|
1. Boag, J.W., (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal statistical Society B 11, 15-44. 2. Cai, J., Shen, Y., (2000). Permutation tests for comparing marginal survival functions with clustered failure time data. Statistics in Medicine 19, 2963-2973. 3. Chandler, R.E., Bate S., (2007). Inference for clustered data using the independence loglikelihood. Biometrika 94, 1-17. 4. Clayton, D., Cuzick J., (1985). Multivariate generalizations of the proportional hazards model(with discussion) Journal of the Royal Statistical, Series A 148, 82-117. 5. Farewell, V.T., (1982). The use of mixture models for the analysis of survival data with long term survivors. Biometrics 38, 1041-1046. 6. Kalbfleisch, J. D., Prentice, R. L.(1980). The statistical analysis of failure time data. Wiley Series In Probability And Mathematical Statistics. 7. Lipsitz, S. R., Dear, K.B.G., Zhao, L., (1994). Jacknife estimators of variance for parameter estimates from estimating equations with applications to clustered survival data. Biometric 50, 842-846. 8. Wen, M.J., Tseng, C.C., Lee, C.K., (2008). Life table analysis for evaluating curative-effect of one-stage non-submerged dental implant in Taiwan. Journal of Data Science 6, 591-599. 9. Yu, B., Peng, Y.(2008). Mixture cure models for multivariate survival data. Computational Statistics & Data Analysis 52, 1524-1532. 10. Zeger, S.L., Liang, K.Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121-130. 11. Zhao, X., Zhou, X. (2008). Discrete-time survival models with long-term survivors. Statistics in Medicine 27, 1261-1281.
|