang L, Chen L and Wan QH, Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA. Biotechnol Prog 22:514-518 (2006). 26.Tong XD, Xue B and Sun Y, A novel magnetic affinity support for protein adsorption and purification. Biotechnol Prog 17:134-139 (2001). 27.Gu H, Xu K, Xu C and Xu B, Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (Camb):941-949 (2006). 28.Shieh DB, C. H. Su, C. H., Chang, F. Y., Wu, Y. N., Su, W. C., Hwu, J. R., Chen, J. H., and Yeh, C. S., Aqueous nickel-nitrilotriacetate modified Fe3O4–NH+3 nanoparticles for protein purification and cell targeting Nanotechnology 17:4174-4182 (2006). 29.Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M and Felgner PL, Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550-2561 (1994). 30.Xu M, Kumar D, Srinivas S, Detolla LJ, Yu SF, Stass SA and Mixson AJ, Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Hum Gene Ther 8:177-185 (1997). 31.Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B and Plank C, Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102-109 (2002). 32.Krotz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U and Plank C, Magnetofection--a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7:700-710 (2003). 33.Xiang JJ, Tang JQ, Zhu SG, Nie XM, Lu HB, Shen SR, Li XL, Tang K, Zhou M and Li GY, IONP-PLL: a novel non-viral vector for efficient gene delivery. J Gene Med 5:803-817 (2003). 34.Schillingera U, T. Brilla, C. Rudolphb, C. Huthb, S. Gerstingb, F. Krotzc, J. Hirschbergerd, C. Bergemanne and C. Plank., Advances in magnetofection—magnetically guided nucleic acid delivery. J Magn Magn Mater 293:501-508 (2005). 35.Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT and Shieh DB, Characterization of aqueous dispersions of Fe(3)O(4) nanoparticles and their biomedical applications. Biomaterials 26:729-738 (2005). 36.Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J and Weissleder R, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491-2499 (2003). 37.Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS and Cheon J, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732-5733 (2005). 38.Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS and Cheon J, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127:12387-12391 (2005). 39.Lee JH, Jun YW, Yeon SI, Shin JS and Cheon J, Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed Engl 45:8160-8162 (2006). 40.Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM and Chen YC, Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7:149-154 (2007). 41.Jendelova P, Herynek V, DeCroos J, Glogarova K, Andersson B, Hajek M and Sykova E, Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50:767-776 (2003). 42.Brahler M, Georgieva R, Buske N, Muller A, Muller S, Pinkernelle J, Teichgraber U, Voigt A and Baumler H, Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett 6:2505-2509 (2006). 43.Kaittanis C, Naser SA and Perez JM, One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7:380-383 (2007). 44.Lin SC, Chang KW, Chang CS, Yu SY, Chao SY and Wong YK, Establishment and characterization of a cell line (HCDB-1) derived from a hamster buccal pouch carcinoma induced by DMBA and Taiwanese betel quid extract. Proc Natl Sci Counc Repub China B 24:129-135 (2000). 45.Kim MS, Li SL, Bertolami CN, Cherrick HM and Park NH, State of p53, Rb and DCC tumor suppressor genes in human oral cancer cell lines. Anticancer Res 13:1405-1413 (1993). 46.Mosmann T, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods 65:55-63 (1983). 47.Alivisatos AP, Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271:933-937 (1996). 48.Jiangtao Hu TWO, and Charles M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc Chem Res 32:435-445 (1999). 49.Morales AM and Lieber CM, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208-211 (1998). 50.Ozin GA, Nanochemistry: Synthesis in diminishing dimensions. Adv Mater 4:612-649 (1992). 51.M. Vallet-Regi AR, R. P. del Real, and J. Pérez-Pariente, A New Property of MCM-41: Drug Delivery System. 13:308-311 (2001). 52.Collins KD, Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. Biophys Chem 119:271-281 (2006). 53.Son SJ, Reichel J, He B, Schuchman M and Lee SB, Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316-7317 (2005). 54.Chen CC, Liu, Y.C.C., Wu, H., Yeh, C.C., Su, M.T., Wu, Y.C., Preparation of Fluorescent Silica Nanotubes and Their Application in Gene Delivery. Adv Mater 17 (2005). 55.Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG and Hyeon T, Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128:688-689 (2006). 56.Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S and Lin VS, A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451-4459 (2003). 57.Supratim Giri BGT, Michael P. Stellmaker, Victor S.-Y. Lin, Stimuli-Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles Angew Chem Int Ed 44:5038-5044 (2005). 58.Xiong Wang XC, Lisheng Gao, Huagui Zheng, Mingrong Ji, Chenming Tang, Tao Shen and Zude Zhang, Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. Mater Chem 14:905-907 (2004). 59.Shaoa HF, Qian, X. F., Yin, j. and Zhu, Z. K., Controlled morphology synthesis of β-FeOOH and the phase transition to Fe2O3. J Solid State Chem 178 (2005). 60.Wan ACA, Tai, B. C. U., Leck, K.-J., Ying, J. Y., Silica-Incorporated Polyelectrolyte-Complex Fibers as Tissue-Engineering Scaffolds. Adv Mater 18:641-644 (2006). 61.M. Sauer DS, W. Meier, pH-Sensitive Nanocontainers. Adv Mater 13:1649-1651 (2001). 62.Gleb B. Sukhorukov AAA, Andreas Voigt, Edwin Donath, Helmuth Möhwald, pH-Controlled Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer Nanocapsules. Macromol Rapid Commun 22:44-46 (2001). 63.Claire S. Peyratout LD, Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers. Angew Chem Int Ed 43:3762-3783 (2004). 64.Godbey WT, Wu KK and Mikos AG, Poly(ethylenimine) and its role in gene delivery. J Control Release 60:149-160 (1999). 65.Godbey WT, Wu KK and Mikos AG, Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A 96:5177-5181 (1999). 66.Michèle Lecocq SW-DC, Nathanael Laurent, Robert Wattiaux, Michel Jadot, Uptake and Intracellular Fate of Polyethylenimine in Vivo. Biochem Biophys Res Commun 278:414-418 (2000). 67.Ming-Ren S. Fuh LWB, Tomas Hirschfeld, Gary D. Christian and Francis Wang, Single fibre optic fluorescence pH probe. Analyst 112:1159-1163 (1987). 68.Stefaniak AB, Guilmette RA, Day GA, Hoover MD, Breysse PN and Scripsick RC, Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution. Toxicol In Vitro 19:123-134 (2005). 69.Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J and Segal AW, Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291-297 (2002). 70.Shapiro EM, Sharer K, Skrtic S and Koretsky AP, In vivo detection of single cells by MRI. Magn Reson Med 55:242-249 (2006). 71.Lee JH and Koretsky AP, Manganese enhanced magnetic resonance imaging. Current pharmaceutical biotechnology 5:529-537 (2004). 72.Bluemke DA, Sahani D, Amendola M, Balzer T, Breuer J, Brown JJ, Casalino DD, Davis PL, Francis IR, Krinsky G, Lee FT, Jr., Lu D, Paulson EK, Schwartz LH, Siegelman ES, Small WC, Weber TM, Welber A and Shamsi K, Efficacy and safety of MR imaging with liver-specific contrast agent: U.S. multicenter phase III study. Radiology 237:89-98 (2005). 73.Nishimura H, Tanigawa N, Hiramatsu M, Tatsumi Y, Matsuki M and Narabayashi I, Preoperative esophageal cancer staging: magnetic resonance imaging of lymph node with ferumoxtran-10, an ultrasmall superparamagnetic iron oxide. Journal of the American College of Surgeons 202:604-611 (2006). 74.Lee H, Lee E, Kim do K, Jang NK, Jeong YY and Jon S, Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383-7389 (2006). 75.Muller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, Lancelot E, Thompson PW, Brown AP and Gillard JH, Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 28:1629-1642 (2007). 76.Lencioni R and Bartolozzi C, Clinical impact of Resovist-enhanced MRI: results of an Italian multicenter trial. Eur Radiol 14 Suppl 1:C10 (2004). 77.Corot C, Robert P, Idee JM and Port M, Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471-1504 (2006). 78.Gohr-Rosenthal S, Schmitt-Willich H, Ebert W and Conrad J, The demonstration of human tumors on nude mice using gadolinium-labelled monoclonal antibodies for magnetic resonance imaging. Invest Radiol 28:789-795 (1993). 79.Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS and Cheon J, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95-99 (2007). 80.Juang RS and Wang YC, Use of complexing agents for effective ion-exchange separation of Co(II)/Ni(II) from aqueous solutions. Water Res 37:845-852 (2003). 81.Bhattacharyya R, Saha RP, Samanta U and Chakrabarti P, Geometry of interaction of the histidine ring with other planar and basic residues. J Proteome Res 2:255-263 (2003). 82.Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, Zhang X and Xu B, Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc 126:3392-3393 (2004). 83.Kim JS, Valencia CA, Liu R and Lin W, Highly-efficient purification of native polyhistidine-tagged proteins by multivalent NTA-modified magnetic nanoparticles. Bioconjug Chem 18:333-341 (2007). 84.Brooks PC, Clark RA and Cheresh DA, Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569-571 (1994). 85.Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA and Cheresh DA, Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500-1502 (1995). 86.Hood JD and Cheresh DA, Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91-100 (2002). 87.Jin H and Varner J, Integrins: roles in cancer development and as treatment targets. Br J Cancer 90:561-565 (2004). 88.Koivunen E, Wang B and Ruoslahti E, Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y) 13:265-270 (1995). 89.de Groot FM, Broxterman HJ, Adams HP, van Vliet A, Tesser GI, Elderkamp YW, Schraa AJ, Kok RJ, Molema G, Pinedo HM and Scheeren HW, Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Mol Cancer Ther 1:901-911 (2002). 90.Pasqualini R and Ruoslahti E, Organ targeting in vivo using phage display peptide libraries. Nature 380:364-366 (1996). 91.Arap W, Pasqualini R and Ruoslahti E, Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377-380 (1998). 92.Hong FD and Clayman GL, Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Res 60:6551-6556 (2000). 93.Wang F, Malac M and Egerton RF, Energy-loss near-edge fine structures of iron nanoparticles. Micron 37:316-323 (2006). 94.Montet X, Montet-Abou K, Reynolds F, Weissleder R and Josephson L, Nanoparticle imaging of integrins on tumor cells. Neoplasia 8:214-222 (2006). 95.de la Fuente JM, Berry CC, Riehle MO and Curtis AS, Nanoparticle targeting at cells. Langmuir 22:3286-3293 (2006). 96.Lin CL, Lee CF and Chiu WY, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J Colloid Interface Sci 291:411-420 (2005). 97.Goede V, Fleckenstein G, Dietrich M, Osmers RG, Kuhn W and Augustin HG, Prognostic value of angiogenesis in mammary tumors. Anticancer Res 18:2199-2202 (1998). 98.Koh I, Hong R, Weissleder R and Josephson L, Sensitive NMR sensors detect antibodies to influenza. Angew Chem Int Ed Engl 47:4119-4121 (2008). 99.Perez JM, Josephson L, O'Loughlin T, Hogemann D and Weissleder R, Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816-820 (2002). 100.Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ, de Mello Donega C, Nicolay K and Griffioen AW, Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1-6 (2006). 101.Saksena MA, Saokar A and Harisinghani MG, Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging. Eur J Radiol 58:367-374 (2006). 102.Thorek DL, Chen AK, Czupryna J and Tsourkas A, Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23-38 (2006). 103.Medarova Z, Pham W, Kim Y, Dai G and Moore A, In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer 118:2796-2802 (2006). 104.Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD and Li KC, Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623-626 (1998). 105.Kreuter J, Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet 19:253-256 (1994). 106.Araujo L, Lobenberg R and Kreuter J, Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Target 6:373-385 (1999). 107.Chithrani BD, Ghazani AA and Chan WC, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662-668 (2006). 108.Hauck TS, Ghazani AA and Chan WC, Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153-159 (2008). 109.Drummond DC, Meyer O, Hong K, Kirpotin DB and Papahadjopoulos D, Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691-743 (1999). 110.Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W and Jahnen-Dechent W, Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941-1949 (2007).
|