跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林育雯
研究生(外文):Yu-Wen Lin
論文名稱:探討樹突狀細胞及淋巴球在腸病毒七十一型感染時所扮演的角色
論文名稱(外文):The role of dendritic cells and lymphocytes in enterovirus 71 infection
指導教授:陳舜華陳舜華引用關係
指導教授(外文):Shun-Hua Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:152
中文關鍵詞:腸病毒
外文關鍵詞:EV71DCsFlt3 ligand
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
腸病毒七十一型(EV71)是嗜神經性的病毒,感染幼童會造成致死性腦炎和長期神經性的後遺症。在EV71感染的過程中,宿主的免疫反應所扮演的角色一直都是很具爭議。在我們先前所建立EV71感染小鼠模式中,被感染的小鼠可以產生相似於人類感染時的神經性症狀及死亡情形,因此我們利用小鼠模式來探討免疫細胞在EV71感染所扮演的角色;發現被病毒感染的小鼠需要依賴淋巴球來降低中樞神經和周邊組織內的病毒量。所以我們可以藉由增加淋巴球數量及活性來提高宿主的後天性免疫反應,作為預防致死EV71感染的一種療法。因為樹突狀細胞(dendritic cell; DCs)是最具有潛力的抗原呈現細胞,能將特異性抗原呈現給T淋巴球,對於浸潤至腦部T淋巴球的活化進而引起後天性免疫反應是不可或缺的。我們利用EV71感染小鼠模式發現,在EV71感染小鼠的腦部,能夠偵測到有DCs、T淋巴球和B淋巴球浸潤現象,而且在這些淋巴球浸潤到腦部之前,DCs即會出現在感染小鼠腦部。先前報告以免疫增強劑Flt3 ligand,透過干擾素反應來降低神經性疱疹病毒在小鼠造成的死亡。於是我們也以Flt3 ligand來治療EV71感染小鼠,實驗結果發現於EV71感染前事先給予野生種小鼠Flt3 ligand處理,能增加組織中之傳統DCs (conventional DCs)和淋巴球浸潤,來清除感染組織中的病毒量和降低感染小鼠的死亡率、患病率以及後來所引發的後肢麻痺之後遺症。由於Flt3 ligand也可降低CD4 T或是CD8 T淋巴球缺乏小鼠之死亡,但無法降低SCID或B淋巴球缺乏小鼠的死亡,顯示B淋巴球在EV71感染的過程所扮演的保護角色是必要。同時我們以in vitro的實驗來探討EV71感染人類DCs的情形,發現DC-SIGN能部分調控EV71感染DCs,並且病毒可在細胞內進行複製,製造出具感染性的病毒子代。另外,可在感染的DCs偵測到病毒抗原和病毒基因的表現。進一步分析發現,EV71感染能夠延長DCs存活率、促使DCs活化和釋放IL-6、IL-12以及TNF-α等細胞激素。被病毒感染的DCs在和T淋巴球共同培養後,會刺激T淋巴球進行增生反應。這些研究結果將使我們更加了解EV71的致病機轉,在in vivo和in vitro實驗中,我們發現EV71感染後可以誘導DCs和淋巴球產生保護性免疫反應,並發現Flt3 ligand可以保護小鼠對抗病毒感染,這項研究成果提供Flt3 ligand應用於事前預防致死性EV71感染上的潛力。
Enterovirus 71 (EV71) causes encephalitis and long-term neurological sequelae in hundreds of thousands of young children. However, there are no vaccines currently available to reduce fatal infection in part because the EV71 pathogenesis is incompletely understood. Our previous data showed that T and B lymphocytes and antibody response protected mice from EV71 infection. Dendritic cells (DCs) play a crucial role in antiviral immunity by functioning as professional antigen presenting cells to prime T helper lymphocytes and by secreting cytokines to modulate immune responses. Using a neonatal mouse model, we showed here that following infection, DCs were present before the infiltration of lymphocytes in the brains of infected mice. Moreover, pretreatment with the hematopoietic growth factor fms-like tyrosine-kinase 3 ligand (Flt3 ligand) resulted in an increase in adaptive immunity components, conventional DCs and lymphocytes, and significantly reduced the mortality and paralysis sequela of infected immunocompetent mice by decreasing the viral loads in tissues. Flt3 ligand pretreatment also reduced the mortality of CD4 or CD8 T-lymphocyte-deficient mice, but not SCID mice deficient in lymphocytes or B-lymphocyte-deficient mice infected with EV71. We conclude that Flt3 ligand administration promotes resistance to EV71 infection by enhancing B-lymphocyte response. Moreover, we also showed that EV71 productively infected human immature DCs and expressed viral antigen in DCs. EV71 infection of DCs was partially mediated by DC-SIGN. Further analyses revealed that EV71 increased the viability, activation, release of cytokines, interleukin-6, interleukin-12, and tumor necrosis factor-α, in DCs. Moreover, EV71 enabled DCs to stimulate T-cell proliferation. Collectively, these findings suggest that EV71 infection of human DCs in vivo is very likely to elicit protective immunity. Our findings provide a greater understanding of EV71 pathogenesis and also raise the prospect that Flt3 ligand treatment may protect hosts with increased risk for viral infection.
中文摘要 1
英文摘要 3
誌謝 5
總目錄 7
圖目錄 10
緒論 12
一、腸病毒七十一型病毒學概論 13
二、腸病毒七十一型流行病學 15
三、腸病毒七十一型臨床症狀和致病機轉 16
四、宿主免疫反應在腸病毒七十一型感染的角色 18
五、樹突狀細胞所扮演的免疫學角色 19
六、樹突狀細胞與病毒間交互作用 21
七、DC-SIGN在樹突狀細胞在病毒感染中所扮演角色 24
八、Flt3 ligand的特性和免疫調節功能 .26
研究動機及特定目標 29
材料與方法 31
一、實驗動物 31
二、細胞株 31
三、病毒株 31
四、口服感染ICR小鼠模式 32
五、小鼠組織病毒量測定 32
六、病毒溶菌斑分析 32
七、偵測感染小鼠腦部與脾臟之免疫細胞分佈情況 32
八、Flt3 ligand處理新生小鼠 33
九、中和試驗 34
十、以體外方式將人類單核球細胞分化樹突狀細胞 35
十一、病毒感染人類未成熟樹突狀細胞 37
十二、反轉錄酵素-聚合酵素連鎖反應 38
十三、免疫螢光偵測人類未成熟樹突狀細胞之表面病毒抗原 40
十四、利用DC-SIGN抗體阻止病毒感染人類未成熟樹突狀細胞 40
十五、病毒感染人類未成熟樹突狀細胞之細胞數目存活率測定 41
十六、偵測病毒感染人類樹突狀細胞後細胞活化分子的表現情形 41
十七、酵素結合抗體分析細胞激素 41
十八、病毒感染人類樹突狀細胞之刺激T淋巴球增生能力測定 41
十九、統計 42
結果 43
一、用小鼠模式偵測樹突狀細胞和淋巴球在腸病毒七十一型感染中
的分佈情形 43
1. 病人和小鼠之感染組織的樹突狀細胞和淋巴球浸潤現象 43
2. B、CD4+ T和CD8+ T淋巴球能藉由減少感染組織中的病毒量進
而降低感染小鼠的致死 44
二、探討Flt3 ligand用來保護小鼠免於腸病毒七十一型致命感染的機轉 45
1. Flt3 ligand能減少感染組織中的病毒量因而降低感染小鼠的死亡
率、患病率以及後來所引發的後肢麻痺之後遺症 45
2. Flt3 ligand能增加小鼠脾臟和腦部之樹突狀細胞和T淋巴球的浸
潤與活化 47
3. Flt3 ligand藉由樹突狀細胞引起後天性免疫反應來保護小鼠對抗
病毒感染 48
三、探討腸病毒七十一型與人類樹突狀細胞之間的互動 51
1. 由人類周邊單核球細胞建立人類未成熟和成熟樹突狀細胞 51
2. 腸病毒七十一型能夠感染人類未成熟樹突狀細胞並在細胞內進行
病毒複製 52
3. DC-SIGN能部分調控腸病毒七十一型感染人類未成熟樹突狀細胞 54
4. 病毒感染人類樹突狀細胞會延長細胞的存活率、促使細胞活化和
釋放細胞激素 54
5. 病毒感染人類樹突狀細胞會刺激人類T淋巴球增生 56
討論 57
結論 65
參考文獻 66
圖附錄 78
附圖 107
已出版論文 113
已接受發表之論文 121
Abzug, M. J., Keyserling, H. L., Lee, M. L., Levin, M. J., and Rotbart, H. A. (1995). Neonatal enterovirus infection: virology, serology, and effects of intravenous immune globulin. Clin. Infect. Dis. 20(5), 1201-1206.
Alvarez, C. P., Lasala, F., Carrillo, J., Muniz, O., Corbi, A. L., and Delgado, R. (2002). C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76(13), 6841-6844.
Bachmann, M. F., Kundig, T. M., Kalberer, C. P., Hengartner, H., and Zinkernagel, R. M. (1993). Formalin inactivation of vesicular stomatitis virus impairs T-cell- but not T-help-independent B-cell responses. J. Virol. 67(7), 3917-3922.
Bachmann, M. F., and Zinkernagel, R. M. (1997). Neutralizing antiviral B cell responses. Annu. Rev. Immunol. 15, 235-270.
Banchereau, J., and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature 392(6673), 245-252.
Blomberg, J., Lycke, E., Ahlfors, K., Johnsson, T., Wolontis, S., and von Zeipel, G. (1974). Letter: New enterovirus type associated with epidemic of aseptic meningitis and-or hand, foot, and mouth disease. Lancet 2(7872), 112.
Blyn, L. B., Swiderek, K. M., Richards, O., Stahl, D. C., Semler, B. L., and Ehrenfeld, E. (1996). Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc. Natl. Acad. Sci. U S A 93(20), 11115-11120.
Blyn, L. B., Towner, J. S., Semler, B. L., and Ehrenfeld, E. (1997). Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J. Virol. 71(8), 6243-6246.
Borman, A. M., Deliat, F. G., and Kean, K. M. (1994). Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. Embo. J. 13(13), 3149-3157.
Borrow, P., Tishon, A., Lee, S., Xu, J., Grewal, I. S., Oldstone, M. B., and Flavell, R. A. (1996). CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J. Exp. Med. 183(5), 2129-2142.
Brasel, K., McKenna, H. J., Morrissey, P. J., Charrier, K., Morris, A. E., Lee, C. C., Williams, D. E., and Lyman, S. D. (1996). Hematologic effects of flt3 ligand in vivo in mice. Blood 88(6), 2004-2012.
Brown, M. G., Huang, Y. Y., Marshall, J. S., King, C. A., Hoskin, D. W., and Anderson, R. (2009). Dramatic caspase-dependent apoptosis in antibody-enhanced dengue virus infection of human mast cells. J. Leukoc. Biol. 85(1), 71-80.
Chang, L. Y., C. A. Hsiung, C. Y. Lu, T. Y. Lin, F. Y. Huang, Y. H. LaI, Y. P. Chiang, B. L. Chiang, C. Y. Lee, and L. M. Huang (2006). Status of cellular rather than humoral immunity is correlated with clinical outcome of enterovirus 71. Pediatr. Res. 60(4), 1-6.
Chang, L. Y., Hsia, S. H., Wu, C. T., Huang, Y. C., Lin, K. L., Fang, T. Y., and Lin, T. Y. (2004). Outcome of enterovirus 71 infections with or without stage-based management: 1998 to 2002. Pediatr. Infect. Dis. J. 23(4), 327-331.
Chang, L. Y., Huang, L. M., Gau, S. S., Wu, Y. Y., Hsia, S. H., Fan, T. Y., Lin, K. L., Huang, Y. C., Lu, C. Y., and Lin, T. Y. (2007). Neurodevelopment and cognition in children after enterovirus 71 infection. N. Engl. J. Med. 356(12), 1226-1234.
Chang, L. Y., Huang, Y. C., and Lin, T. Y. (1998). Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet 352(9125), 367-368.
Chang, L. Y., Lin, T. Y., Hsu, K. H., Huang, Y. C., Lin, K. L., Hsueh, C., Shih, S. R., Ning, H. C., Hwang, M. S., Wang, H. S., and Lee, C. Y. (1999). Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet 354(9191), 1682-1686.
Chen, Y. C., Yu, C. K., Wang, Y. F., Liu, C. C., Su, I. J., and Lei, H. Y. (2004). A murine oral enterovirus 71 infection model with central nervous system involvement. J. Gen. Virol. 85(Pt 1), 69-77.
Chumakov, M., Voroshilova, M., Shindarov, L., Lavrova, I., Gracheva, L., Koroleva, G., Vasilenko, S., Brodvarova, I., Nikolova, M., Gyurova, S., Gacheva, M., Mitov, G., Ninov, N., Tsylka, E., Robinson, I., Frolova, M., Bashkirtsev, V., Martiyanova, L., and Rodin, V. (1979). Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch. Virol. 60(3-4), 329-340.
Colonna, M., Trinchieri, G., and Liu, Y. J. (2004). Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5(12), 1219-1226.
Dadaglio, G., Sun, C. M., Lo-Man, R., Siegrist, C. A., and Leclerc, C. (2002). Efficient in vivo priming of specific cytotoxic T cell responses by neonatal dendritic cells. J Immunol 168(5), 2219-2224.
Deshpande, S. P., Zheng, M., Daheshia, M., and Rouse, B. T. (2000). Pathogenesis of herpes simplex virus-induced ocular immunoinflammatory lesions in B-cell-deficient mice. J. Virol. 74(8), 3517-3524.
Diamond, M. S., Shrestha, B., Marri, A., Mahan, D., and Engle, M. (2003a). B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77(4), 2578-2586.
Diamond, M. S., Sitati, E. M., Friend, L. D., Higgs, S., Shrestha, B., and Engle, M. (2003b). A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 198(12), 1853-1862.
Dong, J., McPherson, C. M., and Stambrook, P. J. (2002). Flt-3 ligand: a potent dendritic cell stimulator and novel antitumor agent. Cancer. Biol. Ther. 1(5), 486-489.
Encke, J., Bernardin, J., Geib, J., Barbakadze, G., Bujdoso, R., and Stremmel, W. (2006). Genetic vaccination with Flt3-L and GM-CSF as adjuvants: Enhancement of cellular and humoral immune responses that results in protective immunity in a murine model of hepatitis C virus infection. World. J. Gastroenterol. 12(44), 7118-7125.
Engering, A., Geijtenbeek, T. B., van Vliet, S. J., Wijers, M., van Liempt, E., Demaurex, N., Lanzavecchia, A., Fransen, J., Figdor, C. G., Piguet, V., and van Kooyk, Y. (2002). The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol. 168(5), 2118-2126.
Engle, M. J., and Diamond, M. S. (2003). Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. J .Virol. 77(24), 12941-12949.
Fehr, T., Bachmann, M. F., Bluethmann, H., Kikutani, H., Hengartner, H., and Zinkernagel, R. M. (1996). T-independent activation of B cells by vesicular stomatitis virus: no evidence for the need of a second signal. Cell Immunol. 168(2), 184-192.
Fischer, H. G., and Reichmann, G. (2001). Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J. Immunol. 166(4), 2717-2726.
Franco, M. A., and Greenberg, H. B. (1997). Immunity to rotavirus in T cell deficient mice. Virology 238(2), 169-179.
Freer, G., Burkhart, C., Ciernik, I., Bachmann, M. F., Hengartner, H., and Zinkernagel, R. M. (1994). Vesicular stomatitis virus Indiana glycoprotein as a T-cell-dependent and -independent antigen. J. Virol. 68(6), 3650-3655.
Gamarnik, A. V., and Andino, R. (2000). Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. J. Virol. 74(5), 2219-2226.
Geijtenbeek, T. B., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Adema, G. J., van Kooyk, Y., and Figdor, C. G. (2000). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100(5), 575-585.
Gilbert, G. L., Dickson, K. E., Waters, M. J., Kennett, M. L., Land, S. A., and Sneddon, M. (1988). Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Pediatr. Infect. Dis. J. 7(7), 484-488.
Greter, M., Heppner, F. L., Lemos, M. P., Odermatt, B. M., Goebels, N., Laufer, T., Noelle, R. J., and Becher, B. (2005). Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11(3), 328-334.
Griffin, D. E., Levine, B., Tyor, W. R., and Irani, D. N. (1992). The immune response in viral encephalitis. Semin. Immunol. 4(2), 111-119.
Gromeier, M., and Wimmer, E. (1998). Mechanism of injury-provoked poliomyelitis. J. Virol. 72(6), 5056-5060.
Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., and Amigorena, S. (2002). Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621-667.
Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houles, C., Fieschi, F., Arenzana-Seisdedos, F., Moreau, J. F., and Dechanet-Merville, J. (2002). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17(5), 653-664.
Haller, O., Arnheiter, H., Gresser, I., and Lindenmann, J. (1981). Virus-specific interferon action. Protection of newborn Mx carriers against lethal infection with influenza virus. J. Exp. Med. 154(1), 199-203.
Hart, D. N. (1997). Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90(9), 3245-3287.
Henry, C. J., Ornelles, D. A., Mitchell, L. M., Brzoza-Lewis, K. L., and Hiltbold, E. M. (2008). IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J. Immunol. 181(12), 8576-8584.
Ho, L. J., Wang, J. J., Shaio, M. F., Kao, C. L., Chang, D. M., Han, S. W., and Lai, J. H. (2001). Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J. Immunol. 166(3), 1499-1506.
Ho, M., Chen, E. R., Hsu, K. H., Twu, S. J., Chen, K. T., Tsai, S. F., Wang, J. R., and Shih, S. R. (1999). An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N. Engl. J. Med. 341(13), 929-935.
Hsia, S. H., Wu, C. T., Chang, J. J., Lin, T. Y., Chung, H. T., Lin, K. L., Hwang, M. S., Chou, M. L., and Chang, L. Y. (2005). Predictors of unfavorable outcomes in enterovirus 71-related cardiopulmonary failure in children. Pediatr. Infect. Dis. J. 24(4), 331-334.
Huang, C. C., Liu, C. C., Chang, Y. C., Chen, C. Y., Wang, S. T., and Yeh, T. F. (1999). Neurologic complications in children with enterovirus 71 infection. N. Engl. J. Med. 341(13), 936-942.
Huang, M. C., Wang, S. M., Hsu, Y. W., Lin, H. C., Chi, C. Y., and Liu, C. C. (2006). Long-term cognitive and motor deficits after enterovirus 71 brainstem encephalitis in children. Pediatrics 118(6), e1785-1788.
Hyypia, T., Hovi, T., Knowles, N. J., and Stanway, G. (1997). Classification of enteroviruses based on molecular and biological properties. J. Gen. Virol. 78 (Pt 1), 1-11.
Jia, Q., Hogle, J. M., Hashikawa, T., and Nomoto, A. (2001). Molecular genetic analysis of revertants from a poliovirus mutant that is specifically adapted to the mouse spinal cord. J Virol 75(23), 11766-72.
Kapsenberg, M. L. (2003). Dendritic-cell control of pathogen-driven T-cell polarization. Nat .Rev. Immunol. 3(12), 984-993.
Kassim, S. H., Rajasagi, N. K., Zhao, X., Chervenak, R., and Jennings, S. R. (2006). In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J. Virol. 80(8), 3985-3993.
Kramer, M., Schulte, B. M., Toonen, L. W., de Bruijni, M. A., Galama, J. M., Adema, G. J., and van Kuppeveld, F. J. (2007). Echovirus infection causes rapid loss-of-function and cell death in human dendritic cells. Cell Microbiol. 9(6), 1507-1518.
Kwissa, M., Amara, R. R., Robinson, H. L., Moss, B., Alkan, S., Jabbar, A., Villinger, F., and Pulendran, B. (2007). Adjuvanting a DNA vaccine with a TLR9 ligand plus Flt3 ligand results in enhanced cellular immunity against the simian immunodeficiency virus. J. Exp. Med. 204(11), 2733-2746.
Laouar, Y., Welte, T., Fu, X. Y., and Flavell, R. A. (2003). STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19(6), 903-912.
Lauterbach, H., Zuniga, E. I., Truong, P., Oldstone, M. B., and McGavern, D. B. (2006). Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection. J. Exp. Med. 203(8), 1963-1975.
Lee, B. O., Rangel-Moreno, J., Moyron-Quiroz, J. E., Hartson, L., Makris, M., Sprague, F., Lund, F. E., and Randall, T. D. (2005). CD4 T cell-independent antibody response promotes resolution of primary influenza infection and helps to prevent reinfection. J. Immunol. 175(9), 5827-5838.
Levine, B., Hardwick, J. M., Trapp, B. D., Crawford, T. O., Bollinger, R. C., and Griffin, D. E. (1991). Antibody-mediated clearance of alphavirus infection from neurons. Science 254(5033), 856-860.
Li, Z. H., Li, C. M., Ling, P., Shen, F. H., Chen, S. H., Liu, C. C., Yu, C. K., and Chen, S. H. (2008). Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication. J. Infect. Dis. 197(6), 854-857.
Lin, T. Y., Chang, L. Y., Huang, Y. C., Hsu, K. H., Chiu, C. H., and Yang, K. D. (2002). Different proinflammatory reactions in fatal and non-fatal enterovirus 71 infections: implications for early recognition and therapy. Acta. Paediatr. 91(6), 632-635.
Lin, T. Y., Chu, C., and Chiu, C. H. (2002). Lactoferrin inhibits enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. J. Infect. Dis. 186(8), 1161-1164.
Lin, T. Y., Hsia, S. H., Huang, Y. C., Wu, C. T., and Chang, L. Y. (2003). Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system. Clin. Infect. Dis. 36(3), 269-274.
Lin, Y. W., Chang, K. C., Kao, C. M., Chang, S. P., Tung, Y. Y., and Chen, S. H. (2009). Lymphocyte and antibody responses reduce enterovirus 71 lethality
in mice by decreasing tissue viral loads. J. Virol. 83(13), 6477-6483.
Lin YW, Wang SW, Tung YY, Chen SH. 2009. Enterovirus 71 infection of human dendritic cells. Exp. Bio. Med. In press.
Liu, M. L., Lee, Y. P., Wang, Y. F., Lei, H. Y., Liu, C. C., Wang, S. M., Su, I. J., Wang, J. R., Yeh, T. M., Chen, S. H., and Yu, C. K. (2005). Type I interferons protect mice against enterovirus 71 infection. J. Gen. Virol. 86(Pt 12), 3263-3269.
Liu, Y. J. (2001). Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3), 259-262.
Lowe, J., MacLennan, K. A., Powe, D. G., Pound, J. D., and Palmer, J. B. (1989). Microglial cells in human brain have phenotypic characteristics related to possible function as dendritic antigen presenting cells. J. Pathol. 159(2), 143-149.
Lum, L. C., Wong, K. T., Lam, S. K., Chua, K. B., Goh, A. Y., Lim, W. L., Ong, B. B., Paul, G., AbuBakar, S., and Lambert, M. (1998). Fatal enterovirus 71 encephalomyelitis. J. Pediatr. 133(6), 795-798.
Lyman, S. D., James, L., Vanden Bos, T., de Vries, P., Brasel, K., Gliniak, B., Hollingsworth, L. T., Picha, K. S., McKenna, H. J., Splett, R. R., and et al. (1993). Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75(6), 1157-1167.
Macatonia, S. E., Taylor, P. M., Knight, S. C., and Askonas, B. A. (1989). Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro. J. Exp. Med. 169(4), 1255-1264.
Maloy, K. J., Odermatt, B., Hengartner, H., and Zinkernagel, R. M. (1998). Interferon gamma-producing gammadelta T cell-dependent antibody isotype switching in the absence of germinal center formation during virus infection. Proc. Natl. Acad. Sci. U S A 95(3), 1160-1165.
Manickan, E., and Rouse, B. T. (1995). Roles of different T-cell subsets in control of herpes simplex virus infection determined by using T-cell-deficient mouse-models. J. Virol. 69(12), 8178-8179.
Maraskovsky, E., Brasel, K., Teepe, M., Roux, E. R., Lyman, S. D., Shortman, K., and McKenna, H. J. (1996). Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184(5), 1953-1962.
Matthews, W., Jordan, C. T., Wiegand, G. W., Pardoll, D., and Lemischka, I. R. (1991). A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 65(7), 1143-1152.
McColl, S. R. (2002). Chemokines and dendritic cells: a crucial alliance. Immunol. Cell. Biol. 80(5), 489-496.
McKenna, H. J., Stocking, K. L., Miller, R. E., Brasel, K., De Smedt, T., Maraskovsky, E., Maliszewski, C. R., Lynch, D. H., Smith, J., Pulendran, B., Roux, E. R., Teepe, M., Lyman, S. D., and Peschon, J. J. (2000). Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95(11), 3489-3497.
McKinney, R. E., Jr., Katz, S. L., and Wilfert, C. M. (1987). Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Rev. Infect. Dis. 9(2), 334-356.
McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H., and Miller, S. D. (2005). Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11(3), 335-339.
McMahon, E. J., Bailey, S. L., and Miller, S. D. (2006). CNS dendritic cells: critical participants in CNS inflammation? Neurochem. Int. 49(2), 195-203.
McMinn, P., Stratov, I., Nagarajan, L., and Davis, S. (2001). Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in Western Australia. Clin. Infect. Dis. 32(2), 236-242.
Mikloska, Z., Bosnjak, L., and Cunningham, A. L. (2001). Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J. Virol. 75(13), 5958-5964.
Minor, P. D., and Dunn, G. (1988). The effect of sequences in the 5' non-coding region on the replication of polioviruses in the human gut. J. Gen. Virol. 69 ( Pt 5), 1091-1096.
Moran, T. P., Collier, M., McKinnon, K. P., Davis, N. L., Johnston, R. E., and Serody, J. S. (2005). A novel viral system for generating antigen-specific T cells. J. Immunol. 175(5), 3431-3438.
Moser, M., and Murphy, K. M. (2000). Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1(3), 199-205.
Munemura, T., Saikusa, M., Kawakami, C., Shimizu, H., Oseto, M., Hagiwara, A., Kimura, H., and Miyamura, T. (2003). Genetic diversity of enterovirus 71 isolated from cases of hand, foot and mouth disease in Yokohama City between 1982 and 2000. Arch. Virol. 148(2), 253-263.
Murray, K. E., Roberts, A. W., and Barton, D. J. (2001). Poly(rC) binding proteins mediate poliovirus mRNA stability. Rna. 7(8), 1126-1141.
Nagy, G., Takatsy, S., Kukan, E., Mihaly, I., and Domok, I. (1982). Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch. Virol. 71(3), 217-227.
Nicholson, R., Pelletier, J., Le, S. Y., and Sonenberg, N. (1991). Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J. Virol. 65(11), 5886-5894.
Nolan, M. A., Craig, M. E., Lahra, M. M., Rawlinson, W. D., Prager, P. C., Williams, G. D., Bye, A. M., and Andrews, P. I. (2003). Survival after pulmonary edema due to enterovirus 71 encephalitis. Neurology 60(10), 1651-1656.
Nishimura, Y., Shimojima, M., Tano, Y., Miyamura, T., Wakita, T., and Shimizu, H. (2009). Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat. Med. 15(7), 794-797.
Oberste, M. S., Penaranda, S., Maher, K., and Pallansch, M. A. (2004). Complete genome sequences of all members of the species Human enterovirus A. J. Gen. Virol. 85(Pt 6), 1597-1607.
Palucka, K. A., Taquet, N., Sanchez-Chapuis, F., and Gluckman, J. C. (1998). Dendritic cells as the terminal stage of monocyte differentiation. J. Immunol. 160(9), 4587-4595.
Parsley, T. B., Towner, J. S., Blyn, L. B., Ehrenfeld, E., and Semler, B. L. (1997). Poly (rC) binding protein 2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD proteinase. Rna. 3(10), 1124-1134.
Pashenkov, M., Teleshova, N., and Link, H. (2003). Inflammation in the central nervous system: the role for dendritic cells. Brain Pathol. 13(1), 23-33.
Pelletier, J., and Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334(6180), 320-325.
Pohlmann, S., Zhang, J., Baribaud, F., Chen, Z., Leslie, G. J., Lin, G., Granelli-Piperno, A., Doms, R. W., Rice, C. M., and McKeating, J. A. (2003). Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol. 77(7), 4070-4080.
Qiu, J. (2008). Enterovirus 71 infection: a new threat to global public health? Lancet Neurology 7(10), 868-869.
Racaniello, V. R. (2006). One hundred years of poliovirus pathogenesis. Virology 344(1), 9-16.
Raftery, M. J., Kraus, A. A., Ulrich, R., Kruger, D. H., and Schonrich, G. (2002). Hantavirus infection of dendritic cells. J. Virol. 76(21), 10724-10733.
Randolph, G. J. (2001). Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin. Immunol. 13(5), 267-274.
Reichmann, G., Schroeter, M., Jander, S., and Fischer, H. G. (2002). Dendritic cells and dendritic-like microglia in focal cortical ischemia of the mouse brain. J. Neuroimmunol. 129(1-2), 125-132.
Reid, S. D., Penna, G., and Adorini, L. (2000). The control of T cell responses by dendritic cell subsets. Curr. Opin. Immunol. 12(1), 114-121.
Romani, N., Gruner, S., Brang, D., Kampgen, E., Lenz, A., Trockenbacher, B., Konwalinka, G., Fritsch, P. O., Steinman, R. M., and Schuler, G. (1994). Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180(1), 83-93.
Santambrogio, L., Belyanskaya, S. L., Fischer, F. R., Cipriani, B., Brosnan, C. F., Ricciardi-Castagnoli, P., Stern, L. J., Strominger, J. L., and Riese, R. (2001). Developmental plasticity of CNS microglia. Proc. Natl. Acad. Sci. U S A 98(11), 6295-6300.
Schmidt, N. J., Lennette, E. H., and Ho, H. H. (1974). An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect. Dis. 129(3), 304-309.
Shia, K. S., Li, W. T., Chang, C. M., Hsu, M. C., Chern, J. H., Leong, M. K., Tseng, S. N., Lee, C. C., Lee, Y. C., Chen, S. J., Peng, K. C., Tseng, H. Y., Chang, Y. L., Tai, C. L., and Shih, S. R. (2002). Design, synthesis, and structure-activity relationship of pyridyl imidazolidinones: a novel class of potent and selective human enterovirus 71 inhibitors. J. Med. Chem. 45(8), 1644-1655.
Shortman, K., and Naik, S. H. (2007). Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 7(1), 19-30.
Sidman, C. L., and Unanue, E. R. (1975). Development of B lymphocytes. I. Cell populations and a critical event during ontogeny. J. Immunol. 114(6), 1730-1735.
Smit, J. J., Rudd, B. D., and Lukacs, N. W. (2006). Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med. 203(5), 1153-1159.
Smith, J. R., Thackray, A. M., and Bujdoso, R. (2001). Reduced herpes simplex virus type 1 latency in Flt-3 ligand-treated mice is associated with enhanced numbers of natural killer and dendritic cells. Immunology 102(3), 352-358.
Spear, P. G., Wang, A. L., Rutishauser, U., and Edelman, G. M. (1973). Characterization of splenic lymphoid cells in fetal and newborn mice. J. Exp. Med. 138(3), 557-573.
Steinman, R. M. (1991). The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271-296.
Steinman, R. M., Pack, M., and Inaba, K. (1997). Dendritic cell development and maturation. Adv. Exp. Med. Biol. 417, 1-6.
Stirewalt, D. L., and Radich, J. P. (2003). The role of FLT3 in haematopoietic malignancies. Nat. Rev. Cancer 3(9), 650-665.
Swanson, J. A. (2008). Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9(8), 639-649.
Szomolanyi-Tsuda, E., and Welsh, R. M. (1996). T cell-independent antibody-mediated clearance of polyoma virus in T cell-deficient mice. J. Exp. Med. 183(2), 403-411.
Szomolanyi-Tsuda, E., and Welsh, R. M. (1998). T-cell-independent antiviral antibody responses. Curr. Opin. Immunol. 10(4), 431-435.
Tagaya, I., and Tachibana, K. (1975). Epidemic of hand, foot and mouth disease in Japan, 1972-1973: difference in epidemiologic and virologic features from the previous one. Jpn. J. Med. Sci. Biol. 28(4), 231-234.
Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S., Birx, D. L., Steinman, R. M., Schlesinger, S., and Marovich, M. A. (2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197(7), 823-829.
Thomsen, A. R., Nansen, A., Andersen, C., Johansen, J., Marker, O., and Christensen, J. P. (1997). Cooperation of B cells and T cells is required for survival of mice infected with vesicular stomatitis virus. Int. Immunol. 9(11), 1757-1766.
Trifilo, M. J., and Lane, T. E. (2004). The CC chemokine ligand 3 regulates CD11c+CD11b+CD8alpha- dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 327(1), 8-15.
van Kooyk, Y., and Geijtenbeek, T. B. (2003). DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3(9), 697-709.
Villadangos, J. A., and Schnorrer, P. (2007). Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7(7), 543-555.
Vollstedt, S., Franchini, M., Hefti, H. P., Odermatt, B., O'Keeffe, M., Alber, G., Glanzmann, B., Riesen, M., Ackermann, M., and Suter, M. (2003). Flt3 ligand-treated neonatal mice have increased innate immunity against intracellular pathogens and efficiently control virus infections. J. Exp. Med. 197(5), 575-584.
Vollstedt, S., O'Keeffe, M., Odermatt, B., Beat, R., Glanzmann, B., Riesen, M., Shortman, K., and Suter, M. (2004). Treatment of neonatal mice with Flt3 ligand leads to changes in dendritic cell subpopulations associated with enhanced IL-12 and IFN-alpha production. Eur. J. Immunol. 34(7), 1849-1860.
Wahid, R., Cannon, M. J., and Chow, M. (2005). Dendritic cells and macrophages are productively infected by poliovirus. J. Virol. 79(1), 401-409.
Wang, J. R., Tuan, Y. C., Tsai, H. P., Yan, J. J., Liu, C. C., and Su, I. J. (2002). Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. J. Clin. Microbiol. 40(1), 10-5.
Wang, S. M., Lei, H. Y., Huang, K. J., Wu, J. M., Wang, J. R., Yu, C. K., Su, I. J., and Liu, C. C. (2003). Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and cellular immune activation in patients with pulmonary edema. J. Infect. Dis. 188(4), 564-570.
Wang, S. M., Lei, H. Y., Huang, M. C., Su, L. Y., Lin, H. C., Yu, C. K., Wang, J. L., and Liu, C. C. (2006). Modulation of cytokine production by intravenous immunoglobulin in patients with enterovirus 71-associated brainstem encephalitis. J. Clin. Virol. 37(1), 47-52.
Wang, S. M., Lei, H. Y., Su, L. Y., Wu, J. M., Yu, C. K., Wang, J. R., and Liu, C. C. (2007). Cerebrospinal fluid cytokines in enterovirus 71 brain stem encephalitis and echovirus meningitis infections of varying severity. Clin. Microbiol. Infect. 13(7), 677-682.
Wang, S. M., Liu, C. C., Tseng, H. W., Wang, J. R., Huang, C. C., Chen, Y. J., Yang, Y. J., Lin, S. J., and Yeh, T. F. (1999). Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin. Infect. Dis. 29(1), 184-190.
Wang, Y. F., Chou, C. T., Lei, H. Y., Liu, C. C., Wang, S. M., Yan, J. J., Su, I. J., Wang, J. R., Yeh, T. M., Chen, S. H., and Yu, C. K. (2004). A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J. Virol. 78(15), 7916-7924.
Wen, Y. Y., Chang, T. Y., Chen, S. T., Li, C., and Liu, H. S. (2003). Comparative study of enterovirus 71 infection of human cell lines. J. Med. Virol. 70(1), 109-118.
Whitmire, J. K., Slifka, M. K., Grewal, I. S., Flavell, R. A., and Ahmed, R. (1996). CD40 ligand-deficient mice generate a normal primary cytotoxic T-lymphocyte response but a defective humoral response to a viral infection. J. Virol. 70(12), 8375-8381.
Wu, C. N., Lin, Y. C., Fann, C., Liao, N. S., Shih, S. R., and Ho, M. S. (2001). Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 20(5-6), 895-904.
Wu, L., and Liu, Y. J. (2007). Development of dendritic-cell lineages. Immunity 26(6), 741-750.
Yan, J. J., Wang, J. R., Liu, C. C., Yang, H. B., and Su, I. J. (2000). An outbreak of enterovirus 71 infection in Taiwan 1998: a comprehensive pathological, virological, and molecular study on a case of fulminant encephalitis. J. Clin. Virol. 17(1), 13-22.
Yamayoshi, S., Yamashita, Y., Li, J., Hanagata, N., Minowa, T., Takemura, T., and Koike, S. (2009). Scavenger receptor B2 is a cellular receptor for enterovirus 71. 15(7), 798-801.
Yu, C. K., Chen, C. C., Chen, C. L., Wang, J. R., Liu, C. C., Yan, J. J., and Su, I. J. (2000). Neutralizing antibody provided protection against enterovirus type 71 lethal challenge in neonatal mice. J. Biomed. Sci. 7(6), 523-528.
Zhou, T., Chen, Y., Hao, L., and Zhang, Y. (2006). DC-SIGN and immunoregulation. Cell Mol. Immunol. 3(4), 279-283.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top