跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉佳穎
研究生(外文):Chia-Ying Liu
論文名稱:三維複合材料未知接合面幾何形狀預測之研究
論文名稱(外文):A Three-Dimensional Shape Identification Problem in Estimating the Geometry of Interface in a Multiple Region Domain
指導教授:黃正弘黃正弘引用關係
指導教授(外文):Cheng-Hung Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:系統及船舶機電工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:72
中文關鍵詞:三維複合材料未知接合面
外文關鍵詞:A Three-Dimensional Shape Identification Problem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本論文透過急遽遞減法(Steppest Descent Method)與套裝軟體CFD-RC的結合,配合模擬紅外線溫度感測器所量測的模型表面溫度值為參考,來對複合材料界面之幾何形狀進行預測。
  本論文有兩個主題。在第二章中,吾人以套裝軟體CFD-RC為基礎,利用急遽遞減法來預測二區複合材料之未知界面幾何形狀 (即一組未知界面形狀,��(x,y))。在第三章中,吾人亦以套裝軟體CFD-RC為基礎,利用急遽遞減法來預測三區複合材料之未知界面幾何形狀(即二組未知界面形狀��1(x,y)及��2(x,y) )。
本研究與之前相關研究不同的是,在進行二區和三區複合材料未知界面形狀之預測時,為了得到梯度方程式(gradient equation)必須利用一重複使用條件(over-utilized condition)方可達成目的。此外,吾人亦假設兩區或三區複合材料之界面為良好接觸(perfect thermal contact),故求解時需利用兩材料交界面上溫度相同且達到熱平衡之原理來求解。
最後在數值實驗中測試了考慮量測誤差與量測點數改變的情況,此外並於第二章中探討量測位置對於預測結果之影響。數值實驗結果皆證明了急遽遞減法於逆向幾何形狀預測問題中能夠正確預測複合材料內部界面形狀。
A three-dimensional shape identification problem (or inverse geometry problem) in estimating the interfacial geometry for a multiple region domain is solved by using the steepest descent method (SDM) and a general purpose commercial code CFD-RC based on the simulated measured temperature distributions on the surfaces obtained by the imaginary infrared scanners.
The present thesis has two themes, in chapter two the goal is to estimate only one irregular interfacial surface ��(x,y) in a two-layer structure, while in chapter three the objective is to estimate simultaneously two irregular interfacial surfaces ��1(x,y) and ��2(x,y) in a three-layer-structure.
In this work, in order to determine the gradient equation, one of the integral terms obtained from the integration by parts should be over-utilized. This differs from our previous relevant study. Also it is assumed that perfect thermal contact condition is applied to the interfacial surfaces between different materials.
The numerical experiments are performed to test the validity and accuracy of the present shape identification algorithm by using different types of interfaces, initial guesses and measurement errors. Results show that excellent estimations on the unknown geometry of the interfaces can be obtained by the present steepest descent method (SDM).
目 錄

摘 要…………...........................................................................................I

誌 謝........................................................................................................III

目 錄…..………......................................................................................IV

圖 目 錄………......................................................................................VI

符 號 說 明….....................................................................................VIII

第一章 緒 論............................................................................................1

1-1 研究背景與目的…………………………………………………..…1

1-2 文獻回顧…………………………………………………………..…2

第 二 章 反算法於三維兩區複合材料未知界面幾何形狀之預測…..5

2-1 直接解問題(Direct Problem)…………………………………...……5

2-2 反算問題(Inverse Problem) ……………………………………...…..6

2-3急遽遞減法之極小化過程(Conjugate Gradient Method For Minimization)………………………………………………………….....8

2-3-1靈敏性問題與前進步距(Sensitivity Problem and Search Step Size) ..........................................................................................................9

2-3-2 伴隨問題與梯度方程式(Adjoint Problem and Gradient Equation)..................................................................................................11

2-3-3 收斂條件(Stopping Criterion)……………………………..……..14

2-3-4 數值計算流程(Computational Procedure)………………….……15

2-4 結果與討論(Results and Discussion)…………………………..…..16

第 三 章 反算法於三維三區複合材料未知界面幾何形狀之預測…34

3-1 直接解問題(Direct Problem)……………………………………….35

3-2 反算問題(Inverse Problem)……………………………………...…37

3-3 急遽遞減法之極小化過程(Conjugate Gradient Method For Minimization)……………………………………………………...……38

3-3-1 靈敏性問題與前進步距(Sensitivity Problem and Search Step Size)……………………………………………………………………..39

3-3-2 伴隨問題與梯度方程式(Adjoint Problem and Gradient Equation)…………………………………………………………..……44

3-3-3 收斂條件(Stopping Criterion)…………………………………....49

3-3-4 數值計算流程(Computational Procedure).....................................50

3-4 結果與討論(Results and Discussion)………………………..……..51

第 四 章 結 語……………………………………………..…………70

參 考 文 獻……………………………………………………………71














圖目錄

圖 2-1. 二區複合材料之(a)幾何形狀座標示意圖 (b)網格分布圖…………………………………………………………….....23

圖2-2. 範例一中之(a)正解 與(b)當�� = 0.0, = 0.015 m , 量測面為Sbottom時之預測形狀��(x,y)……………….……….…........24

圖2-3. 範例一中當量測面為Sbottom,且�� = 0.0,與 = 0.015時之 (a) 量測面溫度 (b)預測面溫度................................................25

圖2-4. 範例一當中�� = 0.0之 (a)�n = 0.085 m ,且量測面為Sbottom與(b) = 0.015 m ,且量測面為Stop時之預測形狀.......26

圖2-5. 範例一中當量測面為Sbottom且(a)�n�� = 0.17 (b) �� = 0.34 時之預測形狀圖……………………………………………………... 27

圖2-6. 範例二中之(a)正解 與(b)當�� = 0.0, = 0.015 m , 量測面為Sbottom時之預測形狀 ��(x,y)….…………………………....28

圖2-7. 範例二中當量測Sbottom,且�� = 0.0,與 = 0.015時之 (a) 量測面溫度 (b) 預測面溫度.........................................................29

圖2-8. 範例二中當量測面為Sbottom且(a)�n�� = 0.17 (b) �� = 0.34 時之預測形狀........................................................................................30

圖2-9. 範例三中之(a)正解 與(b)當�� = 0.0, = 0.015 m , 量測面為Sbottom時之預測形狀 ��(x,y)………….....………………....31

圖2-10. 範例三中當量測Sbottom,且�� = 0.0,與 = 0.015時之 (a) 量測 面溫度 (b) 預測面溫度......................................................32

圖2-11. 範例三中當量測面為Sbottom且(a)�n�� = 0.17 (b) �� = 0.34 時之預測形狀……………………………………………………..…..33

圖3-1. 三區複合材料之(a)幾何形狀座標示意圖 與(b)網格分布圖...............................................................................................57

圖3-2. 範例一中接合面之(a)正解與(b) (��1,�n��3) = (0,0)時之預測形狀................................................................................................58

圖3-3. 範例一中當(��1,�n��3) = (0,0)時,Sbottom之(a) 量測溫度與(b) 預測溫度………………………………………………....……59

圖3-4.範例一中之當(��1,�n��3) = (0,0)時,Stop之(a) 量測溫度與(b) 預測溫度........................................................................................60

圖3-5. 範例一中當(a) (��1,�n��3) = (0.2,0.2)時與(b) (��1,�n��3) = (0.4,0.4)時之接合面預測形狀....................................................................61

圖3-6. 範例二中接合面之(a)正解與(b) (��1,�n��3) = (0,0)時之預測形狀……………………................................................................62

圖3-7. 範例二中之當(��1,�n��3) = (0,0)時,Sbottom之(a)量測溫度與 (b)預測溫度……………………………………….……………...63

圖3-8. 範例二中之當(��1,�n��3) = (0,0)時,Stop之(a)量測溫度與 (b)預測溫度……………………………………………….…….......64

圖3-9. 範例二中當(a) (��1,�n��3) = (0.2,0.2)時與(b) (��1,�n��3) = (0.4,0.4)時之接合面預測形狀...............................................................65

圖3-10. 範例三中接合面之(a)正解與(b) (��1,�n��3) = (0,0)時之預測形狀................................................................................................66

圖3-11. 範例三中之當(��1,�n��3) = (0,0)時,Sbottom之(a) 量測溫度與(b) 預測溫度………………………………………………….…...67

圖3-12. 範例三中之當(��1,�n��3) = (0,0)時,Stop之(a) 量測溫度與(b) 預測溫度………………………….…………………………...68

圖3-13. 範例三中當(a) (��1,�n��3) = (0.2,0.2)時 與(b) (��1,�n��3) = (0.4,0.4)時之預測形狀………………………………………...69
1.C. H. Huang, and J. Y. Yan, An Inverse Problem in Simultaneously Measuring Temperature Dependent Thermal Conductivity and Heat Capacity, Int. J. Heat and Mass Transfer, 38 (1995), 3433-3441.
2.O. M. Alifanov, Solution of an Inverse Problem of Heat Conduction by Iteration
Methods. J. of Engineering Physics, 26 (1974), 471-476.
3. C. H. Huang and S. C. Cheng, A Three-Dimensional Inverse Problem of Estimating the Volumetric Heat Generation for A Composite Material, Numerical Heat Transfer, Part A, 39 (2001), 383–403.
4. T. Burczynski, W. Beluch, A. Dlugosz, W. Kus, M. Nowakowski, and P. Orantek, Evolutionary Computation in Optimization and Identification, Comput. Assist. Mech. Eng. Sci., 9 (2002), 3–20.
5. T. Burczinski, J. H. Kane, and C. Balakrishna, Shape Design Sensitivity Analysis via Material Derivative-Adjoint Variable Technique for 3D and 2D Curved Boundary Elements, Int. J. Numer. Meth. Eng., 38 (1995), 2839–2866.
6. H. M Park, and H. J. Shin, Shape Identification for Natural Convection Problems using the Adjoint Variable Method, Journal of Computational Physics, 186 (2003), 198-211.
7. C. H. Cheng, and M. H. Chang, A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data, Numerical Heat Transfer; Part B, 43 (2003), 489-507.
8. E. Divo, A. J. Kassab and F. Rodriquez, An efficient singular superposition technique for cavity detection and shape optimization, Numerical Heat Transfer Part B, 46 (2004), 1-30.
9. C. H. Huang and B. H. Chao, An Inverse Geometry Problem in Identifying Irregular Boundary Configurations, Int. J. Heat and Mass Transfer, 40 (1997), 2045-2053.
10. C. H. Huang and C. C. Tsai, A Transient Inverse Two-Dimensional Geometry Problem in Estimating Time-Dependent Irregular Boundary Configurations, Int. J. Heat and Mass Transfer, 41 (1998), 1707-1718.
11. C. H. Huang, C. C. Chiang and H. M. Chen, Shape Identification Problem in Estimating the Geometry of Multiple Cavities, AIAA, J. Thermophysics and Heat Transfer, 12 (1998), 270-277.
12. C. H. Huang and T. Y. Hsiung, An Inverse Design Problem of Estimating Optimal Shape of Cooling Passages in Turbine Blades, Int. J. Heat and Mass Transfer (SCI &EI paper), 42, No. 23(1999), 4307-4319.
13. C. H. Huang and H. M. Chen, An Inverse Geometry Problem of Identifying Growth of Boundary Shapes in A Multiple Region Domain, Numerical Heat Transfer; Part A, 35 (1999), 435-450.
14. C. H. Huang and M. T. Chaing, A Transient Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Irregular Boundary Shapes, Int. J. Heat and Mass Transfer, 51 (2008), 5238–5246.
15. C. H. Huang and C. A. Chen, “A Three-Dimensional Inverse Geometry Problem in Estimating the Space and Time-Dependent Shape of An Irregular Internal Cavity”, Int. J. Heat and Mass Transfer, 52 (2009), 2079–2091.
16. C. H. Huang and C. C. Shih, A Shape Identification Problem in Estimating Simultaneously Two Interfacial Configurations in a Multiple Region Domain, Applied Thermal Engineering, 26 (2006), 77–88, 2006.
17. O. M. Alifanov, Inverse Heat Transfer Problem, Springer-Verlag, Berlin Heidelberg, 1994.
18. L. S. Lasdon, S. K. Mitter, and A. D. Warren, The Conjugate Gradient Method for Optimal Control Problem, IEEE Transactions on Automatic Control, AC-12 (1967), 132-138.
19. IMSL Library Edition 10.0, User's Manual: Math Library Version 1.0, IMSL, Houston, TX, 1987
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top