跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳炳慶
研究生(外文):Ping-Ching Wu
論文名稱:磁性氧化鐵奈米材料在奈米醫學上的製備與應用
論文名稱(外文):The Nanomedicine Application of Magnetic Iron Oxide Nanomaterials
指導教授:謝達斌
指導教授(外文):Dar-Bin Shieh
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:135
中文關鍵詞:藥物釋放奈米膠囊自組裝奈米醫學
外文關鍵詞:nanomedicineself-assemblynanocapsulesdrug delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:523
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
奈米科技在醫學領域上已由實驗室走入真實的臨床應用,轉譯奈米醫學已成為本世紀重要發展脈絡,快速疾病診斷與治療而避免傷害正常細胞等副作用是現代醫療的新興趨勢。而奈米材料由於可以提供特殊的材料性質而有機會打破傳統醫學診治上的瓶頸,為醫學領域帶來重要的改變以及龐大的生物醫學產業經濟利益。在這篇論文中,我們將分為兩個主要章節,第一部份探討β-FeOOH和α-Fe2O3 所組成具有孔洞的奈米柱體之合成,並在其表面修飾上四層具有相反電性的高分子聚合物(PAA/PEI/PAA/PEI)形成多層的奈米膠囊。藉由綠色螢光分子(FITC)模擬藥物,裝載在此具有多層高分子膜的奈米膠囊內,我們發現奈米膠囊具有微環境控制藥物釋放的功能,並在子宮頸癌細胞(Hela)具有細胞核專一投遞功能。FITC呈現為環境控制釋放或持續釋放的行為決定在奈米棒表面高分子的包覆緊實程度。用雷射共軛聚焦顯微鏡可以觀察到FITC被緩慢釋放進入Hela細胞的細胞質到細胞核需要24小時。
第二部份在探討模組式設計之標靶奈米粒子的可行性及其特性。藉由Fe3O4奈米粒子上的特殊辨識分子(Ni-NTA)能與在RGD4C上的六個組氨酸標記進行自組裝結合,而達成組合標靶胜肽精準導向所需之的結合位置方向性控制的目的。原子吸光光譜儀證實,自組裝的Fe3O4-NTA-Ni-RGD4C奈米粒子比起常見的化學連接方式,對於口腔癌細胞具有更好的辨識力。倉鼠的口腔癌動物模型證實自組裝奈米粒子與體內的癌細胞能形成專一性鍵結,並在核磁共振攝影展現其分子造影的能力。原子吸光光譜儀和核磁共振分子造影都顯示了自組裝的奈米粒子,比起常見的化學連接方式改善了標靶辨識能力,並減少了肝臟的非特異性攝入。
透過自組裝的方式可以重新組裝客製化標靶物件和不同功能性的奈米粒子的整合高分子的釋放控制。這個新的模組化設計平台可以提供增強標靶診斷的效能和治療效率,使得磁性氧化鐵奈米材料得以在奈米醫學上的應用提供更寬廣的選擇。
Nanotechnology has become part of our lives, especially with regard to medical applications, in the 21st century. Rapid diagnosis and treatment of diseases while devoid of collateral damage to healthy cells and potential side effects has been a new trend in biomedicine. Nanomaterials provide unique characteristics that can be used to provide tools for breaking through innovations beyond the limitations of current traditional medicine and bring about a powerful revolution in health care and biomedical industrial profits. In this thesis, porous nanorods with integrated β-FeOOH and α-Fe2O3 were synthesized. The derived porous nanorods were engineered to assemble with four layers of polyelectrolytes on their surfaces. FITC molecules were loaded into the polyelectrolyte multilayer coated nanocapsules to study the drug release kinetics and the intracellular delivery in Hela cells. The FITC release behavior exhibited either controlled- or sustained-release trends, depending on the compactness of the polyelectrolyte shells on the nanorod surfaces. The laser confocal microscopy data indicates that the nanocapsules show the release of the FITC from the initial perimembrane space into the cytoplasm followed by targeting into the nucleus after 24 h.
In addition, specific molecular recognition of nickel nitrilotriacetate on Fe3O4 nanoparticles with a hexahistidine tag on RGD4C peptides resulted in precisely controlled orientation of the targeting peptides. AAS demonstrated better selectivity of the self-assembled Fe3O4-NTA-Ni-RGD4C nanoparticles targeting oral cancer cells than that achievable through a conventional chemical cross-link strategy. An oral cancer hamster model was applied to reveal specific in vivo targeting and MR molecular imaging. Both AAS and MRI revealed that the self-assembled nanoparticles improved the targeting efficiency and reduced the hepatic uptake as compared to the conventional chemical cross-link particles. The nanoparticles were significantly cleared from the liver and kidneys after one week.
By recombining the desired targeting moiety and various functional nanoparticles through self-assembly and the property of polymer control release, this new modularly designed platform has the capability of enhancing the efficiency of targeted diagnosis and therapies for a wide spectrum of nanomedicine applications.
Contents
摘要 I
Abstract III
誌謝 V
Contents VII
Table Contents XII
Figure Contents XIII
Abbreviation List XV
Chapter 1 Introduction 1
1-1. Nanotechnology in our lives 2
1-2. "Nano" definition and the development history 3
1-3. Novel materials-Nanomaterials 4
1-4. The fundamental characteristics of metallic nanoparticles 5
1-4-1. Surface effect 6
1-4-2. Size effect 7
1-4-3. Quantum effect 7
1-5. The stability of metal nanoparticles 8
1-6. Metal nanoparticle surface modification 10
1-7. Magnetic nanoparticles 11
1-7-1 Magnetic properties of magnetic nanoparticles 12
1-7-2. Ferromagnetic and Paramagnetic properties 13
1-7-3. Paramagnetic and superparamagnetic properties 16
1-8. The stability of magnetic nanoparticles 16
1-9. Magnetic iron oxide nanoparticles 18
1-10. The preparation method for magnetic iron oxide nanomaterials 19
1-10-1. The thermal decomposition method 20
1-10-2. The hydrothermal method 20
1-10-3. The microemulsion method 21
1-10-4. The chemical co-precipitation method 22
1-11. The nanomedical applications of magnetic nanoparticles 25
1-11-1. What is nanomedicine 25
1-11-2. Using limited conditions 26
1-11-3. Drug delivery applications 28
1-11-4. Thermotherapy Applications 30
1-11-5. Purification Applications 31
1-11-6. Magnetic transgenics 36
1-11-7. Magnetic resonance imaging 37
1-1-12. Specific aim and rationale of thesis 42
Chapter 2 Experimental Section 44
2-1. Preparation of porous iron oxide based nanorods 45
2-2. Characterization of porous iron oxide 45
2-3. Sequential deposition of polyelectrolytes onto porous nanorod surfaces with loading of FITC 46
2-4. Release studies on the polyelectrolyte multilayer nanocapsules 47
2-5. The effect of NaCl concentration on FITC release from the polyelectrolyte multilayer nanocapsules 47
2-6. Cell culture and maintenance 48
2-6-1. Prepared for porous nanorods 48
2-6-2. Preparation for Fe3O4 nanoparticles 48
2-7. Biocompatibility evaluation 50
2-7-1. WST-1 assay 50
2-7-2. MTT assay 50
2-7-3. The systemic toxicity assay 51
2-8. Laser confocal microscopy of the FITC-loaded nanocapsules 51
2-9. Preparation of dispersed, water-Soluble Fe3O4 nanoparticles 52
2-10. Fe3O4 nanoparticle modification, peptide synthesis, and conjugation to nanoparticles. 53
2-11. Ligand competition assay 54
2-12. Animals and tumor model 55
2-13. Atomic absorption spectrometry analysis 55
2-14. Magnetic resonance imaging 56
2-15. Histological examination 57
2-16. Statistical analysis 57
Chapter 3 Porous Iron Oxide Based Nanorods Developed as Delivery Nanocapsules 58
Introduction 59
Results and Discussion 64
3-1. Synthesis and characterization of porous iron oxide based nanorods 64
3-2. Polyelectrolytes multi-layered onto porous nanorod surfaces with FITC loading 67
3-3. FITC Release evaluated on the polyelectrolyte multilayer nanocapsules 67
3-4. The effect of ion concentration on FITC release 70
3-5. Biocompatibility of the nanorods 71
3-6. FITC-loaded nanocapsules exposed to Hela Cells 71
Chapter 4 Modularly Assembled Magnetite Nanoparticles Enhance in Vivo Targeting for Magnetic Resonance Cancer Imaging 74
Introduction 75
Results and Discussion 78
4-1. The strategy of in vivo cancer image 78
4-2. Cytotoxicity of Fe3O4-NTA-Ni-RGD4C nanoparticles 78
4-3. Dose-dependent affinity targeting of Fe3O4-NTA-Ni-RGD4C nanoparticles 79
4-4. Selective targeting of Fe3O4-NTA-Ni-RGD4C nanoparticles 79
4-5. Biocompatibility of Fe3O4-NTA-Ni-RGD4C nanoparticles in Vivo 81
4-6. Molecular MR imaging of oral cancer using Fe3O4-NTA-Ni-RGD4C nanoparticles 81
4-7. Histological analysis 82
4-8. In Vivo targeting efficiency in the tumor lesions quantified using AAS 83
4-9. Biodistribution and excretion of iron oxide nanoparticles 84
4-10. The new concept of a modular nanoparticle platform 86
Chapter 5 Overall Discussion & Conclusion 88
References 126
Publications 135
References
1.Boston, R. P. Feynman in Nanotechnology: Research and Perspectives.p.347 (1992).
2.傅昭銘, 奈米科學與技術的基本概念. 奈米科技-基礎、應用與實作 1:p.3 (2005).
3.何佳安、張立惠, 奈米的健康、危害與保護. 生醫奈米技術 13:p.195 (2007).
4.葉晨聖、黃志嘉, 金奈米的製備與生物醫學上的應用. 生醫奈米技術 2:p.3 (2007).
5.張立德、牟季美, 奈米材料和奈米結構 (2002).
6.黃德歡, 改變世界的奈米技術 (2002).
7.莊萬發, 超微粒子理論應用 (1994).
8.Frankel RB, Blakemore RP and Wolfe RS, Magnetite in Freshwater Magnetotactic Bacteria. Science 203:1355-1356 (1979).
9.O'Brien S, Brus L and Murray CB, Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J Am Chem Soc 123:12085-12086 (2001).
10.Kim HS, Lee SM, Ha K, Jung C, Lee YJ, Chun YS, Kim D, Rhee BK and Yoon KB, Aligned inclusion of hemicyanine dyes into silica zeolite films for second harmonic generation. J Am Chem Soc 126:673-682 (2004).
11.Isaacs RJ and Spielmann HP, Insight into G[bond]T mismatch recognition using molecular dynamics with time-averaged restraints derived from NMR spectroscopy. J Am Chem Soc 126:583-590 (2004).
12.Deng H, Li X, Peng Q, Wang X, Chen J and Li Y, Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed Engl 44:2782-2785 (2005).
13.Moulik BKPaSP, Uses and applications of microemulsions. Current Science 80:990-1001 (2001).
14.Wang X, Zhuang J, Peng Q and Li Y, A general strategy for nanocrystal synthesis. Nature 437:121-124 (2005).
15.Ohnishi M, Y. Kozuka, Q. L. Ye, H. Yoshikawa, K. Awaga, R. Matsuno, M. Kobayashi, A. Takahara, T. Yokoyama, S. Bandow and S. Iijima., Phase selective preparations and surface modifications of spherical hollow nanomagnets. J Mater Chem 16:3215 - 3220 (2006).
16.Jia CJ, Sun LD, Yan ZG, You LP, Luo F, Han XD, Pang YC, Zhang Z and Yan CH, Single-crystalline iron oxide nanotubes. Angew Chem Int Ed Engl 44:4328-4333 (2005).
17.Woo K, H. J. Lee, J.-P. Ahn and Y. S. Park., Sol-gel mediated synthesis of Fe2O3 nanorods. Adv Mater 15:1761-1764 (2003).
18.Yang WH, Lee CF, Tang HY, Shieh DB and Yeh CS, Iron oxide nanopropellers prepared by a low-temperature solution approach. J Phys Chem B 110:14087-14091 (2006).
19.Wu PC, Wang WS, Huang YT, Sheu HS, Lo YW, Tsai TL, Shieh DB and Yeh CS, Porous iron oxide based nanorods developed as delivery nanocapsules. Chemistry 13:3878-3885 (2007).
20.Suzuki M, M. Shinkai, M. Yanase, A. Ito, H. Honda and T. and Kobayashi, Enhancement of uptake of magnetoliposomes by magnetic force and hyperthermic effect on tumor. Jpn J Hyperthermic Oncol 15:79-87 (1999).
21.Shinkai M, Functional magnetic particles for medical application. J Biosci Bioeng 94:606-613 (2002).
22.Baker I, Q. Zeng and C. R. Sullivan., Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. J Appl Phys 99:08H106-108H109 (2006).
23.Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y and Kobayashi T, Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167-175 (2004).
24.Kim DH, S. H. Lee, K. H. Im, K. N. Kim, K. M. Kim, I. B. Shim, M. H. Lee and Y. K. Lee., Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies. Current Applied Physics 6S1:e242-e246 (2006).
25.Zhang Z, Zhang L, Chen L and Wan QH, Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA. Biotechnol Prog 22:514-518 (2006).
26.Tong XD, Xue B and Sun Y, A novel magnetic affinity support for protein adsorption and purification. Biotechnol Prog 17:134-139 (2001).
27.Gu H, Xu K, Xu C and Xu B, Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (Camb):941-949 (2006).
28.Shieh DB, C. H. Su, C. H., Chang, F. Y., Wu, Y. N., Su, W. C., Hwu, J. R., Chen, J. H., and Yeh, C. S., Aqueous nickel-nitrilotriacetate modified Fe3O4–NH+3 nanoparticles for protein purification and cell targeting
Nanotechnology 17:4174-4182 (2006).
29.Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, Ramsey P, Martin M and Felgner PL, Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550-2561 (1994).
30.Xu M, Kumar D, Srinivas S, Detolla LJ, Yu SF, Stass SA and Mixson AJ, Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Hum Gene Ther 8:177-185 (1997).
31.Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B and Plank C, Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102-109 (2002).
32.Krotz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U and Plank C, Magnetofection--a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7:700-710 (2003).
33.Xiang JJ, Tang JQ, Zhu SG, Nie XM, Lu HB, Shen SR, Li XL, Tang K, Zhou M and Li GY, IONP-PLL: a novel non-viral vector for efficient gene delivery. J Gene Med 5:803-817 (2003).
34.Schillingera U, T. Brilla, C. Rudolphb, C. Huthb, S. Gerstingb, F. Krotzc, J. Hirschbergerd, C. Bergemanne and C. Plank., Advances in magnetofection—magnetically guided nucleic acid delivery. J Magn Magn Mater 293:501-508 (2005).
35.Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT and Shieh DB, Characterization of aqueous dispersions of Fe(3)O(4) nanoparticles and their biomedical applications. Biomaterials 26:729-738 (2005).
36.Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J and Weissleder R, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491-2499 (2003).
37.Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS and Cheon J, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732-5733 (2005).
38.Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS and Cheon J, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127:12387-12391 (2005).
39.Lee JH, Jun YW, Yeon SI, Shin JS and Cheon J, Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed Engl 45:8160-8162 (2006).
40.Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM and Chen YC, Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7:149-154 (2007).
41.Jendelova P, Herynek V, DeCroos J, Glogarova K, Andersson B, Hajek M and Sykova E, Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50:767-776 (2003).
42.Brahler M, Georgieva R, Buske N, Muller A, Muller S, Pinkernelle J, Teichgraber U, Voigt A and Baumler H, Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett 6:2505-2509 (2006).
43.Kaittanis C, Naser SA and Perez JM, One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7:380-383 (2007).
44.Lin SC, Chang KW, Chang CS, Yu SY, Chao SY and Wong YK, Establishment and characterization of a cell line (HCDB-1) derived from a hamster buccal pouch carcinoma induced by DMBA and Taiwanese betel quid extract. Proc Natl Sci Counc Repub China B 24:129-135 (2000).
45.Kim MS, Li SL, Bertolami CN, Cherrick HM and Park NH, State of p53, Rb and DCC tumor suppressor genes in human oral cancer cell lines. Anticancer Res 13:1405-1413 (1993).
46.Mosmann T, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods 65:55-63 (1983).
47.Alivisatos AP, Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271:933-937 (1996).
48.Jiangtao Hu TWO, and Charles M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc Chem Res 32:435-445 (1999).
49.Morales AM and Lieber CM, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208-211 (1998).
50.Ozin GA, Nanochemistry: Synthesis in diminishing dimensions. Adv Mater 4:612-649 (1992).
51.M. Vallet-Regi AR, R. P. del Real, and J. Pérez-Pariente, A New Property of MCM-41: Drug Delivery System. 13:308-311 (2001).
52.Collins KD, Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. Biophys Chem 119:271-281 (2006).
53.Son SJ, Reichel J, He B, Schuchman M and Lee SB, Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316-7317 (2005).
54.Chen CC, Liu, Y.C.C., Wu, H., Yeh, C.C., Su, M.T., Wu, Y.C., Preparation of Fluorescent Silica Nanotubes and Their Application in Gene Delivery. Adv Mater 17 (2005).
55.Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG and Hyeon T, Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128:688-689 (2006).
56.Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S and Lin VS, A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451-4459 (2003).
57.Supratim Giri BGT, Michael P. Stellmaker, Victor S.-Y. Lin, Stimuli-Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles Angew Chem Int Ed 44:5038-5044 (2005).
58.Xiong Wang XC, Lisheng Gao, Huagui Zheng, Mingrong Ji, Chenming Tang, Tao Shen and Zude Zhang, Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. Mater Chem 14:905-907 (2004).
59.Shaoa HF, Qian, X. F., Yin, j. and Zhu, Z. K., Controlled morphology synthesis of β-FeOOH and the phase transition to Fe2O3. J Solid State Chem 178 (2005).
60.Wan ACA, Tai, B. C. U., Leck, K.-J., Ying, J. Y., Silica-Incorporated Polyelectrolyte-Complex Fibers as Tissue-Engineering Scaffolds. Adv Mater 18:641-644 (2006).
61.M. Sauer DS, W. Meier, pH-Sensitive Nanocontainers. Adv Mater 13:1649-1651 (2001).
62.Gleb B. Sukhorukov AAA, Andreas Voigt, Edwin Donath, Helmuth Möhwald, pH-Controlled Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer Nanocapsules. Macromol Rapid Commun 22:44-46 (2001).
63.Claire S. Peyratout LD, Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers. Angew Chem Int Ed 43:3762-3783 (2004).
64.Godbey WT, Wu KK and Mikos AG, Poly(ethylenimine) and its role in gene delivery. J Control Release 60:149-160 (1999).
65.Godbey WT, Wu KK and Mikos AG, Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A 96:5177-5181 (1999).
66.Michèle Lecocq SW-DC, Nathanael Laurent, Robert Wattiaux, Michel Jadot, Uptake and Intracellular Fate of Polyethylenimine in Vivo. Biochem Biophys Res Commun 278:414-418 (2000).
67.Ming-Ren S. Fuh LWB, Tomas Hirschfeld, Gary D. Christian and Francis Wang, Single fibre optic fluorescence pH probe. Analyst 112:1159-1163 (1987).
68.Stefaniak AB, Guilmette RA, Day GA, Hoover MD, Breysse PN and Scripsick RC, Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution. Toxicol In Vitro 19:123-134 (2005).
69.Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G, Potma EO, Warley A, Roes J and Segal AW, Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291-297 (2002).
70.Shapiro EM, Sharer K, Skrtic S and Koretsky AP, In vivo detection of single cells by MRI. Magn Reson Med 55:242-249 (2006).
71.Lee JH and Koretsky AP, Manganese enhanced magnetic resonance imaging. Current pharmaceutical biotechnology 5:529-537 (2004).
72.Bluemke DA, Sahani D, Amendola M, Balzer T, Breuer J, Brown JJ, Casalino DD, Davis PL, Francis IR, Krinsky G, Lee FT, Jr., Lu D, Paulson EK, Schwartz LH, Siegelman ES, Small WC, Weber TM, Welber A and Shamsi K, Efficacy and safety of MR imaging with liver-specific contrast agent: U.S. multicenter phase III study. Radiology 237:89-98 (2005).
73.Nishimura H, Tanigawa N, Hiramatsu M, Tatsumi Y, Matsuki M and Narabayashi I, Preoperative esophageal cancer staging: magnetic resonance imaging of lymph node with ferumoxtran-10, an ultrasmall superparamagnetic iron oxide. Journal of the American College of Surgeons 202:604-611 (2006).
74.Lee H, Lee E, Kim do K, Jang NK, Jeong YY and Jon S, Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383-7389 (2006).
75.Muller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, Lancelot E, Thompson PW, Brown AP and Gillard JH, Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 28:1629-1642 (2007).
76.Lencioni R and Bartolozzi C, Clinical impact of Resovist-enhanced MRI: results of an Italian multicenter trial. Eur Radiol 14 Suppl 1:C10 (2004).
77.Corot C, Robert P, Idee JM and Port M, Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471-1504 (2006).
78.Gohr-Rosenthal S, Schmitt-Willich H, Ebert W and Conrad J, The demonstration of human tumors on nude mice using gadolinium-labelled monoclonal antibodies for magnetic resonance imaging. Invest Radiol 28:789-795 (1993).
79.Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS and Cheon J, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95-99 (2007).
80.Juang RS and Wang YC, Use of complexing agents for effective ion-exchange separation of Co(II)/Ni(II) from aqueous solutions. Water Res 37:845-852 (2003).
81.Bhattacharyya R, Saha RP, Samanta U and Chakrabarti P, Geometry of interaction of the histidine ring with other planar and basic residues. J Proteome Res 2:255-263 (2003).
82.Xu C, Xu K, Gu H, Zhong X, Guo Z, Zheng R, Zhang X and Xu B, Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc 126:3392-3393 (2004).
83.Kim JS, Valencia CA, Liu R and Lin W, Highly-efficient purification of native polyhistidine-tagged proteins by multivalent NTA-modified magnetic nanoparticles. Bioconjug Chem 18:333-341 (2007).
84.Brooks PC, Clark RA and Cheresh DA, Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569-571 (1994).
85.Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA and Cheresh DA, Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500-1502 (1995).
86.Hood JD and Cheresh DA, Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91-100 (2002).
87.Jin H and Varner J, Integrins: roles in cancer development and as treatment targets. Br J Cancer 90:561-565 (2004).
88.Koivunen E, Wang B and Ruoslahti E, Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y) 13:265-270 (1995).
89.de Groot FM, Broxterman HJ, Adams HP, van Vliet A, Tesser GI, Elderkamp YW, Schraa AJ, Kok RJ, Molema G, Pinedo HM and Scheeren HW, Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Mol Cancer Ther 1:901-911 (2002).
90.Pasqualini R and Ruoslahti E, Organ targeting in vivo using phage display peptide libraries. Nature 380:364-366 (1996).
91.Arap W, Pasqualini R and Ruoslahti E, Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377-380 (1998).
92.Hong FD and Clayman GL, Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Res 60:6551-6556 (2000).
93.Wang F, Malac M and Egerton RF, Energy-loss near-edge fine structures of iron nanoparticles. Micron 37:316-323 (2006).
94.Montet X, Montet-Abou K, Reynolds F, Weissleder R and Josephson L, Nanoparticle imaging of integrins on tumor cells. Neoplasia 8:214-222 (2006).
95.de la Fuente JM, Berry CC, Riehle MO and Curtis AS, Nanoparticle targeting at cells. Langmuir 22:3286-3293 (2006).
96.Lin CL, Lee CF and Chiu WY, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J Colloid Interface Sci 291:411-420 (2005).
97.Goede V, Fleckenstein G, Dietrich M, Osmers RG, Kuhn W and Augustin HG, Prognostic value of angiogenesis in mammary tumors. Anticancer Res 18:2199-2202 (1998).
98.Koh I, Hong R, Weissleder R and Josephson L, Sensitive NMR sensors detect antibodies to influenza. Angew Chem Int Ed Engl 47:4119-4121 (2008).
99.Perez JM, Josephson L, O'Loughlin T, Hogemann D and Weissleder R, Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816-820 (2002).
100.Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ, de Mello Donega C, Nicolay K and Griffioen AW, Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1-6 (2006).
101.Saksena MA, Saokar A and Harisinghani MG, Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging. Eur J Radiol 58:367-374 (2006).
102.Thorek DL, Chen AK, Czupryna J and Tsourkas A, Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23-38 (2006).
103.Medarova Z, Pham W, Kim Y, Dai G and Moore A, In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer 118:2796-2802 (2006).
104.Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD and Li KC, Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623-626 (1998).
105.Kreuter J, Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet 19:253-256 (1994).
106.Araujo L, Lobenberg R and Kreuter J, Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Target 6:373-385 (1999).
107.Chithrani BD, Ghazani AA and Chan WC, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662-668 (2006).
108.Hauck TS, Ghazani AA and Chan WC, Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153-159 (2008).
109.Drummond DC, Meyer O, Hong K, Kirpotin DB and Papahadjopoulos D, Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691-743 (1999).
110.Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W and Jahnen-Dechent W, Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941-1949 (2007).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top